
Memory Population in Continual Learning via Outlier Elimination

Julio Hurtado1, Alain Raymond-Sáez2, Vladimir Araujo2,3,
Vincenzo Lomonaco1, Alvaro Soto2, Davide Bacciu1

1University of Pisa, 2Pontificia Universidad Católica de Chile, 3KU Leuven
julio.hurtado@di.unipi.it, afraymon@uc.cl, vgaraujo@uc.cl,

vincenzo.lomonaco@unipi.it, asoto@ing.puc.cl, davide.bacciu@unipi.it

Abstract

Catastrophic forgetting, the phenomenon of forgetting
previously learned tasks when learning a new one, is a ma-
jor hurdle in developing continual learning algorithms. A
popular method to alleviate forgetting is to use a memory
buffer, which stores a subset of previously learned task ex-
amples for use during training on new tasks. The de facto
method of filling memory is by randomly selecting previ-
ous examples. However, this process could introduce out-
liers or noisy samples that could hurt the generalization of
the model. This paper introduces Memory Outlier Elimina-
tion (MOE), a method for identifying and eliminating out-
liers in the memory buffer by choosing samples from label-
homogeneous subpopulations. We show that a space with a
high homogeneity is related to a feature space that is more
representative of the class distribution. In practice, MOE
removes a sample if it is surrounded by samples from dif-
ferent labels. We demonstrate the effectiveness of MOE on
CIFAR-10, CIFAR-100, and CORe50, outperforming previ-
ous well-known memory population methods.

1. Introduction
Deep learning models have demonstrated impressive

performance in a range of tasks, including image recogni-

tion [18, 13], natural language processing [24, 6], and even

complex games like Go [42], and Starcraft II [47]. However,

a major limitation of these models is their lack of versatility

- when trained to perform on a sequence of tasks, they often

forget how to solve previously learned tasks, a phenomenon

known as catastrophic forgetting.

Continual Learning (CL) [35, 12] methods aim to ad-

dress Catastrophic Forgetting (CF) by enabling deep learn-

ing models to learn new tasks without forgetting previously

learned ones. Most of CL approaches can be divided into

multiples categories, these include subdividing model pa-

rameters into subspaces for each new task [40, 31], im-

posing constraints on the learned gradients [25, 30], and

using meta-learning to learn reusable weights for all tasks

[37, 19]. Out of these categories, memory-based methods

such as Experience Replay (ER) [39, 48] provide a straight-

forward solution that achieves good results. These methods

use a memory to store previous task samples to prevent for-

getting during training of the current task.

However, understanding which elements to put in this

memory is still an open question. Recent studies [8, 50, 16,

3, 36] on memory population have found that randomly se-

lecting elements to populate the memory performs nearly as

well as more complex selection methods, without requiring

additional computation. However, random selection may

potentially include noise or outliers that are not useful for

generalization, particularly when there are constraints on

the memory size. Thus choosing the right elements to train

on becomes critical.

To address the aforementioned problems, we propose

to eliminate outliers from memory and choose more rep-

resentative samples from the distribution when facing re-

striction on the amount of data we can store. Based on

the idea that the data distribution is a mixture of subpop-

ulations [15], our approach prioritizes samples that are sur-

rounded mainly by samples with the same class label in an

embedding space. Outliers and noisy samples will either

be far from other samples or surrounded by samples from

different classes [4]. Thus, selecting samples from label-

homogeneous neighborhoods should reduce the appearance

of outliers, fomenting the selection of more representative

and easier samples to learn by models.

Our method, Memory Outlier Elimination (MOE), ap-

plies this criterion before randomly selecting from the re-

maining samples. We test MOE on standard CL bench-

marks and compare it to state of the art storage policies

when using a limited memory budget to recall. Using MOE,

we find that we consistently surpass random selection and

even more complex baselines, such as herding [38]. Thus,

our contributions can be summarized as follows:

• We introduce MOE, a storage policy that removes out-

liers and noisy samples from memory by verifying the

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

3481



label-homogeneous.

• Through a series of experiments, we demonstrate that

MOE surpasses SOTA policies in scenarios with mem-

ory buffer constraints.

• We develop an understanding of why it is important to

remove outliers by performing an ablation study.

2. Background: Problem Formulation
2.1. Continual Learning

In CL, we consider a stream of T tasks. Each task t
consists of a new data distribution Dt = (Xt, Y t), where

Xt denotes the input instances and Y t denotes the in-

stance labels. The goal is to train a classification model

fΘ : X −→ Y using data from a sequence of T tasks:

D = {D1, ..., DT }. During each task, model fΘ will mini-

mize the objective function L using data Dt.

L(Dt) =
1

N t

Nt∑

t=1

Lt(fΘ(x
t
i), y

t
i) (1)

Each task is presented sequentially to the model and

trained for E epochs. We focus on a Class-Incremental

(Class-IL) setting, as has been the main focus of recent CL

scientific endeavors. Such a scenario is much more chal-

lenging and realistic than the traditional Task Incremental

(Task-IL) setting [45]. Unlike the Task-IL, a task descriptor

is only available during training in Class-IL.

