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Abstract

Class-incremental learning aims to learn new classes
in an incremental fashion without forgetting the previously
learned ones. Several research works have shown how ad-
ditional data can be used by incremental models to help
mitigate catastrophic forgetting. In this work, following the
recent breakthrough in text-to-image generative models and
their wide distribution, we propose the use of a pretrained
Stable Diffusion model as a source of additional data for
class-incremental learning. Compared to competitive meth-
ods that rely on external, often unlabeled, datasets of real
images, our approach can generate synthetic samples be-
longing to the same classes as the previously encountered
images. This allows us to use those additional data samples
not only in the distillation loss but also for replay in the
classification loss. Experiments on the competitive bench-
marks CIFAR100, ImageNet-Subset, and ImageNet demon-
strate how this new approach can be used to further im-
prove the performance of state-of-the-art methods for class-
incremental learning on large scale datasets.

1. Introduction
In a class-incremental learning (CIL) scenario, deep neu-

ral network models are not trained offline on a fixed pre-

collected dataset but sequentially on new incoming data.

The model has to be incrementally updated using only a

limited number of new classes at a time, with the objec-

tive of learning a unified classifier among all seen classes.

This paradigm, similar to the human learning process, is

challenging as models are suffering from catastrophic for-

getting [21, 23]: learning new data or classes will result in

severe degradation of the performance on the past ones.

Multiple researches have highlighted the importance of

rehearsal for continual and incremental learning: by stor-

ing samples from each previously encountered class in a

memory, models are able to replay past data while learn-

ing new ones in order to mitigate catastrophic forgetting.

However, the size of this memory is often limited to a few

samples per class due to either storage limitation or privacy

concerns. Several authors [16, 17, 19, 37] have proposed

to leverage additional external training data as a means to

work around this constraint. Those additional training data

are sampled from large curated datasets of real images, such

as ImageNet, and belong to classes different from the ones

encountered by the incremental learner. They are mostly

used in an unsupervised manner, for distillating knowledge

from the past model to the new one.

In this work, we propose to use the pretrained state-of-

the-art generative model Stable Diffusion [25] as a source of

complementary data for class-incremental learning. Com-

pared to approaches that rely on additional external real

datasets, our method generates synthetic samples belonging

to the same classes as the ones previously encountered by

the model. This fundamental difference allows us to make

use of those samples not only for the knowledge distillation

loss but also for replay in the classification loss whereas

concurrent works only focus on the distillation loss. Ab-

lation study highlights the improvement resulting from us-

ing the additional data for both losses. To the best of our

knowledge, this is the first attempt to use large pretrained

text-to-image generative models to improve general class-

incremental learning methods on large scale datasets.

2. Related work
Class-incremental Learning (CIL): Methods for class-

incremental learning [38] usually rely on knowledge dis-

tillation and a small replay memory containing past sam-

ples combined with a bias mitigation method. Knowl-

edge distillation is used to preserve previous knowledge,

it may be logit distillation [18, 24, 34], feature distilla-

tion [5, 10] or relational distillation [30]. Using a memory

for replaying previously learned exemplars is a simple yet

effective method to recall knowledge of old classes. How-

ever, the limited size of the memory induces a bias toward

the new classes that strongly degrade the performance of

the model if not mitigated. To this end, several methods

have been proposed such as Nearest-Mean-of-Exemplars

(NME) classifier [24], cosine classifier [10], bias correc-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

3425



Figure 1. Samples from S the set of additional synthetic images generated by Stable Diffusion for class-incremental learning on CIFAR100;

images are generated with size 512x512 and are being resized to 32x32 before being fed to the model. Images are displayed before resizing

to 32x32 for better appreciation. From left to right, top to bottom: Apple, Aquarium fish, Baby, Bear, Beaver, Bed, Bee, Bicycle, Bottle,

Bridge, Camel, Clock, Cloud, Crab, Crocodile, Fox, Hamster, Lawn-mower, Maple tree, Orchids.

tion layer [34], finetuning on a balanced subset [3] or spe-

cific losses [1, 13, 14]. To overcome the limitation in-

duced by the limited size of the memory, several works have

also proposed to use model inversion [29, 36] or to train a

generative model in parallel to generate samples from past

classes [6, 28, 33]. These methods rely on the quality of

the generated data, which poses a challenge for large scale

datasets and is impacted by catastrophic forgetting when

trained sequentially.

