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Abstract

Deep neural networks are usually trained on a closed
set of classes, which makes them distrustful when handling
previously-unseen out-of-domain (OOD) objects. In safety-
critical applications such as perception for automated driv-
ing, detecting and localizing OOD objects is crucial, espe-
cially if they are positioned in the driving path. In the con-
text of this contribution, OOD objects refer to objects that
were not represented in the training dataset. We propose
a Dirichlet deep neural network for instance segmentation
with inherent uncertainty modeling based on Dirichlet dis-
tributions and the Intermediate Layer Variational Inference
(ILVI). A thorough analysis shows that our method deliv-
ers reliable uncertainty estimates to its predictions whilst
identifying OOD instances. The model-agnostic approach
can be applied to different instance segmentation models
as demonstrated for two different state-of-the-art deep neu-
ral networks. Superior results can be shown on the out-of-
domain Lost and Found dataset compared to state-of-the-
art approaches, whilst also achieving improvements on the
in-domain Cityscapes dataset.

1. Introduction

Deep learning has revolutionized computer vision, offer-

ing groundbreaking advancements in various domains in-

cluding medical imaging [1] and automated driving (AD)

[2]. In the field of AD systems, deep neural networks

(DNNs) have emerged as the predominant method, find-

ing widespread applications in sensor fusion [3], path plan-

ning [4] and image semantic segmentation [5].

Despite the remarkable achievements of deep learning

techniques in various tasks, a key insufficiency of DNNs

is the lack of out-of-domain (OOD) detection capability

which is essential to ensure the reliability and safety of ma-

chine learning systems [6]. This is particularly important

for an AD system, where the ability to identify OOD ob-

jects in the driving path is safety critical.

In recent years, researchers have addressed the afore-

mentioned limitations by incorporating the capability of ex-

pressing uncertainty in the predictions made by DNNs [7].

Uncertainty modeling has paved the way for the exploration

and implementation of various techniques to quantify un-

certainty estimations. These estimations not only inherently

deliver evidence for the reliability of predictions but also

serve as a means to identify anomalies in the network’s out-

put and identify OOD objects present in the input data [8].

Recent studies showed several drawbacks of depending

on uncertainty estimation as a method to detect OOD ob-

jects, as the overconfidence in the DNN predictions could

highly mislead the uncertainty estimation, hindering the

DNN from being able to have high uncertainty estimation

on OOD objects [9]. In recent studies [10, 11], it has been

shown that the usage of Dirichlet DNNs and Intermedi-

ate layer variational inference (ILVI) [12] contributes to

the improvement of uncertainty estimation and overcomes

the overconfidence of the DNNs for semantic segmentation

tasks. Figure 1 showcases the capabilities of our proposed

method, highlighting its superior performance compared to

the baseline Cross Entropy (CE) DNN and the current state-

of-the-art approaches. Our approach excels in accurately

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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Figure 1: Sample result representing the instance segmentation output for all approaches (top row). Uncertainty estimates are

shown for the baseline and the two state-of-the-art approaches whereas Dirichlet strength for our Dirichlet MLE approach

is shown (bottom row). The baseline fails to detect the OOD objects and lacks high uncertainty estimates for them. State-

of-the-art approaches partially detect OOD objects but with only a few pixels exhibiting high uncertainty. In contrast, our

proposed method effectively detects the OOD objects with low Dirichlet strength.

identifying and segmenting out-of-domain (OOD) objects,

surpassing the limitations faced by the other methods.

In this work, we build on these studies by evolving this

approach into identifying OOD objects in the driving scene,

without using OOD object annotations for training. We de-

velop a DNN architecture that is able to segment instances

whilst being able to distinguish them as in-domain (ID) and

OOD objects. This is achieved by using two properties from

the Dirichlet distribution: predictive entropy and Dirichlet

strength. Following [10, 11], we train the DNN using Max-

imum Likelihood Estimation (MLE) [13] and incorporate

the ILVI approach for the identification of OOD objects. In

the context of this work, an ID dataset refers to datasets

having only ID objects, whereas an OOD dataset refers to

a dataset having both ID and OOD objects. Furthermore,

ID objects with different poses and orientations are also

counted as OOD.