For the case of memory-based methods, together with

minimizing Equation 1, model fΘ needs to minimize L us-

ing the data available in memory M at time t. The buffer

M t comprises |M | samples from previous distributions,

meaning that at task t, the buffer will contain samples only

from t′ < t.

LM (Dt,M t) = L(Dt) +
1

|M |
|M |∑

i=1

Lt(fΘ(m
t
i, y

t
i) (2)

Current memory-based methods have achieved promis-

ing results on many CL benchmarks. Saving examples

helps mitigate forgetting from previous tasks by represent-

ing past distributions used during training. For the memory

to be sufficient, it must represent the previous distribution

as fully as possible, considering all its classes and concepts.

The function in charge of populating memory M is known

as Storage Policy and decides which elements go into the

memory by sampling from set Dt given a function P, as

shown in Equation 3. An ideal policy function is the one

that minimizes Equation 2 for evaluation stream D1...DT ,

restricted by the memory size |M |.

M t+1 ← P(M t, Dt), |M t+1| ≤ |M | (3)

In most cases, we assume that M t+1 will always con-

tain |M | samples, and the storage policy will decide which

samples to remove to add those from new task Dt.

2.2. Datasets as Mixture of Subpopulations

Previous studies in memorization of deep learning mod-

els have discussed the idea of data distributions being mix-

tures of subpopulations within the data [15]. For instance,

for a class of images with the label ”bird,” subpopulations

might represent different bird species, camera angles, or

lighting situations. This point of view will be fruitful for an-

alyzing the different storage policies (P) compared in this

work, as all of them can be interpreted as different ways of

choosing representatives for one or more subpopulations in

the data distribution.

There could be many ways to determine the subpopula-

tions in the data. For simplicity, we approximate them as

neighborhoods in embedding space. By doing this, we can

analyze two features of subpopulations: their size and label-

homogeneity. These allow us to understand how represen-

tative a population is and whether it is worth training on.

Size is desirable as it helps identify subpopulations that are

more representative of the whole distribution, while label-

homogeneity allows us to distinguish subpopulations that

may be noisy or outliers. A neighborhood around a sam-

ple that contains many elements from different classes sug-

gests that the sample would be close to a complex part of

the decision boundary of the model [4]. This is undesirable

for a storage policy as it will require much training to learn

those boundaries correctly. One must note that while focus-

ing on complex parts of a decision boundary might help a

model reach high precision, in our setting, we are looking

for the least amount of data points that can keep a consoli-

dated memory of past tasks. Hence we look for candidates

in the consolidated subpopulations of our data.

Ideally, memory M should represent the majority of sub-

populations that make up the distribution of the training data

for each task. However, it is common to have limitations

on the number of elements we can save. Therefore, it is

necessary to select which samples to save and from which

subpopulations to select. This becomes more important as

some of the smaller subpopulations can represent outliers

or mislabeled samples, which can generate noisy represen-

tations, affecting future training.

3. Memory Outlier Elimination (MOE)
We hypothesize that current functions P are hampered

by selecting outliers and noisy samples, which limit their

capacity for generalization when faced with memory con-

straints. Therefore, we propose a method to eliminate these

3482



Figure 1. To calculate the label-homogeneity of a sample, first (1) we must obtain a feature vector for each sample of the task. These

vectors come from a pre-trained model or the current model, which is a design decision. Then, for each sample, the N nearest neighbors

(2) - using a cosine distance - are retrieved to count how many of those belong to the same sample class (3).

outliers from the sampling pool.

To achieve this elimination, we propose to look at the

labels of a given sample’s neighbors in an embedding space.

In particular, we calculate the ratio of neighbors that share

the same label as the sample. For a given sample {x, y}
we calculate its label-homogeneity H against its nearest N
neighbours {xi, yi}, i = 1..N , following Equation 4. A

similar metric has been used in the Curriculum Learning

literature as a proxy for Learning Consistency [22]. A visual

approximation can be found in Figure 1.

H(x, y) =
1

N

N∑

i=1

1[y = yi]. (4)

We then proceed to eliminate from the memory sampling

pool those samples that are below a threshold H ′. Finally,

MOE selects randomly from the remaining samples. In this

way, MOE selects from a significant number of consoli-

dated subpopulations of the data. We restrict the policy to

maintain the same amount of samples per class as in most

commonly used in previous storage policies functions P.

M t+1 ← P(M t, Dt|H(x, y) ≥ H ′) (5)

To obtain the label-homogeneity, we generate the em-

bedding space using the currently trained model. It is im-

portant to note that pre-trained models can also be used to

obtain the embedding space. However, this assumes the

need for a pre-trained model with characteristics similar to

the actual data.