Additional data for CIL: Various approaches have

studied the use of additional external data, either as a di-

rect substitute in case of the absence of memory [17, 37]

or as a complementary resource during training [16, 19].

Global distillation (GD) [17] proposed a confidence-based

sampling strategy to sample additional external data and

used them for a specifically-designed distillation loss. Deep

Model Consolidation (DMC) [37] consists in training one

distinct model for each training step and use external data

to combine them into a unified model. Lechat et al. [16]

proposed a pseudo-labeling approach to better exploit the

additional external unlabeled data for representation learn-

ing. Liu et al. [19] observed that using samples from new

classes in the knowledge distillation loss negatively impacts

the training of incremental models and proposed to replace

them using placebos of old classes sampled from an exter-

nal dataset using an online learning method. Those dif-

ferent approaches rely solely on real images, most of the

time unlabeled, by sampling their additional data from large

curated datasets: primarily ImageNet [26] or TinyImages

dataset [31].

Learning from synthetic data: In one of the pioneer

works on learning from synthetic images, Besnier et al. [2]

trained a classifier for 10 classes of ImageNet using sam-

ples generated by a class-conditional GAN trained on Ima-

geNet. Jahanian et al. [12] used a GAN to generate multiple

views for contrastive learning methods. Recently, following

the recent breakthrough in text-to-image generative mod-

els, Sariyildiz et al. [27] proposed the use of those general-

purpose text-conditioned pretrained generative models for

synthesizing datasets as a direct replacement of real image

datasets for the training of large scale image-level classifica-

tion models. While these models can not reach the same ac-

curacy as the models trained using real images when tested

on real test datasets, they exhibit other advantages such as

strong generalization capability. Concurrently, He et al. [8]

also proposed to use large synthetic datasets for improving

pretrained models on zero-shot and few-shot learning, and

transfer learning.

In this work, we propose to study the use of widely

available pretrained generative models such as Stable Diffu-

sion [25] as a source of additional labeled samples combin-

able with general class-incremental learning methods ap-

plied on large scale datasets.

3. Proposed method
The class-incremental training procedure is divided into

T + 1 steps: the base step, often referred to as step 0 or

initial step, followed by T incremental steps. Each step

consists of a training dataset Dt containing images belong-

ing to the set of new and previously unseen classes Yt;

∀i, j ∈ {0, 1, ..., T},Yi ∩ Yj = ∅ for i �= j. During each

step, the model θt is trained on Dt ∪ M where M is the

replay memory containing few samples from previously en-

countered classes. After each step, the model θt is evaluated

on the test set of all the classes learned so far without having

access to any step or task descriptor. Additionally, during

every step, the model also has access to an external source

of data S that may or may not change during the training.

This external source of additional data S can either be an

online, and potentially infinite stream of data that the model

can fetch when needed or a fixed set of data accessible in an

offline manner.

3.1. Synthetic images

Following the recent in-depth study of Sariyildiz et al.
[27], we propose to use a pretrained Stable Diffusion [25]
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Figure 2. Diagram representing our proposed method SDDR for leveraging additional external synthetic labeled samples for class-

incremental learning. More details in Algorithm 1.

as the source of additional data S for incremental learning.

