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Abstract

Federated and continual learning are training
paradigms addressing data distribution shift in space
and time. More specifically, federated learning tackles
non-i.i.d data in space as information is distributed in mul-
tiple nodes, while continual learning faces with temporal
aspect of training as it deals with continuous streams of
data. Distribution shifts over space and time is what it
happens in real federated learning scenarios that show
multiple challenges. First, the federated model needs to
learn sequentially while retaining knowledge from the
past training rounds. Second, the model has also to deal
with concept drift from the distributed data distributions.
To address these complexities, we attempt to combine
continual and federated learning strategies by proposing a
solution inspired by experience replay and generative ad-
versarial concepts for supporting decentralized distributed
training. In particular, our approach relies on using limited
memory buffers of synthetic privacy-preserving samples
and interleaving training on local data and on buffer
data. By translating the CL formulation into the task of
integrating distributed knowledge with local knowledge,
our method enables models to effectively integrate learned
representation from local nodes, providing models the
capability to generalize across multiple datasets.
We test our integrated strategy on two realistic medical
image analysis tasks — tuberculosis and melanoma clas-
sification — using multiple datasets in order to simulate
realistic non-i.i.d. medical data scenarios. Results show
that our approach achieves performance comparable
to standard (non-federated) learning and significantly
outperforms state-of-the-art federated methods in their
centralized (thus, more favourable) formulation.

1. Introduction

The significance of continual learning for supporting

federated learning is underscored by the recent advance-

ments in deep learning in high-stake application domains

such as medical image analysis. Indeed, while data-driven

approaches have shown promise in these domains, the avail-

ability of large-scale datasets is crucial for the reliability and

effectiveness of resulting models. Nevertheless, curating

large datasets is complex, with slow data collection, integra-

tion challenges, and privacy concerns hindering progress.

These limitations impact the quality, generalizability, and

bias of models trained on local datasets, limiting their abil-

ity to handle future data distribution shifts.

To address the lack of large-scale datasets and emerging

data privacy concerns, federated learning has emerged as an

effective and viable solution. It enables distributed training

across multiple nodes, each with its private dataset, with-

out explicitly sharing data. However, federated learning

techniques perform best when dataset distributions are ap-

proximately independent and identically distributed (i.i.d.),

a condition rarely met in practice due to variations in data

acquisition and characteristics. Moreover, the standard FL

formulation, foreseeing the presence of a central coordinat-

ing node, raises privacy concerns and potential single points

of failure.

To overcome these challenges, in this paper, we propose

a learning strategy leveraging experience replay and gen-

erative models for supporting decentralized training. Our

approach introduces a principled method for training local

models that ultimately converge to similar decisions, with-

out relying on a shared model architecture or central coor-

dination. Additionally, despite not being the primary focus

of this work, privacy preservation is achieved through the

transmission of synthetic data generated in a way to obfus-

cate real data patterns.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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In the proposed approach, multiple nodes initially train

their local models and a generative adversarial network

(GAN) on their respective datasets. The GAN is employed

to generate privacy-preserving synthesized versions of the

datasets. Once local training is complete, a node sends its

model and the generated synthetic data buffer to a random

node in the network. The receiving node adapts the incom-

ing model using its own data and the received buffer data to

limit forgetting.

We test our approach on two medical tasks, simulating

non-i.i.d. scenarios, such as tuberculosis classification from

X-ray data and melanoma classification using skin images.

The experimental results demonstrate that it achieves per-

formance comparable to centralized training on all real data,

outperforming existing federated learning methods.In sum-

mary, the contributions of this work are the following:

• A decentralized federated learning strategy, based on

continual learning principles, outperforming central-

ized approaches and achieving performance similar to

standard training settings.

• A principled strategy for knowledge transfer that takes

into account feature semantics during model merging,

avoiding interference and enabling the reuse of impor-

tant features from models received by each node.

• The integration of continual learning into federated

frameworks improves adaptability and performance in

non-i.i.d. data scenarios. This integration paves the

way for more efficient distributed systems, reducing

the need for central coordination and model homo-

geneity.

2. Related Work
Federated Learning (FL) [22] has recently emerged as

a collection of distributed learning approaches that enable

nodes to maintain the privacy of their training data while

collaboratively creating a shared model. Typically, in a

standard FL scenario, a central server distributes a model

to a group of client nodes; each node fine-tunes the model

on its local data and then sends the updated model back

to the server. The server aggregates these updates from all

nodes to form the global model, which is then iteratively

sent back to the nodes until convergence. The medical do-

main, with its specific constraints on data sharing, serves

as an ideal testing ground for evaluating federated learning

methods [19, 25, 5, 7]. The most common way to aggregate

information from multiple nodes is by averaging the local

models of each client, as proposed in FedAvg [22] and Fed-

Prox [18]. However, statistical data heterogeneity poses a

challenge as it may lead to catastrophic forgetting [14, 10].