The remainder of the paper is organized as follows: Sec-

tion 2 presents related work for uncertainty modeling ap-

proaches for identifying OOD objects, whilst the proposed

architecture and the approach used is discussed and ex-

plained in Section 3. The experiments conducted to test our

approach are presented in Section 4 and a conclusion of the

work is discussed in Section 5.

2. Related Work

Anomaly detection was first investigated for the task of

image classification. This involved postprocessing tech-

niques that aimed to modify the confidence scores generated

by a classification DNN [14]. While these methods were

initially developed for identifying anomalies at the image

level, they can be conveniently adjusted for the task of se-

mantic segmentation. This adaptation involves treating each

pixel in an image as a potential anomaly.

A recent approach in anomaly segmentation involves the

use of generative models to reconstruct or resynthesize the

original input image. The idea behind this approach is that

the reconstructed images will better retain the visual charac-

teristics of regions that contain familiar objects compared to

those with unfamiliar objects. By identifying discrepancies

between the original image and its reconstructed version at

the pixel level, anomaly detection can be performed [15].

Recent work has been focusing on modeling the DNN

outputs as Dirichlet distributions which would in return im-

prove its uncertainty and OOD detection. Dirichlet Prior

Networks build upon the framework introduced in [16] by

modeling the predicted logits as the concentration parame-

ters of a Dirichlet distribution. This distribution serves as

a prior for the categorical distribution. The intention be-

hind this extension is to capture the distributional uncer-

tainty through the spread of the Dirichlet prior. In order to

achieve this, authors of [16] train the DNN to mimic a Dirac

distribution for correct predictions and flat distribution for

incorrect predictions. To do so they propose to learn the

parameters of a Dirichlet distribution by training the DNN

using Kullback-Leibler (KL) divergence.

Similar to Dirichlet Prior networks, the authors in [17]

propose the Evidential networks, which is a method that

combines Dirichlet Prior networks with the likelihood

to maximize the whole posterior. Inspired by Demp-

ster–Shafer Theory of Evidence (DST), they treat the pre-

dictions of the DNN as subjective opinions and train the

DNN to gather evidence supporting these opinions. Addi-

tionally, a penalty term is introduced to penalize the DNN

for incorrect detections and encourage it to exhibit high

uncertainty in such cases. This ensures that the network

learns both accurate classifications and appropriate repre-

sentations of uncertainty for incorrect predictions.
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Inspired by previous studies of [16,17], our goal is to uti-

lize Dirichlet models to enhance the identification of OOD

objects using instance segmentation whilst also improving

reliable uncertainty estimation and maintaining segmenta-

tion performance for ID classes. Optimizing the reliability

of uncertainty estimation in the Dirichlet DNN by formu-

lating its loss function using KL divergence is often consid-

ered challenging [16]. In this work, we adopt an alternative

approach by directly formulating our loss function to max-

imize the likelihood of the Dirichlet concentration parame-

ters, as suggested in [10, 11].

3. Methodology
3.1. Dirichlet DNN Architecture

The architecture, presented in Figure 2a, comprises a

shared backbone that takes the input image and passes the

extracted features to the ILVI module, as shown in Fig-

ure 2b. The ILVI module acts as a regularizer by adding

stochasticity in the DNN avoiding overfitting and overcon-

fidence. The output of the ILVI is passed on to the three

following decoders in parallel: the semantic segmentation

decoder, the instance segmentation decoder, and the depth

decoder.

The semantic segmentation decoder and the Dirichlet

layer, Figure 2c, are trained together to model the seman-

tic segmentation output as a Dirichlet distribution, which

enables the identification of OOD instances, as shown in

Figure 2. This decoder generates three results: semantic

segmentation, uncertainty estimation and Dirichlet strength

based on the per-pixel Dirichlet distribution. The instance

segmentation decoder generates the center points and the

masks of the instances. Lastly, the depth decoder outputs

per-pixel depth estimates only for the objects in the scene.