Prompting: To generate a sample for S, the generative

model Stable Diffusion requires a textual prompt. As pro-

posed in [27], to generate a synthetic image for the class c

we use the prompt “c, dc” where “c” is the textual name

of the class and “dc” its description. Although using only

“c” as a prompt may be enough in most cases, this may

lead to semantic errors with homographs. For example, in

the CIFAR100 dataset using only “apple” as a prompt may

generate images of products or shops from the homonym

brand instead of the fruit. Adding the definition of the

class to the prompt helps solve this issue. In order to pro-

duce these prompts automatically without any further en-

gineering, WordNet [22] is used to provide the lemmas of

the synset as the class name “c” and the definition of the

synset as the description “dc”. For datasets such as Ima-

geNet, the association of each class with a synset of Word-

Net is included in the dataset itself. For other datasets such

as CIFAR100, the association with WordNet can be done

semi-automatically at a negligible cost. Figure 1 shows syn-

thetic samples for CIFAR100 before being resized to 32x32.

In the cases where the mapping between the target dataset

and WordNet can not be done, it may be necessary to ei-

ther manually design and tune the prompt for each class or

to rely on a different automation approach such as using

image-to-text model for example.

Guidance scale: The classifier-free guidance [9] con-

trols the trade-off between the quality of the generated syn-

thetic samples and their diversity in diffusion models. Fol-

lowing Sariyildiz et al. [27], we also used a guidance scale

of 2.0 compared to the default 7.5 to increase the diversity

of our source of additional data at the cost of a slight de-

crease of the quality of each sample.

3.2. SDDR for Class-incremental learning

Using the previously described generative model, we

propose a new method for class-incremental learning:

Algorithm 1: SDDR for class-incremental learning

Input: Data-flow {Di}Ti=0 and pretrained

generative model G.

Ouput: Models {θi}Ti=0, replay memory M, and

synthetic dataset S.

for i ∈ {0, 1, ..., T} do
for e ∈ {0, 1, ..., E} do

while (X,Y ) ∼ Di ∪M do
if i > 0 then

// If not base step
(XS , YS) ∼ S
(X,Y ) ← (X ∪XS , Y ∪ YS)

end
Update model θi using (X,Y )

end
end
M ← UpdateMemory(M, Di)

S ← UpdateSynthetic(S, G, Yi)

end

Stable Diffusion for Distillation and Replay (SDDR),

which jointly uses the additional synthetic data S with the

real images from the replay memory M.

Datasets of real images used by concurrent approaches as

an external source of additional data for class-incremental

learning do not contain any image belonging to the same

classes as the one encountered by the incremental model.

This leads these methods to mainly use this external source

of data in an unsupervised manner for knowledge distilla-

tion only. By leveraging the pretrained text-to-image gen-

erative model, our method is able to generate an additional

dataset S containing labeled images belonging to the same

classes as the one previously learned by the model without

the need for costly manual labeling and curating process.
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Methods
CIFAR100 ImageNet-Subset ImageNet

T=5 10 25 5 10 25 5 10

iCaRL [24] 57.17 52.57 - 65.04 59.53 - 51.36 46.72

BiC [34] 59.36 54.20 50.00 70.07 64.96 57.73 62.65 58.72

LUCIR [10] 63.42 60.18 - 70.47 68.09 - 64.34 61.28

LUCIR w/ Mnemonics [20] 63.34 62.28 60.96 72.58 71.37 69.74 64.54 63.01

LUCIR w/ DDE [11] 65.27 62.36 - 72.34 70.20 - 67.51 65.77

LUCIR w/ BalancedS-CE [14] 64.83 62.36 58.38 71.18 70.66 65.10 67.81 66.47
TPCIL [30] 65.34 63.58 - 76.27 74.81 - 64.89 62.88