By selecting examples with highest label-homogeneity,

the memory will be mostly populated with examples from

the most significant subpopulations. This helps to obtain

easy-to-learn and easy-to-remember samples from a small

group of subpopulations of a class, reducing diversity that

can affect the representation of the class distribution. To add

diversity, MOE randomly samples from these high label-

homogeneity samples. A visual explanation can be found

in Figure 2.

4. Experimental Setup

To clearly reflect the contribution of our approach, we

adopt a simple ER and test our proposal by training on 1,

5, or 10 epochs per task. This is done for two reasons: 1)

Computational constraints: we are testing multiple mem-

ory population methods, datasets, and hyperparameters. 2)

We tested training models for longer and found that in most

cases the improvements were marginal, and the results we

observed for fewer epochs also held for this configuration.

4.1. Datasets

We train models on different sequences of CIFAR-10 and

CIFAR-100 [26] split into 5 tasks, and CORe50 [28] in 9

tasks (following the splits outlined in [32]). CIFAR-10 and

CIFAR-100 datasets are traditionally used in CL, while we

also train on CORe50 to understand how methods behave

with more complex datasets.

4.2. Baselines

Many approaches have been proposed for populating

memory in CL, but few studies have compared the effective-

ness of these approaches under different conditions. Some

research has even shown that, in certain circumstances,

there is little difference between different methods, high-

lighting how limited our understanding of replay strategies

is. In this work, we will use the following methods as base-

lines:

(a) Reservoir. The Reservoir method [48] allows ele-

ments to be selected from a stream without knowing how

many instances to expect. It works by selecting each sample

with a probability M
N , where N is the number of elements

3483



Figure 2. Diagram of different memory population strategies. The Reservoir method considers representatives from all subpopulations,

even if they are outliers. Mean of Features limits the number of subpopulations to the number of classes and samples from around class

means which may limit its access to parts of the data distribution. MOE, on the other hand, samples from all subpopulations that are not

outliers.

observed so far and M is the size of the memory. This ap-

proach randomly maintains a uniform sample from the ob-

served stream. The Reservoir strategy selects representative

samples from different subpopulations without discriminat-

ing over their size or noise.

(b) Class Balance (CBRS). This method is similar to the

Reservoir strategy but ensures that each class is represented

equally in the memory buffer [11]. We use a dynamic as-

signment, meaning that the memory is always full. Samples

of new classes replace instances of old classes to maintain

equal representation in the memory.

(c) Min/Max Loss. This method selects samples associ-

ated with lesser or greater loss values. It is a proxy for eas-

ier or harder samples. This is a storage policy reminiscent

of what would be done for Self Paced Curriculum [21] or

Anticurriculum, respectively.

(d) GSS. This method [2] selects samples that maximize

the differences in gradient directions with other samples

stored in the memory. It can be seen as a method that se-

lects representatives from different subpopulations in gra-
dient space.

(e) Mean of Features (MF). Also know as herding, this

method, proposed by [38], calculates an average class fea-

ture vector based on the representations of the elements in

memory for a given class. If the distance between the new

vector and the corresponding class vector is smaller than the

farthest vector in the memory, the new example is replaced

with the farthest one. This method considers a number of

subpopulations equal to the number of classes for compos-

ing the memory centered on each class mean. This might

also limit noisy samples or outliers, as these should be far

from the class mean. However, by forcing a fixed number of

neighborhoods, this method fails to find multiples relevant

subpopulations.

As standard practice in the replay-based method, the

memory buffer is completely filled in the first task with data

from D1 to later update the memory with new data at the

end of each task. The memory always keeps |M | elements.

Except for the Reservoir, all baselines have class-balanced

constrain in the memory.

4.3. Implementation Details

All experiments are run with 3 different seeds, each in-

ducing a different ordering of sequences. In the case of

CIFAR-10 and CIFAR-100, we use a simple convolutional

architecture proposed in [34]. For CORe50, the simple con-

volutional architecture is insufficient, and we resort to us-

ing a reduced version of Resnet-18 architecture proposed in

[38], which is standard for these datasets in CL. The op-

timizer is SGD with a learning rate of 0.001, momentum

0.9, and batch size of 32 unless otherwise mentioned. All

methods are implemented and trained using Avalanche [29],

and the proposed methods’ plugin will be released and inte-

grated into the library upon acceptance. We evaluate the av-

erage accuracy over the T tasks after the sequential learning

(Acc). We also measure forgetting (For), which tells us how

much performance is lost on previous tasks after sequential

learning. These metrics were both proposed by [30]. Equa-

tion 6 and 7 shows the formulas for the metrics, where Ai,j

is the accuracy of task i after training task j.