All generated outputs from the three decoders are passed

on to the last post-processing module. The final result is

an instance segmentation output where all objects in the

scene are classified, as ID or OOD objects with additional

attributes.

3.2. Semantic Segmentation Decoder

The semantic segmentation component of the DNN re-

lies on the modeling of semantic segmentation using Dirich-

let distributions. In this section, we elaborate on the Dirich-

let modeling approach and subsequently provide an expla-

nation of our method for identifying (OOD) objects using

Dirichlet distributions.

Dirichlet Modeling: Given the probability simplex as

S = {(θ1, . . . , θk) : θi ≥ 0,
∑

i θi = 1}, the Dirich-

let distribution is a probability density function on vec-

tors θ ∈ S and categorized by concentration parameters

α = {α1, . . . , αK} as:
Dir(θ;α) = log

1

B(α)

K∏
i=1

θαi−1
i (1)

(a) Dirichlet MLE DNN architecture

(b) ILVI layer (c) Dirichlet layer

Figure 2: The Dirichlet MLE DNN is illustrated, empha-

sizing its key components for enhancing OOD identifica-

tion. The ILVI layer introduces a multivariate layer struc-

ture, while the Dirichlet layer handles semantic segmenta-

tion, uncertainty estimation, and Dirichlet strength calcula-

tion.

where the normalizing constant 1
B(α) denotes the multi-

variate Beta function B(α) =
∏K

i=1 Γ(αi)

Γ(α0)
, α0 =

∑K
i=1 αi

and Gamma function Γ(x) =
∫∞
0

tx−1e−tdt , and θ de-

notes the ground truth probability distribution [13]. To

model the Dirichlet distribution, the concentration param-

eters α correspond to each class output from the seman-

tic segmentation decoder as follows: α = fw(x), where α
changes with each input x.

To train the Dirichlet distributions, we propose a di-

rect maximization of the likelihood, inspired by the works

of [10, 11]. Unlike the Dirichlet Prior and Evidential ap-

proaches, our method eliminates the constraints of the KL-

divergence term in the loss function, allowing the DNN to

explore the weight space more freely. This leads to im-

proved segmentation performance and enhanced reliability

in uncertainty estimation by encouraging a sharper concen-

tration of Dirichlet parameters for correct predictions and

flatter distributions for incorrect predictions.

Training a Dirichlet DNN with maximum likelihood es-

timation (MLE) can be done by minimizing the negative

log-likelihood [13] as follows:
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F (α; θ) = log
∏

Dir(θ;α) = log
1

B(α)

K∏
i=1

θαi−1
i

= logΓ

(
K∑
i=1

αj

)
−

K∑
i=1

logΓ(αi) +
K∑
i=1

(αi − 1)logθi

(2)

We aim to train the DNN to produce reliable uncertainty

estimations by treating the DNN’s correct and incorrect pre-

dictions separately. Our primary objective is to obtain ac-

curate predictions with low uncertainties, while assigning

high uncertainty to incorrect predictions.

To ensure high certainty for correct predictions, the DNN

should exhibit a strong concentration towards the correct

class. This can be achieved by maximizing the likelihood

using the ground truth label probability and employing a

one-hot vector. Conversely, for incorrect predictions, high

uncertainty is achieved by maximizing the likelihood using

an equal probability vector with equal probabilities assigned

to all classes.

To address these cases, we extend the formulation pre-

sented in Equation 2 for the semantic segmentation as fol-

lows:

Lsem = F (αcorrect; θcorrect) + F (αincorrect; θincorrect),
(3)

where αcorrect and αincorrect are the network’s con-

centration parameters representing the correct and incorrect

DNN predictions respectively, and θcorrect and θincorrect
represent the ground truth probability distribution for the

correct classes and the equal probability vector to yield high

uncertainty respectively. As stated previously, it is worth

mentioning that the DNN is not trained on OOD objects.

In this work, we model the uncertainty estimation of the

Dirichlet distribution using the predictive entropy:

Ĥ[y|x] = −
∑
c

(p(y = c|x,w))log(p(y = c|x,w)) (4)

where y is the output variable, c ranges over all the

classes, p(y = c|x,w) = αc∑
α is the probability of the

input x being class c, and w are the model parameters. The

class of each pixel for the semantic segmentation output is

determined according to the highest concentration value of

the Dirichlet distribution.