DER (w/o Pruning) [35] 68.52 67.09 - - 78.20 - - -

iCaRL* [24] 57.68 52.44 48.05 65.34 60.74 54.31 53.58 48.65

iCaRL w/ SDDR (ours) 62.01 59.24 56.47 68.64 65.55 62.75 57.15 54.07

LUCIR* [10] 63.37 60.88 57.07 70.75 68.48 63.14 66.69 64.06

LUCIR w/ SDDR (ours) 65.77 63.84 61.73 72.92 71.48 69.48 67.56 66.44

FOSTER* [32] 71.17 68.89 65.07 76.09 75.05 70.96 - -

FOSTER w/ SDDR (ours) 72.18 70.88 68.06 77.13 76.77 75.50 - -

Table 1. Average incremental accuracy (Top-1) on CIFAR100, ImageNet-Subset, and ImageNet with a base step containing half of the

classes followed by 5, 10, and 25 incremental steps, using a growing memory of 20 exemplars per class. Results for iCaRL and LUCIR are

reported from [10]; results for Mnemonics and BiC are reported from [20]. Results for DDE, BalancedS-CE, TPCIL, and DER are reported

from their respective paper. Results marked with “*” correspond to our own experiments. Results on CIFAR100 and ImageNet-Subset are

averaged over 3 random runs. Results on ImageNet are reported as a single run. Best result is marked in bold and second best is underlined.

This allows us to use the additional dataset for distillation

but also for replay in the classification loss. The ablation

study in Section 4.3 shows the advantages of our approach.

Our approach is designed as a complementary method

that can be seamlessly combined with other standard meth-

ods for class-incremental learning. Algorithm 1 describes

the training procedure of our approach SDDR when com-

bined with a class-incremental learning model. Each step

of the class-incremental learning procedure is divided into

two distinct phases. During the first phase, the model θt is

trained following the method it is combined with, using a

mixed batch of data. As illustrated in Figure 2, each batch

used to train the model is composed of half of synthetic im-

ages sampled from S and the other half of real data sampled

from the memory and the current dataset Dt. Then in the

second phase, before moving to the next incremental step,

the synthetic dataset S is extended by using Stable Diffu-

sion to generate n synthetic samples for each new class en-

countered in the current dataset Dt, following the method

detailed in Section 3.1. Therefore, at the end of each in-

cremental step, the additional dataset S would contain nNt

samples where Nt = |⋃t
i=0 Yi| is the number of classes

encountered up to the step t, included.

In our work, we considered this additional dataset of syn-

thetic samples S as an offline dataset stored on the device

itself. Nonetheless, if the storage is a constraint for the in-

cremental learner, the additional dataset S can be used in an

online way as an infinite stream of data, similarly to [19],

by either using the generative model locally or by relying

on a cloud-based model. Compared to concurrent works

relying on real datasets as a source of additional data, our

method offers more flexibility depending on the constraint

of the problem: it can be used with or without limited stor-

age, computational budget, and capacity to communicate

with external services.

The quality of the synthetic images, their fidelity to the

target classes, and the variety of concepts available in the

additional external dataset S are intrinsically limited by the

pretrained generative text-to-image model used. Using a

different and more specialized generative model or finetun-

ing it on the specific target training dataset may further im-

prove the performance of the incremental learning model it

is combined with.

A naive and straightforward application of a pretrained

text-to-image generative model in the context of class-

incremental learning would be to use the synthetic datasets

S as a complete replacement of the replay memory for

exemplar-free class-incremental learning. However, as dis-

cussed in the ablation study in Section 4.3, this approach

does not achieve competitive results.

4. Experiments

4.1. Experimental setups

Datasets: Experiments are conducted on three datasets:

CIFAR100 [15], ImageNet-Subset and ImageNet [26]. CI-

FAR100 is composed of 60,000 32x32 RGB images from

100 classes with 500 training and 100 testing samples per

class. ImageNet (ILSVRC 2012) is composed of around

1.28 million high-resolution images from 1,000 classes
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Methods
CIFAR100 ImageNet-Subset