To address this issue, FedCurv [26] introduces a penalty

term to the loss function to drive the local models towards

a shared optimum. FedMA [30], on the other hand, con-

structs a shared global model in a layer-wise manner by

matching and averaging hidden elements with similar fea-

ture extraction signatures. Our approach differs from ex-

isting feature integration methods in that it doesn’t involve

averaging model updates or gradients, which could be vul-

nerable to input reconstruction attacks [9, 32, 34]. Instead,

each node seeks to learn features that perform well on its

local dataset while retaining knowledge from other nodes

in a more principled manner than parameter averaging. Re-

cently, federated personalized methods, like FedBN [20],

aim to fit the global model to local data while keeping cer-

tain components, such as batch normalization layers, pri-

vate, and aggregating other model parameters at the central

node. However, using a central node for aggregating lo-

cal updates eases communication with many clients but has

downsides: it is a single failure point, it can become a bot-

tleneck with more clients [21], and might not be suitable in

all collaborative learning contexts [14]. Our paper focuses

on decentralized federated learning, where the central node

is replaced by peer-to-peer communication between clients.

In this setup, there is no global shared model as in standard

FL, but the communication protocol is designed so that all

local models approximately converge to the same solution.

Decentralized learning is particularly suitable for applica-

tions in the medical domain, where the number of nodes

(i.e., institutions) is relatively low. However, research in this

area is ongoing, and no definitive solutions have been estab-

lished. Some existing works propose Bayesian approaches

to learn a shared model over a graph of nodes by aggregat-

ing information from local data and each node’s one-hop

neighbors [17]. Others, like the secure weight averaging al-

gorithm [31], ensure that model parameters are not shared

between nodes, but they all converge to the same numeri-

cal values, with the disadvantages associated with param-

eter averaging when dealing with non-i.i.d. data distribu-

tions. Other approaches implement different communica-

tion strategies based on parameter sharing, such as decen-

tralized variants of FedAvg [28, 22]. While many exist-

ing solutions do not specifically target the medical domain

and often use toy datasets like MNIST and CIFAR10, there

are two works [25, 8], similar in the decentralized learning

spirit to ours, that present use cases of decentralized and

swarm learning for medical image segmentation. However,

like other approaches, they also adopt simple parameter av-

eraging to integrate features or predictions from multiple

nodes.

3. Method

3.1. Overview

An overview of our proposed method is shown in Fig. 1.

A federation can be defined as a set of N peer nodes, each
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Figure 1: Overview of the proposed learning strategy. Each node initially trains a privacy-preserving GAN, that is used to

sample synthetic data from the local distribution, without retaining features that may be used to identify patients. Then, each

node iteratively receives the local model and a buffer of synthetic samples from a random node, and fine-tunes the received

model on its own private data, using the buffer to prevent forgetting of previously-learned features.

with a private data set. Starting from the private dataset,

each node creates a synthetic privacy-preserving version

thereof, which is then used as a basis for the replay strat-

egy of the experience.

During each iteration of the decentralized federated

training, every node within the federation is provided with

a model and a buffer of synthetic samples from a random

node of the federation. The model at each node is then fine-

tuned using both its private dataset and the buffer data, em-

ploying an experience replay method that is widely used in

continual learning settings (e.g., [1]). The objective is to

learn features that are transferable across nodes and capa-

ble of handling non-independent and identically distributed

(non-i.i.d.) distributions. At the conclusion of each round,

after completing multiple training iterations, the locally-

trained model is sent to a successor node chosen randomly,

along with a buffer containing local synthetic samples. The

entire process is then repeated until convergence.

The proposed approach is tested on the task of federated

learning for medical image classification. Consequently, the

presented method is described in the context of this task,

but the overall approach can be applied to any other task

without sacrificing its generality.

3.2. Federated learning with experience replay

Existing methods in federated learning rely primarily

on parameter averaging, such as FedAvg [22]. However,

this approach presents major concerns when it comes to

effectively integrating knowledge from multiple sources.

One key challenge is the misalignment of feature locations

across different models, which can be further disrupted by

updates. Consequently, the models tend to converge slowly

towards consensus. In theory, two models could potentially

learn the same set of features, but at different locations

within the same layer, leading to their cancellation when

averaged. This problem becomes even more evident in de-

centralized scenarios where there is no central authority to

enforce global agreement on node features.