3484



Acc =
1

T

T∑

i=1

AccT,i (6)

For =
1

T − 1

T−1∑

i=1

AccT,i −Acci,i (7)

5. Results
Table 1 shows the mean accuracy across a sequence of

tasks obtained by the baseline methods. Our results indicate

that Mean of Features (MF) outperforms all other baseline

methods, including the Reservoir strategy. This is relevant,

as the Reservoir strategy is the default memory population

method used in Memory-based methods, highlighting the

importance of memory population methods for better per-

formance. On the other hand, when applying MOE, we can

see a clear increase in the accuracy achieved in all exper-

iments. By removing the outliers of each class and then

randomly sampling over those that remain, we can help a

replay-based strategy to improve its results by only sam-

pling from a pool that correctly represent the class.

Additionally, we observed that MOE works better as we

increase the number of training epochs. By increasing the

gap against the baselines, it demonstrate the power of gener-

alization of the selected samples and not only of adaptation.

However, we observed that on CIFAR-10, we obtain worse

results as we train for more epochs. This can be explained

because CIFAR-10 is a relatively simple dataset, and forget-

ting occurs very rapidly when using a small memory size,

as can be seen Table 3.

We see that MF outperforms or is competitive with MOE

only on CORe50. But we argue that this dataset plays to the

strengths of MF. CORe50 consists of video frames from ob-

jects in different settings or sessions. Thus, image samples

from this dataset are pretty similar to one another, therefore

their embeddings will be close, which is ideal for a centroid-

based method like MF. Even in this setting, MOE is com-

petitive or outperforms MF when we increase the number

of epochs.

It is critical to note the robustness of MOE compared to

other methods, especially MF. This can be seen by compar-

ing the standard deviation obtained by the methods. MOE

has much lower values, showing its stability. This shows

that outlier removal helps performance but also can help

mitigate noise during training.

Similar to accuracy, of all the baselines the one that for-

gets the least is MF, as can be observed in Table 2. The fact

that selecting the right samples to be stored in memory en-

hances learning and reduces forgetting. As in the previous

results, here we can also see how MOE outperforms other

methods in most cases. The negative value of CORe50 indi-

cates that the model continues to learn from previous tasks.

5.1. Increasing Memory Size

We also test MOE on settings with increased memory

sizes while still working in a constrained memory size en-

vironment (≤ 20% dataset size for CIFAR-100, ≤ 0.4%
for CIFAR-10, ≤ 0.8% for CORe50). Table 3 shows these

results. We observe that for 10 and 20 samples per class,

MOE still outperforms MF consistently, but as we increase

memory size, the gap between MOE and MF decreases.

This suggests that MOE is more capable of using mem-

ory more efficiently than MF when severely constrained in

memory, but as we increase the size of the memory, this

advantage decreases as both methods converge to a similar

sampling space. This can also explain previous study that

show that there is no significant difference between reser-

voir and more complex methods when the memory is big

enough to fully represent previous distributions [50, 16, 3].

5.2. Limitations and Mitigations

A limitation of our proposed method is the requirement

for determining an appropriate label-homogeneity cutoff

point. Through experimental analysis, we investigated the

performance of models trained to utilize MOE for varying

numbers of training epochs. Figure 3 shows accuracy re-

sults for different thresholds when training models for vary-

ing amounts of epochs. Our results indicate that the ac-

curacy as a function of threshold exhibits similar charac-

teristics. In particular, the curves are similar in shape but

displaced in the accuracy axis. Therefore, to mitigate this

issue, we propose a strategy of selecting the cutoff point

through training for a single epoch with various threshold

values. This approach is analogous to the common practice

of selecting hyperparameters, such as the learning rate and

network architecture, in neural network training.

6. Ablations
It is important to note that MOE assumes that the

representation space is distributed in a mixture of sub-

populations, meaning that each class can be represented by

multiple sub-distributions. To test this hypothesis, we pro-

pose different versions of MOE, which enforce certain ab-

lations of our method either on the embedding space or the

sampling method:

• MOE-Upper: we deterministically select the most ho-
mogeneous samples per class.

• MOE-Lower: we deterministically select the least ho-
mogeneous samples per class.

• MOE-ImageNet: we embed samples using a Resnet-

18 pretrained on ImageNet, then we sample randomly

from these. This version is meant to test how relevant

a good embedding is for MOE.

3485



CIFAR-10 CIFAR-100 CORe50

# Epochs 1 5 10 1 5 10 1 5 10

Reservoir 26.3±0.6% 22.1±1.7% 22.9±1.1% 11.0±0% 14.9±0.3% 15.6±0.3% 21.6±1.1% 25.0±1.0% 24.8±0.8%

GSS 21.6±1.3% 20.0±1.9% 20.1±1.8% 8.9±1.1% 12.1±0.6% 13.6±0.4% 15.6±0.8% 12.0±1.2% 12.4±1.7%

CBRS 25.8±0.7% 22.2±1.5% 23.1±1.3% 11.5±0.3% 14.9±0.5% 15.9±0.3% 23.3±0.7% 24.3±0.7% 25.0±1.1%

Max Loss 17.1±0.2% 18.4±0.4% 18.8±0.2% 5.8±1.2% 10.4±1.5% 11.1±1.4% 11.3±1.9% 12.5±2.0% 15.2±0.9%