T=5 10 25 5 10 25

FOSTER† [32] 70.62 68.43 63.83 80.21 77.63 69.27

FOSTER w/ PlaceboCIL† [19] 71.97 70.31 67.02 82.03 79.52 72.79

Improvement in p.p. +1.35 +1.88 +3.19 +1.82 +1.89 +3.52

FOSTER* [32] 71.17 68.89 65.07 76.09 75.05 70.96

FOSTER w/ SDDR (ours) 72.18 70.88 68.06 77.13 76.77 75.50
Improvement in p.p. +1.01 +1.99 +2.99 +1.04 +1.72 +4.54

Table 2. Average incremental accuracy (Top-1) on CIFAR100, and ImageNet-Subset with a base step containing half of the classes followed

by 5, 10, and 25 incremental steps, using a growing memory of 20 exemplars per class. Results marked with “*” correspond to our own

experiments and results marked with “†” are reported from [19]. Results averaged over 3 random runs.

with about 1,300 training and 50 testing sample per class.

ImageNet-Subset is a subset of ImageNet containing only

100 classes. Experiments on an alternative version of

ImageNet-Subset can be found in the Supplementary mate-

rials. Following the experimental setting initially proposed

by Hou et al. [10], an initial base step containing half of

the classes is followed by T (5, 10, or 25) incremental steps

containing the remaining classes evenly divided. The class

order is defined by NumPy using the random seed 1993.

The training images are normalized, randomly horizontally

flipped, and cropped, and no more augmentation is applied.

For FOSTER [32], following its authors, AutoAugment [4]

is also used for augmentation.

Comparison methods: We combine our proposed

method SDDR with the recent state-of-the-art approach

FOSTER [32] and with two fundamental baselines for

class-incremental learning: iCaRL [24] and LUCIR [10].

We selected these two methods because they are representa-

tive of the principal approaches for class-incremental learn-

ing: using different distillation losses (logits distillation and

feature distillation) and difference bias mitigation methods

(Nearest-Mean Exemplar classifier and cosine normalized

classifier). For comparison, we also include the recent ap-

proach PlaceboCIL [19] which leverages external unlabeled

datasets of real high-resolution images to improve the dis-

tillation loss of class-incremental learning methods.

Implementation details: Following the standard set-

ting [10, 24], a 32-layer ResNet [7] is used for CIFAR100

and a 18-layer ResNet for ImageNet and ImageNet-Subset.

Every considered method uses a growing memory con-

taining 20 exemplars per class during the training proce-

dure. When combining SDDR with an existing baseline for

class-incremental learning, the same hyperparameters as the

original method are used. The only difference is that the

batch size during incremental steps is effectively doubled

by appending synthetic images generated by the generative

model to the original batch of real images from the union

of the new dataset and the replay memory. Some methods

for class-incremental learning use other losses in addition

to the classification and distillation losses. Using synthetic

data for these other losses may improve or degrade the per-

formance of the method on a case-by-case basis. Specifi-

cally, in our experiments on LUCIR [10], we decide not to

use the synthetic data for the margin ranking loss as prelim-

inary experiments suggested that it slightly decreases the

performance of the method. Likewise, in our experiments

on FOSTER [32], the synthetic data are used for the feature

enhancement loss and the distillation loss during feature

boosting and for the distillation loss during feature com-

pression. We do not use the synthetic data for the logits

aligned classification loss as it results in a significant de-

crease of the accuracy due to a bias of the classifier. For

fair comparison with the other baselines, we report the ac-

curacy of FOSTER after feature compression. For compar-

ison of dual branch FOSTER before feature compression,

see Supplementary materials. The generative model we use

is Stable Diffusion version 1.4 [25] with a guidance scale of

2.0, 50 steps and the prompt “c, dc” [27]. Synthetic images

have been generated using fixed seeds before the incremen-

tal training and every method is using the same datasets of

synthetic images. The same seeds have been used for gen-

erating all classes, resulting in closely related classes hav-

ing some similar images (same background, subject’s pose

and position) where only the subject of the image changes.

For CIFAR100, the synthetic dataset contains 500 32x32

images per class, and for ImageNet and ImageNet-Subset

1300 512x512 images per class. For every dataset, syn-

thetic images are generated with size 512x512 and are only

resized to 32x32 for CIFAR100 prior to the experiments.