OOD Identification Using Dirichlet Strength: The key

enabler of our approach to identifying OOD objects is the

use of Dirichlet strength α0. Dirichlet distributions applied

to DNN architectures exhibit high Dirichlet strength on ID

instances. This work builds on the characteristic of Dirich-

let strength to exhibit high values for ID instances that still

may have higher uncertainty values, while for OOD in-

stances, the objective is to achieve low Dirichlet strength

values. We leverage this key feature in Dirichlet DNNs by

extending it in our approach to produce two results for each

output instance: an uncertainty estimate and a Dirichlet

strength. Uncertainty estimation in this case resembles the

inter-class entropy for pixel classification, whereas Dirich-

let strength would directly reflect whether an instance refers

to an ID or OOD object.

For full functionality of the system, both results are

needed to identify ID and OOD instances. Based upon a

threshold to distinguish between ID and OOD instances us-

ing Dirichlet strength, above the threshold is defined as ID

and below it as OOD instance. For ID instances, uncertainty

estimation using the predictive entropy, presented in equa-

tion 3, is used due to its higher reliability over the use of

Dirichlet Strength.

3.3. Intermediate Layer Variational Inference

The concept of Intermediate Layer Variational Inference

(ILVI), presented in Figure 2b, modifies a latent layer in

the network to take the shape of a multivariate Gaussian

distribution with mean and variance, instead of using sin-

gle point estimates. Studies showed that by adopting this

method, stochasticity is introduced allowing for the sam-

pling of points from this layer and consequently improving

the uncertainty estimation of the DNN and also its general-

ization performance [12].

Training a network with this approach would encourage

the use of the reparametrization trick from the variational

autoencoder implementation [18] by having θ = μ+ σ� ε,
where μ and σ are the mean and standard deviation re-

spectively, and � is the pointwise multiplication. This al-

lows the mean and log-variance vectors to remain as the

learnable parameters of the network while maintaining the

stochasticity of the entire system via the random variable

ε ∼ N (0, I) [12].

3.4. Depth Decoder

The depth decoder in the architecture is trained on the

disparity maps in the training dataset, where it comprises a

per-pixel depth. This is achieved by using a decoder sim-

ilar in structure to the semantic segmentation decoder but

estimates depth values for each pixel rather than a class.

The decoder is trained to estimate the depth for pixels

that belong to detected instances only. The mean value is

calculated for each instance and categorized based on the

safety-relevant zones as described in [19] within the post-

processing module. According to the scope of this work, it

is sufficient to estimate the depth category for each detected

instance.
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3.5. Architecture Variants

To evaluate the performance of this architecture, we ex-

amined two different DNN models. The first model uti-

lized the lightweight MobileNetV3 [20] as the shared back-

bone. It incorporated semantic and instance segmentation

decoders inspired by Panoptic Deeplab [21]. In contrast,

the second model employed the computationally more in-

tensive EfficientNet [22] as the shared backbone. It incor-

porated semantic and instance heads inspired by Efficient

Panoptic Segmentation [23].

The MobileNet variant uses the MobileNet backbone

and each decoder incorporates an Atrous Spatial Pyramid

Pooling (ASPP) module for processing and decoding the

ILVI outputs. The instance segmentation module produces

two outputs: center points for the instances in the scene and

the instance masks for it.

The EfficientNet variant in our architecture utilizes the

EfficientNet as the shared backbone, complemented by a 2-

way Feature Pyramid Network (FPN). For the instance seg-

mentation head, we employ a variant of the Mask R-CNN

architecture [24], which comprises two stages: the Region

Proposal Network (RPN) module followed by the Region

of Interest (ROI) align module. This approach leverages

object proposals to extract features from the FPN encod-

ings, enhancing the accuracy of the instance segmentation

process.