Min Loss 20.7±1.0% 20.2±0.4% 20.7±0.5% 12.7±0.3% 16.3±0.6% 17.7±0.8% 17.7±2.5% 19.0±0.4% 22.1±2.1%

MF 29.4±2.3% 25.2±2.0% 24.7±1.4% 12.2±0.2% 16.4±0.2% 17.7±0.9% 24.8±2.6% 26.0±1.9% 26.1±0.5%

MOE 29.6±0.3% 25.4±1.4% 24.7±1.1% 14.5±0.3% 18.6±0.4% 19.1±0.5% 23.6±0.8% 25.3±0.6% 26.3±0.9%

Table 1. Accuracy for models trained with different storage policies for 1, 5, and 10 training epochs. Memories are populated with 5

elements per class. As can be seen, MOE equals or outperforms all baselines for all datasets. Best results in bold.

CIFAR-10 CIFAR-100 CORe50

# Epochs 1 5 10 1 5 10 1 5 10

Reservoir 57.9±3.4% 78.1±5.1% 82.0±3.8% 14.1±0.2% 31.1±0.2% 41.1±0.3% -11.9±1.7% -13.8±1.1% -13.5±1.4%

GSS 62.6±4.7% 83.0±4.8% 86.2±4.2% 15.8±0.4% 39.1±0.8% 47.1±0.9% -7.1±0.5% -2.2±0.3% -1.9±0.1%

CBRS 56.6±3.8% 77.4±4.1% 81.4±3.5% 13.9±0.4% 31.1±0.2% 40.6±0.5% -13.8±1.1% -13.3±1.3% -13.3±0.6%

Max Loss 69.8±5.4% 80.8±2.7% 84.8±3.7% 19.5±2.1% 37.5±2.2% 46.6±1.9% -3.9±3.5% -3.9±2.3% -6.4±1.3%

Min Loss 65.5±3.7% 80.5±2.5% 83.8±3.4% 7.0±1.9% 29.8±1.4% 40.1±1.6% -10.0±2.6% -11.2±1.2% -12.5±1.0%

MF 54.3±6.0% 74.3±5.6% 79.0±3.8% 14.0±0.1% 29.2±1.6% 38.1±1.3% -11.9±2.6% -13.8±1.1% -13.5±1.4%

MOE 52.8±1.6% 73.6±5.2% 79.6±3.8% 10.7±1.5% 31.1±1.1% 40.7±1.6% -14.7±0.7% -14.4±1.3% -14.3±1.3%

Table 2. Forgetting for models trained with different storage policies for 1, 5, and 10 training epochs. Memories are populated with 5

elements per class. MOE outperforms or is on par with competing methods, suggesting that performance gains from MOE come from both

rapid relearning and less forgetting. Best results in bold, second best underlined.

• MOE-Model: the vanilla MOE. We embed samples

using the currently trained model, then we sample ran-

domly from these. This setting is more realistic as

there may not be a pretrained model available for a

given task.

6.1. Label-homogeneity

The first characteristic to verify is that making a random

selection over the group of elements over a threshold H ′

is better than always selecting the ones with the greatest

or lower homogeneity (MOE-Upper and MOE-Lower). If

there are indeed several sub-populations for each class, it is

necessary to diversify where we sample the data from, and

by selecting only the most homogeneous, it is most likely

that we will sample very similar data.

As expected, we found that MOE-Lower performed

poorly, as it tends to choose outliers and noisier samples

which do not aid in generalization. This can be clearly seen

in Figure 4, where MOE-Lower chooses noisy or outlier

samples, where camera angles and colors are outside the

norm for the class. However, the other three versions of

MOE tend to outperform MF or be competitive with it, as

shown in Table 4. On the other hand, MOE-Upper remark-

ably outperforms previous baselines, however, lags behind

MOE. The lack of diversity in the selection of MOE-Upper

is clearly shown in Figure 4, as most images selected repre-

sent a very similar concept, which can help in simple bench-

mark (CIFAR10), but it is strongly affected in more com-

plex datasets (CORe50).

6.2. Embedding quality

The second characteristic to check is how good are

the current model’s embeddings for calculating label-

homogeneity, as we cannot guarantee having a pretrained

model for our specific tasks. To test this, we compare MOE

against a version that uses a Resnet18 pre-trained on Ima-

geNet to obtain the features vectors. We can see that despite

the advantage of having a pre-trained model, MOE-ImgNet

does not significantly outperform MOE. We can even see

in Table 4 that MOE’s accuracy is higher or equal in some

cases.