Performance Measure: Models are evaluated and com-

pared using the Average Incremental Accuracy defined by

Rebuffi et al. [24]. It is the average of the Top-1 accuracy

of the model on the test data of all the classes seen so far, at

the end of each training step including the initial base step.

4.2. Comparison with baselines

In Table 1, the average incremental accuracy (Top-1) of

our method and the different baselines are reported for CI-

FAR100, ImageNet-Subset, and ImageNet with 5, 10, and

25 incremental steps using a replay memory of 20 real ex-
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Methods

CIFAR100

5 exemplars/class 10 exemplars/class 20 exemplars/class 50 exemplars/class

T=5 10 25 5 10 25 5 10 25 5 10 25

iCaRL* [24] 43.40 39.30 29.59 52.30 46.79 38.78 57.68 52.44 48.05 62.09 58.42 55.36

iCaRL w/ PlaceboCIL [19] 51.55 - - 59.11 - - 61.24 - - - - -

iCaRL w/ SDDR (ours) 55.36 50.80 48.15 58.53 55.70 52.51 62.01 59.24 56.47 65.53 63.92 62.18

Improvement in p.p. +11.96 +11.50 +18.56 +6.23 +8.91 +13.73 +4.33 +6.80 +8.42 +3.44 +5.50 +6.82

LUCIR* [10] 53.14 52.79 44.67 60.77 57.55 50.77 63.37 60.88 57.07 65.63 62.39 60.80

LUCIR w/ PlaceboCIL [19] 62.74 - - 64.79 - - 65.28 - - - - -

LUCIR w/ SDDR (ours) 62.90 59.81 56.32 64.47 62.16 59.44 65.77 63.84 61.73 67.21 65.81 64.48

Improvement in p.p. +9.76 +7.02 +11.65 +3.70 +4.61 +8.67 +2.40 +2.96 +4.66 +1.58 +3.42 +3.68

Table 3. Average incremental accuracy (Top-1) on CIFAR100 with a base step containing half of the classes followed by 5, 10, and 25

incremental steps depending on the number of exemplars saved in memory for each class. Results marked with “*” correspond to our own

experiments. Results for PlaceboCIL reported from [19]. Improvement reported comparatively to the baseline method. Results averaged

over 3 random runs.

emplars per class for every method. Due to significant dif-

ferences in the reproduced accuracy for FOSTER [32] be-

tween our work and Liu et al. [19], we decided to make a

more detailed comparison with PlaceboCIL in Table 2.

For FOSTER, LUCIR, and iCaRL, using our proposed

approach SDDR leads to a significant improvement of the

average incremental accuracy: from 1.01 percentage points

(p.p.) to 4.54p.p. for FOSTER, from 0.87p.p. to 6.34p.p.
for LUCIR and from 3.3p.p. to 8.44p.p. for iCaRL, de-

pending on the dataset and the setting. This improvement

is especially important in more challenging settings with

numerous incremental steps or when the replay memory

is small as discussed in Section 4.3. When looking more

closely at the learned model, we can see that our approach

improves the capacity of the model to preserve past knowl-

edge without penalizing its plasticity. This is especially true

in the most challenging settings with a small replay mem-

ory: for example on CIFAR100 with 10 incremental steps

and 5 exemplars per class in the memory, by combining LU-

CIR with SDDR, the final accuracy on the 50 bases classes

increases from 34.15% to 42.06% while the accuracy on

the 50 remaining classes also increases from 46.08% to

52.23%. By combining our proposed method SDDR with

FOSTER, we achieve new state-of-the-art performance on

several datasets and settings.

Our proposed method achieves competitive perfor-

mances compared to other considered approaches Mnemon-

ics [20], DDE [11] or BalancedS-CE [14] and could be even

combined with them to further improve their performance.