3.6. Post-Processing Module

The post-processing module incorporates all outputs and

calculates for each instance identified by the instance de-

coder the following attributes: instance mask, instance

class, mean distance, mean uncertainty estimate and mean

Dirichlet strength. According to a Dirichlet strength thresh-

old, an instance is assumed ID or OOD if it’s higher or lower

than the threshold respectively. The threshold was manually

set to 60% following to experimental studies to best sepa-

rate between ID and OOD instances. The depth category is

also calculated in the post-processing module as described

before and used to eliminate instances not relevant accord-

ing to the scope of this work.

3.7. Loss Function

Each module in the architecture contributes to the loss

function. The loss function looks as follows:

L = λweightLsem + LILV I + Ldepth + Lins (5)

To mitigate the issue of overconfidence caused by the

imbalanced class distribution in the training dataset, an ad-

ditional weighting factor λweight is introduced, which is

multiplied by the semantic segmentation loss Lsem (equa-

tion 3). This weighting factor is computed as λweightc =
1 − Nc∑

N , where N represents the total pixel count and Nc

represents the pixel count for class c.

Furthermore, the loss function LILV I , described in de-

tail in [12], is utilized to encourage the layer to model a

multivariate Normal Gaussian distribution, promoting more

reliable uncertainty estimation. In addition, the depth loss

Ldepth utilizes the L1 loss to train the DNN based on the

per-pixel ground-truth instance depth information.

The instance segmentation loss Lins varies between the

two DNN variants. For the MobileNet variant, it consists of

two components: the center points loss Lcenter (using the

mean squared error loss) and the instance offset loss Loffset

(using the L1 loss) [21]. On the other hand, for the Efficient-

Net variant, the instance segmentation loss is composed of

five terms: Lins = Los + Lop + Lcls + Lbbx + Lmask, the

objectness score loss Los, the object proposal loss Lop, the

classification loss Lcls, the bounding box loss Lbbx, and the

mask segmentation loss Lmask. These loss functions are

adapted from the Mask R-CNN approach [23, 24].

4. Experiments and Results

In this section, the Dirichlet MLE is experimented along-

side the Prior network, Evidential network, and Cross En-

tropy (CE) as the baseline. Experiments with the MobileNet

variant are used to compare the performance between of the

Dirichlet MLE and the other approaches. On the other hand,

to verify the applicability of the approach on other models,

only the CE and Dirichlet MLE are implemented for the

EfficientNet variant.

4.1. Datasets

The DNN is trained using the Cityscapes dataset, com-

prising 3475 finely annotated images; 2975 for training and

500 validation images used for evaluation [25]. The KITTI

Vision dataset [26] is also used to assess the generalization

capabilities of the DNN and to assure comparable perfor-

mance on another in-domain dataset.

Moreover, the Fishyscapes Lost and Found dataset [27]

is used for evaluating the identification of OOD objects.

This dataset well suits the scope our work to assess the OOD

instance detection performance as it contains real images

with real OOD objects, unlike other datasets using syntheti-

cally rendered images or augmenting real images with syn-

thetic objects.

4.2. Segmentation Performance

Results in Table 1 show the performance of the DNN on

diverse datasets to ensure its generalization capabilities on

ID and OOD datasets.

Instance segmentation performance is represented by av-

erage precision (AP). Further evaluation metrics are AP

50% for an overlap value of 50%, AP 50m and AP 100m

where instances up to 50m and 100m, respectively, are only

included. Additionally, the semantic segmentation perfor-
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Table 1: Instance and semantic segmentation performance comparison for all approaches on in-domain (ID) datasets. Results

indicate the high performance of the Dirichlet MLE on both datasets and in both variants.

Cityscapes KITTI

AP AP 50% AP 50m AP 100m mIoU AP AP 50% mIoU

MobileNet Variant

CE 22.9 38.2 35.8 31.9 65.2 23.5 39.1 47.6

Prior 23.1 39.8 37.5 33.2 66.7 22.1 38.7 48.2

Evidential 23.8 42.9 39.8 35.6 68.1 22.9 40.6 50.1

Dirichlet MLE 26.3 45.1 43.5 42.2 69.1 23.8 42.1 51.3
EfficientNet Variant

CE 31.8 48.1 45.5 41.6 72.5 22.4 43.2 54.1

Prior 31.5 47.5 45.9 42.1 72.7 22.2 43.5 54.6

Evidential 32.3 50.7 47.5 43.9 73.8 24.4 44.6 55.9

Dirichlet MLE 32.5 51.3 48.1 44.2 74.1 24.6 45.1 56.9

Table 2: Calibration and Accuracy vs. Certainty Metrics.