7. Related work

Memory-based methods address catastrophic forgetting

by incorporating data from previous tasks into the training

process for the current task [14, 7]. These approaches can

use raw samples [38, 10], minimize gradient interference

3486



CIFAR-10 CIFAR-100 CORe50

Samples per Cls. 5 10 20 5 10 20 5 10 20

Reservoir 22.9±1.1% 26.9±1.1% 31.0±0.9% 15.6±0.3% 19.3±0.6% 23.4±0.7% 24.8±0.8% 27.3±0.8% 31.6±0.9%

MF 24.7±1.4% 29.4±2.5% 34.4±0.9% 17.7±0.9% 20.6±0.4% 26.8±0.7% 26.1±0.5% 29.5±1.1% 33.0±1.2%

MOE 24.7±1.1% 30.3±3.7% 37.7±0.8% 19.1±0.5% 21.9±0.7% 25.6±0.4% 26.3±0.9% 30.0±1.2% 33.4±0.8%

Table 3. Accuracy for different memory population methods when increasing memory size for 10 training epochs. Results for 5, 10, and

20 samples per class. We observe that MOE still outperforms MF when increasing memory size but the performance gap is reduced as

memory grows.

CIFAR-100 CORe50

Figure 3. Accuracy achieved by MOE for different thresholds when training for different amounts of epochs on CIFAR-100 and CORe50.

The dotted lines represent the Reservoir method. While displaced in the y-axis, accuracy curves show relatively similar shapes, which

shows evidence that an optimal threshold for one level of computation should work well with other levels of computation. This suggests a

strategy for finding the optimal threshold by training for 1 epoch on different thresholds.

[30, 9], or train generative models such as GANs or au-

toencoders [27, 41, 23] to generate samples from previously

seen distributions.

Multiple approaches for populating the memory in

memory-based CL methods exist. One simple but effec-

tive method is the Reservoir strategy [48], which selects

elements at random. Other strategies have been proposed

that use various metrics to choose more representative ele-

ments for the memory [10, 16, 17, 2]. Some research has

focused on the impact of hyperparameters on certain meth-

ods [33] or the effect of rehearsal methods on loss functions

[46]. Other studies have explored methods for selecting el-

ements from the memory, such as selecting elements based

on how much their loss would be affected [1] or using a

ranking based on the importance of preserving prior knowl-

edge [20].

Despite the widespread use of memory-based methods

in CL, the impact of memory composition on these meth-

ods has received relatively little attention [44]. Some ap-

proaches in this area have employed Reservoir strategies

[11] or used entropy-based functions to increase memory

diversity [49, 43]. Others have focused on minimizing

the angles between gradients for different elements in the

memory to increase diversity [2]. While these approaches

have shown promise in certain situations, few studies have

specifically targeted improving the representativeness of the

memory.

A related field is that of Coreset construction, which en-

tails finding a subset of a dataset that can achieve perfor-

mance similar to using the whole dataset. Some works[5]

pose the problem as a bi-level optimization but constrained

to small memory sizes. Others choose these sets by find-

ing elements that approximate gradients from the whole

dataset[44].

8. Conclusions and Future Work

This work propose and examines the impact of a

new memory storage policy, Memory Outlier Elimina-

tion (MOE), on Experience Replay (ER). MOE identifies

representative samples to improve performance by find-

ing a storage policy that accurately represents the most

relevant subpopulations within the data distribution. We

tested MOE against several state-of-the-art baselines and

found it consistently outperformed or performed compara-

bly. Our analysis showed that selecting samples in a label-

homogeneous neighborhood in embedding space improved

performance, especially when combined with the Reservoir

strategy. Qualitatively, we observed that MOE effectively

balances sample diversity while minimizing the presence

of outliers and noisy samples. Furthermore, when testing

MOE - which samples from a variable number of subpopu-

lations - against a state-of-the-art method - which samples

from a constant number of subpopulations - we found that

3487



CIFAR-10 CIFAR-100 CORe50

# Epochs 1 5 10 1 5 10 1 5 10

MOE-Upper 28.3±1.1% 25.0±1.3% 25.3±0.9% 13.5±0.5% 18.0±0.2% 19.0±0.2% 22.1±0.4% 22.0±0.5% 21.5±0.5%

MOE-Lower 19.9±0.4% 19.6±0.3% 20.0±0.6% 9.1±0.2% 11.9±0.3% 13.0±0.1% 22.3±0.6% 23.8±0.7% 23.4±0.4%

MOE-ImgNet 28.6±2.3% 26.0±1.4% 25.2±1.8% 15.0±0.2% 18.6±0.3% 19.2±0.6% 24.7±0.7% 26.0±0.9% 26.9±0.6%

MOE-Model 29.6±0.9% 25.4±1.4% 24.7±1.1% 14.5±0.3% 18.6±0.4% 19.1±0.5% 23.6±0.8% 25.3±0.6% 26.3±0.9%

Table 4. Performance of different ablations of MOE. Choosing the least homogeneous samples incurs heavy penalties on performance,

while chossing only the most homogeneous works better but still lags behind MOE. While using a pretrained model to extract features is

better as exoected, MOE is still competitive.

