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Supp Note 1: Additional information on datasets used for this study

Dataset family ID datasets / splits OOD datasets / splits N classes Type of shift

ImageNet Train / Val ImageNet-Sketch 1,000 Photographs to Sketches

PACS Photo train / val
Painting test

7 Art typeCartoon test
Sketches test

MNIST MNIST SVHN 10 Binary images to house numbers
CIFAR10 Train / Val CIFAR10-C 10 Synthetic corruptions
Entity30 Train / Val OOD test 30 Subpopulation shift (random)
Entity13 Train / Val OOD test 30 Subpopulation shift (random)
Living17 Train / Val OOD test 17 Subpopulation shift (random)

NonLiving26 Train / Val OOD test 26 Subpopulation shift (random)
WILDS Camelyon Train / id-Val ood-test, ood-val 2 Site / staining protocol

WILDS iCam Train / id-Val ood-test, ood-val 182 Location of camera
WILDS FmoW Train / id-Val ood-test, ood-val 62 Location and time
WILDS RxRx1 Train / id-Val ood-test, ood-val 1,189 Experimental session

PathMNIST Train / Val Test 9 Site / staining protocol
Table 1. Additional information for the dataset used. “Dataset family” denotes the name used in the tables in the main paper to refer to
this task. For all datasets we used the official splits as denoted in the columns.

Supp Note 2: Additional information on model training
All our training and evaluation code as well as data augmentation and training configurations are available in our codebase

https://github.com/melanibe/distance_matters_performance_estimation.

ImageNet models For ImageNet, we used readily available trained models from the timm [15] package. We evaluate
all available models from the following 14 family of model architectures: ConvNext [4], ConvMixer [11], DarkNet [7],
CSPNet [13], EfficientNet [10], Inception ResNet [9], ResNext [16], ResNeSt [17], TResNet [8], DenseNet [3], ResNet [2],
ResNetv2 [9], ECA-Net [14], Res-SE-Net [12]. This amounted to testing a total of 259 trained models.

Trained models For each model / training configuration we repeated training for 3 different seeds. Details of training
configurations are listed in the table below. In total, we train 18 models from random initialisation and 12 models from
ImageNet weights, amounting to 30 models for each dataset, except for the BREEDS datasets for which we only used the
models trained from scratch (as they are subsets of ImageNet). The “standard” training procedure uses Adam optimiser,
automatic learning rate adaptation after 10 epochs without improvement, early stopping when the accuracy did not improve
anymore for 15 epochs. Unless specified otherwise, we used data augmentation during training (incl. random rotation, color
jittering, flips, cropping), all data augmentations configurations can be found in the codebase.

https://github.com/melanibe/distance_matters_performance_estimation


Model architecture Type of init. Training procedure Data augmentation

ResNet18 [2] Random Standard Yes
ResNet18 [2] Random Standard + Weight decay 1e� 3 Yes
ResNet18 [2] ImageNet weights Standard Yes
ResNet50 [2] Random Standard Yes
ResNet50 [2] Random Standard No
ResNet50 [2] ImageNet weights Standard Yes
ResNet50 [2] ImageNet weights Standard + Weight decay 1e� 3 Yes
DenseNet [3] Random Standard Yes
EfficientNet-S [10] Random Standard Yes
EfficientNet-S [10] ImageNet weights Standard Yes

Table 2. Details of training configurations. Standard training procedure is described above. ImageNet weights are obtained from
torchvision [6] package.

Implementation details for baselines For COT, we used the suggestion of the authors to counter the cubic runtime of
the method: we used batches of 2,500 images to estimate accuracy and averaged the accuracy over the batches, using up to
25,000 randomly sampled samples. To compute the Wasserstein distance we used the POT package [1] as suggested by the
authors of COT [5]

[More on next page.]



Supp Note 3: Scatter plots Predicted versus True accuracy

Figure 1. Predicted versus true accuracy for all models and datasets.



Supp Note 4: Additional results for ablation study on the choice of distance estimation method.

Figure 2. Ablation study for the choice of distance estimation method: K-NN (DistCS) versus Mahalanobis distance (Maha). Each
boxplot shows the distribution of the Mean Absolute Error for accuracy estimation. Whiskers denote the [5%;95%]-percentiles of the
distribution, outliers omitted for readability. Using distance improves the results for all but one dataset, no matter if K-NN or Mahalanobis
distance. However, K-NN distance is better than Mahalanobis overall.

Supp Note 5: K-NN ablation study

Figure 3. Ablation study for parameters of nearest neighbours for ATCDist. The method is not sensitive to the choice of number of
neighbours and to normalisation of the features (i.e. dividing the features by their norm) does not significantly impact the performance. We
compare the performance of the ATC-Dist estimator for 5 tasks in different settings. Each boxplot represents the distribution of absolute
errors for accuracy estimation over all trained models. Whiskers denote the [5;95]th percentiles of the distribution. Outliers are omitted
for readability.

Supp Note 6: Ablation study on the distance threshold choice

Figure 4. Ablation study: MSE of ATC-Dist in function of distance threshold (i.e. observed quantile on validation set). Our choice of
threshold offers good generalisation across all tasks.
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