Dirichlet MLE shows improved uncertainty estimation per-

formance when compared to the other approaches, indicat-

ing reliable estimates for in-domain (ID) data.

Calibration (↓) Accuracy vs. Certainty (%)(↑)

ECE P(A|C) P(U|I) AvU

MobileNet Variant

CE 4.9 50.9 24.4 51.8

Prior 4.7 72.7 17.5 38.5

Evidential 5.2 53.2 63.1 61.2

Dirichlet MLE

(Uncertainty)
4.8 85.4 78.1 70.1

EfficientNet Variant

CE 4.9 56.7 20.6 54.2

Dirichlet MLE

(Uncertainty)
4.8 81.2 72.4 60.1

mance is shown in terms of mean intersection over union

(mIoU).

The Dirichlet MLE DNN exhibits superior perfor-

mance in segmentation and instance detection tasks on the

Cityscapes dataset. This superiority is evident in both the

lightweight MobileNet version and the EfficientNet version

of the network. Furthermore, the performance is also ob-

served in the semantic and instance segmentation results on

the KITTI dataset.

4.3. Uncertainty Estimation Performance

It is essential to make sure that improving OOD detec-

tion does not hinder the uncertainty estimation on ID data.

For that, two sets of experiments are conducted to exam-

ine the uncertainty estimation on the Cityscapes validation

dataset for the calibration, and accuracy vs. certainty met-

rics. Since the experiments are done on ID data, uncer-

tainty estimation using predictive entropy will be used for

the Dirichlet MLE.

Calibration: A DNN should be able to provide a cali-

brated confidence measure in addition to its prediction. In

other words, the probability associated with the predicted

class label should reflect its ground truth correctness like-

lihood. The applied calibration metric is the expected cali-

bration error (ECE) using uncertainty estimates.

Accuracy vs. Certainty: It is essential for a DNN

equipped with uncertainty estimation to deliver reliable

certainty on its correct and incorrect predictions. Ac-

cordingly, three conditional probabilities are needed for

this evaluation test: p(accurate|certain) = nac

nac+nic
,

p(uncertain|inaccurate) = niu

nic+niu
and AvU =

nac+niu

nac+nau+nic+niu
. To calculate the probabilities, four fun-

damental components of the metrics are first calculated: ac-

curate and certain (nac), accurate and uncertain (nau), inac-

curate and certain (nic), and inaccurate and uncertain (niu)

are calculated. The metric AvU, which stands for accuracy

vs. uncertainty, provides insights into the probability of ob-

taining accurate and certain predictions or inaccurate and

uncertain predictions from the network [28].

With varying uncertainty thresholds and the calculation

of the conditional probabilities, each value is recorded at in-

creasing steps of uncertainty thresholds. The area under the

curve is then calculated, with higher values corresponding

to better performance. In this work, we formulate the met-

rics to accommodate instances where the accuracy is per-

ceived as whether the instance has a 50% overlap or more

with its ground-truth counterpart mask, and the uncertainty

value is taken as the mean value of the instance-uncertainty

mask.

Results Overview: Tables 2 shows the calibration result

indicating that all approaches have comparable instance cal-

ibration performance when compared to the baseline. It is

worth noting that no post-calibration methods are incorpo-

rated.