Memory CIFAR-100 - Class Camel Memory CIFAR-100 - Class Cow

Figure 4. Memory Samples from CIFAR-100 for different memory population methods. We observe that randomly choosing samples

produces more varied samples including outliers. MOE-Upper produces mostly canonical versions of both camels and cows. MOE-Lower

presents diverse but noisy or outlier samples. MOE-ImageNet and MOE-Model produce diverse samples like the Reservoir method but

without any of the outliers.

the performance gap between the two methods widened as

we increased memory size. This suggests positive evidence

that the subpopulation point of view of memory construc-

tion is valid. Additionally, we provide guidance on select-

ing appropriate hyperparameters for MOE. Future work will

focus on determining optimal label-homogeneity thresholds

for specific tasks and datasets.

Acknowledgements: We acknowledge the support from

the Chilean Government funding through ANID and Na-

tional Doctoral Scholarships. Also, this research has been

financially supported by the National Center for Artificial

Intelligence CENIA FB210017, Basal ANID.

References
[1] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-

rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-

Caccia. Online continual learning with maximal interfered

retrieval. Advances in neural information processing sys-
tems, 32, 2019. 7

[2] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-

gio. Gradient based sample selection for online continual

learning. Advances in neural information processing sys-
tems, 32, 2019. 4, 7

[3] Vladimir Araujo, Helena Balabin, Julio Hurtado, Alvaro

Soto, and Marie-Francine Moens. How relevant is selec-

tive memory population in lifelong language learning? In

Proceedings of the 2nd Conference of the Asia-Pacific Chap-
ter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language
Processing, Online, Nov. 2022. Association for Computa-

tional Linguistics. 1, 5

[4] Devansh Arplt, Stanislaw Jastrzebskl, Nicolas Bailas, David

Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan

Maharaj, Asja Fischer, Aaron Courville, Yoshua Benglo, and

Simon Lacoste-Julien. A closer look at memorization in deep

networks. 34th International Conference on Machine Learn-
ing, ICML 2017, 1:350–359, 2017. 1, 2

[5] Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets

via bilevel optimization for continual learning and stream-

ing. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-

can, and H. Lin, editors, Advances in Neural Information

3488



Processing Systems, volume 33, pages 14879–14890. Cur-

ran Associates, Inc., 2020. 7

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-

guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 1

[7] Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Si-

mone Calderara. Rethinking experience replay: a bag of

tricks for continual learning. In 2020 25th International Con-
ference on Pattern Recognition (ICPR), pages 2180–2187.

IEEE, 2021. 6

[8] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-

than, and Philip HS Torr. Riemannian walk for incremen-

tal learning: Understanding forgetting and intransigence. In

Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 532–547, 2018. 1

[9] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with a-

gem. In International Conference on Learning Representa-
tions, 2018. 7

[10] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,

Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS

Torr, and M Ranzato. Continual learning with tiny episodic

memories. International Conference on Machine Learning,

2019. 6, 7

[11] Aristotelis Chrysakis and Marie-Francine Moens. Online

continual learning from imbalanced data. In International
Conference on Machine Learning, pages 1952–1961. PMLR,

2020. 4, 7

[12] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah

Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne

Tuytelaars. A continual learning survey: Defying forgetting

in classification tasks. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2021. 1

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020. 1

[14] Sayna Ebrahimi, Suzanne Petryk, Akash Gokul, William

Gan, Joseph E. Gonzalez, Marcus Rohrbach, and trevor dar-

rell. Remembering for the right reasons: Explanations re-

duce catastrophic forgetting. In International Conference on
Learning Representations, 2021. 6

[15] Vitaly Feldman. Does learning require memorization? a

short tale about a long tail. In Konstantin Makarychev,

Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and

Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020, pages 954–959. ACM,

2020. 1, 2

[16] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj

Acharya, and Christopher Kanan. Remind your neural net-

work to prevent catastrophic forgetting. In European Con-
ference on Computer Vision, pages 466–483. Springer, 2020.

1, 5, 7

[17] Tyler L Hayes and Christopher Kanan. Selective replay en-

hances learning in online continual analogical reasoning. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3502–3512, 2021. 7

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[19] Julio Hurtado, Alain Raymond, and Alvaro Soto. Optimiz-

ing reusable knowledge for continual learning via metalearn-

ing. Advances in Neural Information Processing Systems, 34,

2021. 1

[20] David Isele and Akansel Cosgun. Selective experience re-

play for lifelong learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018. 7

[21] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and

Alexander G. Hauptmann. Self-paced curriculum learn-

ing. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAI’15, page 2694–2700. AAAI

Press, 2015. 4

[22] Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C

Mozer. Characterizing structural regularities of labeled data

in overparameterized models. In International Conference
on Machine Learning, pages 5034–5044. PMLR, 2021. 3

[23] Ronald Kemker and Christopher Kanan. Fearnet: Brain-

inspired model for incremental learning. In International
Conference on Learning Representations, 2018. 7