In our methodology, we tackle this issue by employing

continual learning strategies [6], which enable us to per-

form a task using a non-i.i.d. data stream while preserv-

ing previously-acquired knowledge. This ensures that local

models can reutilize and adapt features effectively, enabling

them to serve both current and prior tasks. Similarly, in the

context of federated learning, the goal is to train a global

model using distinct non-i.i.d. data distributions sourced

from various nodes.

In our ER-based federated learning strategy, a node re-

ceives another node’s model and surrogate data (generated

through a privacy-preserving GAN) — the “previous task”
— and fine-tunes that model on its own private date — the

“current task” — while using received synthetic data to

retain/adapt from the knowledge learned by the previous

node. Let T = (T1, T2, . . . , TN ) be a set of N tasks, where

Ti is the task to be solved on node ni.

Task Ti aims at optimizing a model Mi, with parameters

θi, on dataset Di of node ni.

The buffer Bi is the set of synthetic images, generated by

a privacy-preserving GAN Gi using data Di available on

node ni.

Training is organized in parallel rounds. At the end of

round r, each node ni produces a model Mr
i trained

on dataset Di and on a buffer Bj , received from an-

other node nj , to optimize an objective L, i.e., to find

argminθr
i

= E(x,y)∼Di∪Bj
[L(Mr

i (x,θ
r
i ),y)]. For each

training round, all nodes in parallel share to/receive from
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other nodes, buffer of synthetic images, and trained models.

In the following, we describe our method (whose graph-

ical representation is given in Fig. 1) from the point of view

of a single node nj . At round r, the node nj is trained on

a new task Tj using the dataset Dj , in a continual learn-

ing setting by fine-tuning the model Mr−1
i (with parame-

ters θr−1
i ) received by another model of the federation at

previous round r − 1 on the node data ,Dj , and on the in-

coming buffer Bi. Therefore, conversely to alternative fed-

erated learning methods, individual nodes do not possess

their own local models. Instead, during the decentralized

learning process, a node continually receives a model from

another node, incorporates its local information while re-

taining previously-acquired knowledge, and then forwards

the updated model to the subsequent node.

The loss function for the model Mr
j in node nj at round

r is thus defined as follows:

L(θr
j ) = λE(x,y)∼Dj

[L(Mr
j (x,θ

r
j ),y)]+

+ (1− λ)E(x′,y′)∼Bi
[L(Mr

j (x
′,θr

j ),y
′)]

(1)

where λ balances the ratio between real samples from the

local dataset Di and replayed synthetic samples from node

ni.

After optimizing the L(θr
j ) objective through mini-batch

gradient descent, the model Mr
j (θ

r
j ), with updated parame-

ters θr
j , is sent to a random node nk of the federation, along

with a buffer Bj of locally-generated synthetic samples.

Then, the general federated model M, after all training

rounds, is given by the union of all the N node models, i.e.,

M = M1 ∪ M2 ∪ · · · ∪ MN . However, experimental re-

sults, reported below in Sect. 4, demonstrate that all models

converge to similar decisions, thus each node model can be

considered as a general model for the entire network.

3.3. Privacy-preserving GAN

In the proposed method, nodes exchange both models

and data, implementing a knowledge transfer procedure

based on experience replay (see Sect. 3.2). Of course, shar-

ing real samples would go against federated learning poli-

cies; hence, exchanged samples are generated so that they

are representative of the local data, while taking precau-

tions against privacy violations — which may happen, for

instance, if the generative model overfits the source dataset.

Formally, we assume that each node ni, from a

set of N nodes, owns a private dataset Di =
{(x1,y1) , (x2,y2) , . . . , (xM ,yM )}, where each xj ∈ X
represents a sample in the dataset, and each yj ∈ Y rep-

resents the corresponding target. The local dataset is used

to train a conditional GAN [23], consisting of a generator

G, that synthesizes samples for a given label by modeling

P (x|y, z)), where z ∈ Z is a random vector sampled from

the generation latent space, and a discriminator D, which

outputs the probability of an input sample being real, mod-

eling P (real|x,y).
While theoretical proofs demonstrate that, upon conver-

gence, the distribution learned by the generator matches and

generalizes from the initial data distribution [10], GAN ar-

chitectures may, unfortunately, encounter training anoma-

lies such as mode collapse and overfitting. As a result,

the standard GAN formulation could generate samples that

closely resemble the original ones, a situation deemed un-

acceptable within the context of federated learning. In or-

der to mitigate this risk, we employ a privacy-preserving
strategy, similar to the one proposed in [24], that aims at

generating samples that do not retain potentially sensitive

information, but still include features that are relevant to

target tasks. Specifically, in the GAN training, we integrate

a privacy-preserving loss, which penalizes the model based

on the similarity between real and synthetic sample pairs.