Compared to PlaceboCIL [19], our method achieves similar

or higher performance while using a significantly smaller

dataset of additional external data: 50,000 synthetic im-

ages compared to the 1.28 million of real images from Ima-

geNet for the experiments on CIFAR100 and 130,000 syn-

thetic images compared to about 1.1 million of real images

sampled without overlapping from ImageNet for the exper-

iments on ImageNet-Subset.

Methods
CIFAR100

T=5 10 25

LUCIR [10] 63.37 60.88 57.07

w/ SD Distillation 64.62 63.12 62.15
w/ SD Distillation w/o new 62.66 61.93 61.48

w/ SD Replay 64.95 62.44 59.59

w/ SDDR 65.77 63.84 61.73

Table 4. Average incremental accuracy (Top-1) on CIFAR100 with

a base step containing half of the classes followed by 5, 10, and 25

incremental steps, using a growing memory of 20 exemplars per

class. Results averaged over 3 random runs.

Methods
CIFAR100

T=5 10 25

LUCIR [10] 63.37 60.88 57.07

w/ SDDR n = 50 64.84 62.71 60.64

w/ SDDR n = 500 65.77 63.84 61.73

w/ SDDR n = 1000 66.41 64.91 62.73

w/ SDDR n = 2000 66.22 65.03 62.79

Table 5. Average incremental accuracy (Top-1) on CIFAR100 with

a base step containing half of the classes followed by 5, 10, and 25

incremental steps depending on n, the number of synthetic sam-

ples generated for each class. Using a growing memory of 20

exemplars per class. Results averaged over 3 random runs.

4.3. Ablation Study

Components: By leveraging synthetic images suppos-

edly belonging to the same classes as the training dataset, it

is possible to use them for both replay and distillation. Ta-

ble 4 compares the performance when using the synthetic

images only for distillation (w/ SD Distillation), only for

replay (w/ SD Replay), and for both combined (w/ SDDR).

Distillation and Replay using synthetic data appear to be

complementary, Replay achieving higher performances for

a short number of incremental steps T and Distillation for

a higher number of incremental steps. Combining both in
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SDDR achieves an overall improvement over each used in-

dividually.

Size of the synthetic dataset: Table 5 shows the impact

of the number of synthetic images n generated for each past

class used during training. With only 50 synthetic images

per class, our method can improve the average incremental

accuracy by up to 3.57p.p. compared to the standard LU-

CIR. This can be further increased to 5.72p.p. by expand-

ing the size of the synthetic dataset. However, it appears

that beyond a certain limit, further increasing the size of

the synthetic dataset does not yield any significant improve-

ment. This supports our approach of not using Stable Dif-

fusion in an online manner to generate each training batch

if the storage is not a constraint of the system.

Size of the replay memory: Table 3 measures the im-

provement from our method depending on the number of

incremental steps and the size of the replay memory con-

taining exemplars of past classes. While the improvement

compared to the baseline method is more significant in the

case of a small memory size, our method also significantly

improves the average incremental accuracy of both LUCIR

and iCaRL when combined with a larger replay memory.

Likewise, the improvement is more notable for more dif-

ficult settings containing numerous incremental steps. For

example, when trained for 25 incremental steps with 5 sam-

ples per class in the replay memory, SDDR almost dou-

bles the final overall accuracy for iCaRL, increasing it from

20.32% to 40.39% and augments the average incremen-

tal accuracy by 18.56p.p.. Those results highlight that our

method can boost the performance of the baseline method it

is combined with independently of the setting. Additional

results for CIFAR100 with 5 incremental steps can be found

in the Supplementary materials.

Use of new data: In their recent work, Liu et al. [19] em-

phasized that using data from new classes for the distillation

loss was detrimental and proposed to only use data of past

classes from the memory in addition to the unlabeled sam-

ples from the additional external dataset. Following their

study, we also report in Table 4 the results of our method

while using the distillation loss only on the synthetic im-

ages of past classes and on the exemplar from the memory

(w/ SD Distillation w/o new). However, it appears that in

our case, this significantly decreases the performance of the

model. As further discussed below, we suppose that it may

be due to the gap between the distribution of synthetic im-

ages and the distribution of real images: while real samples

from new images are generally harmful to the distillation

loss, they may be useful for transferring general knowledge

about real data in our case.