[24] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina

Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. In Proceedings of
NAACL-HLT, pages 4171–4186, 2019. 1

[25] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the national academy of sci-
ences, 2017. 1

[26] Alex Krizhevsky and Geoffrey Hinton. Learn-

ing multiple layers of features from tiny images.

http://www.cs.toronto.edu/ kriz/cifar.html, 2009. 3

[27] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-

Ortiz, Andrei Stoian, and David Filliat. Generative models

from the perspective of continual learning. In International
Joint Conference on Neural Networks. IEEE, 2019. 7

[28] Vincenzo Lomonaco and Davide Maltoni. Core50: a new

dataset and benchmark for continuous object recognition. In

Sergey Levine, Vincent Vanhoucke, and Ken Goldberg, ed-

itors, Proceedings of the 1st Annual Conference on Robot
Learning, volume 78 of Proceedings of Machine Learning
Research, pages 17–26. PMLR, 13–15 Nov 2017. 3

[29] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, An-

tonio Carta, Gabriele Graffieti, Tyler L. Hayes, Matthias De

Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Mar-

tin Mundt, Qi She, Keiland Cooper, Jeremy Forest, Eden

Belouadah, Simone Calderara, German I. Parisi, Fabio Cuz-

zolin, Andreas Tolias, Simone Scardapane, Luca Antiga,

Subutai Amhad, Adrian Popescu, Christopher Kanan, Joost

3489



van de Weijer, Tinne Tuytelaars, Davide Bacciu, and Da-

vide Maltoni. Avalanche: an end-to-end library for continual

learning. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2nd Continual Learning in

Computer Vision Workshop, 2021. 4

[30] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

episodic memory for continual learning. In Advances in neu-
ral information processing systems, 2017. 1, 4, 7

[31] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-

back: Adapting a single network to multiple tasks by learn-

ing to mask weights. In Proceedings of the European Con-
ference on Computer Vision, 2018. 1

[32] Davide Maltoni and Vincenzo Lomonaco. Continuous learn-

ing in single-incremental-task scenarios. Neural Networks,

116:56–73, 2019. 3

[33] Gabriele Merlin, Vincenzo Lomonaco, Andrea Cossu, Anto-

nio Carta, and Davide Bacciu. Practical recommendations

for replay-based continual learning methods. In Interna-
tional Conference on Image Analysis and Processing, pages

548–559. Springer, 2022. 7

[34] Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Tim-

othy Nguyen, Razvan Pascanu, Dilan Gorur, and Mehrdad

Farajtabar. Architecture matters in continual learning. arXiv
preprint arXiv:2202.00275, 2022. 4

[35] German I Parisi, Ronald Kemker, Jose L Part, Christopher

Kanan, and Stefan Wermter. Continual lifelong learning with

neural networks: A review. Neural Networks, 113:54–71,

2019. 1

[36] Liangzu Peng, Paris Giampouras, and René Vidal. The ideal

continual learner: An agent that never forgets. In Inter-
national Conference on Machine Learning, pages 27585–

27610. PMLR, 2023. 1

[37] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fa-

had Shahbaz Khan, and Mubarak Shah. itaml: An incre-

mental task-agnostic meta-learning approach. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020. 1

[38] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental classifier

and representation learning. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, 2017.

1, 4, 6

[39] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lil-

licrap, and Gregory Wayne. Experience replay for continual

learning. Advances in Neural Information Processing Sys-
tems, 32, 2019. 1

[40] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016. 1

[41] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. In Advances
in neural information processing systems, 2017. 7

[42] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,

Laurent Sifre, George Van Den Driessche, Julian Schrit-

twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural

networks and tree search. nature, 529(7587):484–489, 2016.

1

[43] Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li,

and Michalis Titsias. Information-theoretic online memory

selection for continual learning. In International Conference
on Learning Representations, 2021. 7

[44] Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and

Pradeep Shenoy. Gcr: Gradient coreset based replay buffer

selection for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 99–108, 2022. 7

[45] Gido M Van de Ven and Andreas S Tolias. Three scenar-

ios for continual learning. arXiv preprint arXiv:1904.07734,

2019. 2

[46] Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Re-

hearsal revealed: The limits and merits of revisiting samples

in continual learning. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 9385–9394,

2021. 7

[47] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,

Michaël Mathieu, Andrew Dudzik, Junyoung Chung,

David H Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, et al. Grandmaster level in starcraft ii using multi-

agent reinforcement learning. Nature, 575(7782):350–354,

2019. 1

[48] Jeffrey S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, 1985. 1, 3, 7

[49] Felix Wiewel and Bin Yang. Entropy-based sample selection

for online continual learning. In 2020 28th European Sig-
nal Processing Conference (EUSIPCO), pages 1477–1481.

IEEE, 2021. 7

[50] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-

cremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

374–382, 2019. 1, 5

3490