This similarity is quantified using the LPIPS metric [33],

a measure that captures perceptual similarity by evaluat-

ing the distance between feature vectors extracted from a

pre-trained VGG model [27]. In practice, given a batch of

real samples x(r) and a batch of synthetic samples x(s), the

privacy-preserving loss is computed as:

LPP =
1

b

∑
x(r)

∑
x(s)

dL

(
x(r),x(s)

)
, (2)

where dL is the LPIPS distance.

The resulting new loss for the Generator is a combination

between standard generator loss with the one in Eq. 2.

4. Experimental Results
We test our learning strategy on two applications simu-

lating real-case scenarios with multiple centers holding, and

not sharing, their own data: 1) tuberculosis classification

from X-ray images using two different datasets, and 2) skin

lesion classification with three different datasets. In this

section, we present the employed benchmarks, the training

procedure and report the obtained results to demonstrate the

advantages of the proposed approach w.r.t. the state-of-the-

art.

4.1. Datasets

X-ray image datasets for tuberculosis classification. We

assume that the federation comprises two distinct nodes:

one contains the Montgomery County X-ray set, while the

other contains the Shenzhen Hospital X-ray set [2, 13, 12].

The Montgomery Set includes 138 frontal chest X-ray im-

ages, with 80 negatives and 58 positives. These images

were captured using a Eureka stationary machine (CR) at

either 4020×4892 or 4892×4020 pixel resolution. On

the other hand, the Shenzhen dataset was collected using
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a Philips DR Digital Diagnostic system. It contains 662

frontal chest X-ray images, consisting of 326 negatives and

336 positives, with a variable resolution of approximately

3000×3000 pixels.

Skin lesion classification. We use the ISIC 2019 challenge

dataset, which comprises 25,331 skin images categorized

into nine different diagnostic categories. The federation is

organized with three nodes because the data comes from

three distinct sources: 1) BCN20000 [4] dataset, which

contains 19,424 images of skin lesions captured between

2010 and 2016 at the Hospital Clı́nic in Barcelona. 2)

HAM10000 dataset [29] includes 10,015 skin images col-

lected over a 20-year period from two sites: the Depart-

ment of Dermatology at the Medical University of Vienna,

Austria, and the skin cancer practice of Cliff Rosendahl in

Queensland, Australia.3) MSK4 [3] dataset, an anonymous

dataset that consists of 819 skin lesion samples.

To streamline the problem, we focus only on the melanoma

class, converting it into a binary classification task.

For each task and dataset, 80% of the available data is used

to train both the privacy-preserving GAN and the classifica-

tion model. The remaining 20% of each dataset is reserved

for the test set. To prevent performance biases due to class

imbalance, the test sets are balanced with respect to the la-

bels. In evaluating the federated methods, including state-

of-the-art ones, model selection is performed using 5-fold

cross-validation on the training set. A grid search is con-

ducted on various hyperparameters, such as the number of

training rounds, number of rounds per epoch, learning rate,

and for FedProx [18], the μ hyperparameter is also included.

4.2. Training procedure and metrics

4.2.1 Federated training

In all settings, we employ the ResNet-18 model as the clas-

sification model. The model is trained by minimizing the

cross-entropy loss using the Adam optimizer with mini-

batch gradient descent. The mini-batch size is set to 32 for

the Shenzhen dataset, 8 for the Montgomery dataset, and 64

for the skin lesion datasets. Through cross-validation, we

determined that the optimal learning rate is 10−4. To en-

hance the training process and increase data diversity, data

augmentation techniques are applied: random horizontal

flip is employed for all datasets, while for skin lesion im-

ages, we additionally applied random 90-degree rotations.

All images are resized to a standard size of 256×256 pix-

els. In order to balance the real and synthetic samples used

during training, we control the ratio between them through

the parameter λ in Eq. 1. In this case, λ is set to 0.5 for

all experiments, meaning that each mini-batch contains an

equal number of real and synthetic images. This approach

ensures that our method performs the same number of opti-

mization steps as other conventional approaches that do not

utilize synthetic data.

The node federation is trained for R rounds. In our im-

plementation, at each round, nodes are randomly ordered

to establish each node’s predecessor and successor: given

our focus on medical applications, we can assume that the

number of nodes is low enough that synchronization is not

an issue. However, asynchronicity can be achieved by as-

suming that nodes can store incoming data in a queue: if the

distribution of successor nodes is uniform and computation

times are similar for all nodes, this is on average equiva-

lent to the synchronous case. The number of rounds R and

epochs E for our method on tuberculosis and melanoma

classification tasks are set both to 100, according to the 5-

fold cross-validation. Buffer size is set for all experiments

to 512.