From synthetic to real images: As highlighted by

Sariyildiz et al. [27], while the synthetic images generated

by Stable Diffusion tend to be highly similar to real ones,

there remains a gap that limits the generalization of the

Memory

CIFAR100

T=5 T=10

Average Last Average Last

Real 20 63.37 53.91 60.88 51.42
Synthetic 20 52.38 33.68 42.79 21.83

Synthetic 100 54.54 36.56 48.56 27.93

Synthetic 500 55.77 38.78 52.19 32.58

Table 6. Performances of standard LUCIR [10] on CIFAR100 with

a base step containing half of the classes followed by 5 and 10 in-

cremental steps depending on the number of exemplars per class

saved in the memory and whether the exemplars are real or syn-

thetic images. “Average” is Average Incremental Accuracy (Top-

1) and “Last” is the final overall accuracy of the model after the

last incremental step. the Results averaged over 3 random runs.

model and may negatively impact the performance. We first

observed this phenomenon when using the synthetic dataset

generated by Stable Diffusion as a direct replacement for

the replay memory in the exemplar-free class-incremental

learning setting. As depicted in Table 6, when using syn-

thetic images as exemplars for the past classes, LUCIR has

difficulty generalizing to the real test dataset and achieves

significantly lower accuracy compared to using real exem-

plars in the memory. Moreover, while it performs bet-

ter than exemplar-based methods used without any replay

memory, it is not competitive with approaches specifically

designed for this challenging setting. Secondly, the im-

pact of the gap between synthetic and real data may also be

observed at the classifier level, especially when using our

proposed SDDR method in the most challenging settings

where the size of the replay memory is highly limited. Fix-

ing old class embeddings learned using real data only, using

an NME classifier of real exemplars only, or finetuning the

classifier on a small dataset of real images may help in this

situation: for example, on CIFAR100 with 25 incremental

steps and 5 exemplars per class in the replay memory, using

an NME classifier for LUCIR w/ SDDR would improve the

average incremental accuracy by 0.89p.p., reaching 57.21%

while for standard LUCIR it would decrease it by 0.01p.p..
Sariyildiz et al. [27] addressed the sim-to-real gap by us-

ing strong augmentation policy, and multi-crops and exper-

imentally found that it results in a large performance im-

provement: 51% relative increase of the accuracy compared

to standard limited augmentation in their simplest variant

of synthetic ImageNet-100. The same approach could be

used for our method, especially as strong augmentations

and larger models have been shown to be beneficial for in-

cremental learning [16].

5. Conclusion
In this work, we showed that pretrained generative text-

to-image model can be seamlessly combined with general

3431



methods for class-incremental learning in order to further

improve their performances. Our approach leverages Stable

Diffusion to generate labeled synthetic images belonging

to the same classes as the ones previously encountered by

the model and use those synthetic data for both the distilla-

tion loss and the classification loss. Complete experiments

show that our approaches significantly increase the average

incremental accuracy of state-of-the-art methods for class-

incremental learning, especially in settings with highly re-

stricted memory, and achieve comparable or superior results

compared to other competitive approaches relying on addi-

tional real data samples while offering more flexibility.

While our work focused on a simple and straightfor-

ward integration of the synthetic images into the class-

incremental learning setting, it would be important in future

works to consider how the generative models could be fine-

tuned during the training and how the different losses could

be modified to better take advantage of the synthetic images

and reduce the synthetic-to-real gap. Moreover, we will also

explore the different possible uses of those pretrained gener-

ative models for class-incremental learning: for example to

prepare the model by learning in advance, during the initial

step, classes that may be encountered in the future, based

on already encountered classes.
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