The accuracy vs. certainty results show strongly im-

proved performance for the Dirichlet approach, especially

for the P(U|I) metric. Taking a closer look, we can see that

we have a high improvement in the P(U|I) whilst still main-

taining high performance on the other two metrics. This is

not frequently observed as any method trying to improve

uncertainty representation would come to a cost of reduced

performance on the other two metrics.
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4.4. Distributional Separation Efficiency

An ideal network should be able to show high certainty

in its correct predictions and low certainty in its incorrect

predictions. Accordingly, we aim to quantify the efficiency

of the DNN to differentiate between correct and incorrect

predictions by plotting their corresponding certainty dis-

tribution for both cases. The Cityscapes and the Lost and

Found datasets are both used to compare the output charac-

teristics of each approach. The distributions are then com-

pared using the Wasserstein distance metric, where a high

value indicates dissimilar distinctive distributions and vice

versa for a low Wasserstein distance value.

Distribution plots are presented in Figure 3 and their

corresponding Wasserstein distance values in Table 4.

Even though the two state-of-the-art approaches have great

improvements in the distribution separation for the ID

Cityscapes, the Dirichlet uncertainty and strength show

even better separation. Greater separation is further dis-

tinctive for the OOD Lost and Found dataset. Both Dirich-

let uncertainty and Dirichlet strength outperform the other

three approaches. This can be also seen in Figure 3 where

the separation of both Dirichlet representations have sig-

nificant separation distinction when compared to the other

separation plots. With regards to EfficientNet Variant, the

same results can be seen where Dirichlet outperforms the

CE baseline in both ID and OOD datasets.

4.5. Depth Estimation

In this section, we assess the depth categorization of the

detected true positive instances. The DNN outputs an es-

timated mean depth for each instance, for each instance

categorized in 4 categories as shown in Table 5, according

to [19]. Results from Table 5 show that the DNN has suffi-

ciently high categorization quality as needed for the scope

of this work.

CE Prior Evidential Dir. MLE Dir. MLE
Uncertainty Dir. Strength

C
it

y
sc

ap
es

L
o
st

A
n
d

F
o
u
n
d

Figure 3: Distribution Separation Plots for in-domain (ID)

and out-of-domain (OOD) dataset. Dirichlet MLE demon-

strates superior separation for both uncertainty and Dirich-

let strength.

Table 5: Depth categorization performance of the DNN ar-

chitecture at different depth ranges.

Distance Range
True Positive

Categorization Quality (%)(↑)

0- 7.5 m 96.5

7.5 - 15 m 88.2

15 - 25 m 83.1

25 - 37.5 m 79.3

4.6. OOD Instance Segmentation and Identification
Performance

Being able to identify OOD instances in the scene, not

only on the pixel level, is crucial for the safety of an AD

system. For that, the OOD Detection Rate (DR) of in-

stance segmentation is assessed with regard to 25m, 50m

and 100m. In this context, DR is the ratio of how many

OOD objects have been detected, where detected OOD in-

stances indicates 50% overlap or more between the instance

detection and the ground truth OOD object.

To evaluate the DNN’s ability to identify OOD objects,

we calculate the identification rate of OOD objects (iOOD).

In this context, the identifier for each approach is based on

the Dirichlet MLE using Dirichlet strength, and the baseline

and state-of-the-art approaches using predictive entropy re-

specitively. For the Dirichlet MLE, the average Dirichlet

strength of each object is calculated at different distances

of 25m, 50m, and 100m. Again, for the other approaches,

predictive entropy is used.

Table 3 shows the results for DR and iOOD, and demon-

strates the significance of the proposed Dirichlet approach.

It exhibits a higher detection rate of the OOD objects, with

significantly high iOOD values. This reflects the sample

results in Figure 1, where one sample from the Lost and

Found dataset is presented with their respective uncertainty

result for all four approaches. The OOD results for the

Dirichlet MLE reflect the results shown in Table 3, where

the DNN is able to segment the OOD objects and also with

very high iOOD.

4.7. Discussion

The results demonstrate the effectiveness of the Dirichlet

MLE DNN outperforming state-of-the-art and the baseline

DNNs. The baseline DNN does not support the identifica-

tion of OOD objects, whilst the state-of-the-art approaches

only partially segment the OOD objects or do not deliver

high uncertainty values on pixel levels compared to other

areas of the image.

The generated samples presented in Figure 4 demon-

strate the output of the Dirichlet MLE. It is observed that

the differences between uncertainty estimation and Dirich-

let strength for ID samples are minimal. However, notice-

able differences emerge for OOD samples, where OOD ob-

jects exhibit low levels of Dirichlet strength, while uncer-

tainty estimation reflects low certainty not only for OOD
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Table 3: Out-of-domain (OOD) Instance Detection and Identification Performance. Dirichlet MLE shows an improved

detection rate (DR) over the other approaches, but an even greater improvement in the identification rate of OOD objects

(iOOD).

Detection Rate (DR) (%)(↑) Identification rate of OOD objects (iOOD) (%)(↑)

DR25m DR50m DR100m iOOD25m iOOD50m iOOD100m

MobileNet Variant

CE 45.2 34.2 24.9 14.2 16.8 17.5

Prior 50.2 37.6 29.7 18.6 19.3 19.1

Evidential 53.2 39.9 33.3 11.7 13.3 13.3

Dirichlet MLE (Dir. Strength) 59.5 43.7 38.3 65.4 56.1 47.1
EfficientNet Variant

CE 40.2 27.1 23.9 8,9 8.3 6.2

Dirichlet MLE (Dir. Strength) 46.7 32.2 28.1 66.1 54.3 43.7

In-Domain (Cityscapes) Out-of-Domain (Lost and Found)
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Figure 4: Sample results from the Dirichlet MLE approach for both ID and OOD data. For ID dataset, uncertainty estimation

and Dirichlet strength have high levels of uncertainty estimates on similar features in the image. On the other hand, for the

OOD samples, Dirichlet strength is low only on the OOD instances unlike uncertainty estimation having high uncertainty on

both ODD and ID instances.

objects but also for other instances in the scene. This high-

lights the complementary nature of both methods, empha-

sizing the need to utilize both for accurate OOD object iden-

tification and reliable uncertainty estimation.

The Dirichlet MLE DNN exhibits exceptional perfor-

mance in accurately estimating low certainty for incorrect

predictions and vice versa. In addition to achieving compa-

rable or even enhanced results for ID objects, the Dirichlet

MLE DNN surpasses other network architectures by effec-

tively distinguishing between ID and OOD objects. This

distinction is reinforced by its improved separation capa-

bilities, highlighting the superior discriminative power of

the Dirichlet MLE DNN. The Dirichlet MLE DNN with its

combination of instance segmentation and depth branches

together with the post-processing module delivers superior

OOD instance results.

5. Conclusion
In this study, we propose an instance segmentation ar-

chitecture that effectively identifies OOD objects in AD

systems. Our framework combines the Dirichlet MLE ap-

proach and the ILVI method, resulting in superior OOD in-

stance detection while maintaining robustness on ID data.

By leveraging the Dirichlet strength, we successfully dif-

ferentiate between ID and OOD instances, as demonstrated

through comprehensive comparisons with state-of-the-art

approaches and a baseline method. Notably, we have eval-

uated the performance using different backbones and in-

stance segmentation models within a model-agnostic archi-

tecture.

4567



Table 4: Distributional Separation Efficiency Results. The

Dirichlet MLE has a high Wasserstein distance reflecting its

efficient OOD object identification performance.

Wasserstein Distance (↑)

Cityscapes Lost and Found

MobileNet Variant

CE 1.1 1.3

Prior 2.3 1.8

Evidential 3.3 0.9

Dirichlet MLE (Uncertainty) 4.9 5.2

Dirichlet MLE (Dir. Strength) 4.2 7.1
EfficientNet Variant

CE 0.9 0.5

Dirichlet MLE (Uncertainty) 3.6 4.1

Dirichlet MLE (Dir. Strength) 3.2 5.9

By adopting our approach, the AD maneuver planner

benefits from accurate instance segmentation results, reli-

able certainty estimation, identification of OOD instances,

and estimated depth ranges. These findings highlight the

potential of the Dirichlet MLE DNN architecture to enhance

the perception capabilities of AD systems, contributing to

safer and more efficient AD systems. Future research can

further explore applications and potential enhancements of

this architecture to address the evolving challenges in au-

tonomous driving.
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