4.2.2 GAN training

We would like to emphasize that GAN training is con-

ducted prior to the federated learning process, using only

training data while excluding test samples, as mentioned in

Section 4.1. For our privacy-preserving GAN, we employ

StyleGAN2-ADA [16] as the backbone due to its suitability

in low-data regimes and its exceptional generation capabil-

ities. The training is carried out in two steps:

1. Initially, the GAN is trained without any privacy-

preserving loss to facilitate learning high-quality vi-

sual features. This training phase is stopped if the FID

does not improve for 10,000 iterations.

2. Then, we introduce the privacy-preserving loss and

fine-tune the model to limit the embedding of patient-

specific patterns in the GAN latent space. In this case,

we employ a criterion to stop training if the FID in-

creases by a factor of 2.5 compared to its value ob-

tained in the first step.

For classification purposes, the GANs are trained in a label-

conditioned manner, with a mini-batch size of 32 and a

learning rate of 0.0025 for both the generator and the dis-

criminator. Early-stopping criteria are based on the Frêchet

Inception Distance (FID) [11] between real and synthetic

distributions. Regarding the α parameter in Eq.2, we ex-

perimented with various values of α (0, 0.5, 1, 1.5, 2,

and 3) and found that a value of 1 provides the best

trade-off between image generation quality and pairwise

LPIPS distance[33] across all tested datasets. To quanti-

tatively evaluate privacy preservation, we compute the av-

erage LPIPS distance between each real image and its clos-

est synthetic sample through latent space projection (as de-

scribed in Sect. 4.4). A higher LPIPS value indicates a

lower possibility of reconstructing real images from the

generator, thereby indicating better privacy preservation.
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Table 1: Comparison between proposed method, centralized baselines and state-of-the-art methods.

Methods Tuberculosis Melanoma

Shenzhen Montgomery Mean BCN HAM MSK4 Mean
Standalone 82.31 90.00 86.16 82.90 82.55 69.75 78.40

Centralized training 82.77 77.67 80.22 78.80 82.90 71.23 77.64

Centralized training with synthetic data only 76.92 79.33 78.13 60.71 61.09 61.23 61.01

Centralized training with synthetic data and real data 85.38 86.67 86.03 81.53 80.44 73.46 78.48

FedAvg [22] 72.31 83.33 77.82 77.55 75.15 67.28 73.33

FedProx [18] 78.46 76.67 77.56 78.80 81.87 64.81 75.16

FedBN [20] 63.08 70.00 66.54 82.19 81.12 59.26 74.19

Ours 80.15 86.67 83.41 82.11 84.58 68.40 78.36

Table 2: Accuracy convergence among distributed node
models. Each local model is evaluated on all test sets of the

federation in order to measure convergence and generaliza-

tion (lower standard deviation corresponds to higher con-

vergence).

Dataset Ours Standalone

Tuberculosis Shenzhen 80.54± 1.20 66.15± 22.84
Montgomery 85.67± 2.36 70.00± 28.28

Melanoma
BCN 82.87± 1.22 65.06± 19.68
HAM 84.45± 0.75 59.94± 20.47
MSK4 67.78± 1.28 65.43± 5.05

4.3. Federated learning performance

We evaluate the performance (in terms of classification

accuracy) in the non-i.i.d. setting, and compare it to several

centralized baselines, namely:

• Centralized training: all datasets are merged in a sin-

gle node where all training happens. In this setting, no

federated learning constraints are applied.

• Centralized training with synthetic data only. In

this setting, each node trains a privacy-preserving

GAN model and shares a synthetic version of its own

data with the central node, where global training is per-

formed. In this case, we aim to assess how much in-

formation is retained by synthetic data to support clas-

sification.

• Centralized training with synthetic and real data.
This setting is a combination of the previous two: real

and synthetic samples are centrally merged and used

for training a global classifier. This scenario measures

the contribution of synthetic data as a data augmenta-

tion approach.

We also evaluate our learning strategy against the stan-

dard training of individual node models, referred to as

“Standalone” training. Classification accuracy is deter-

mined by assessing individual node models using their own

distinct datasets. The outcomes, detailed in Table 1, re-

veal that Standalone training seems to yield the best re-

sults. Centralized strategies generally fall short compared to

Standalone training, due to the non-independent and iden-

tically distributed (non-i.i.d.) nature of the data. However,

when the centralized approach is trained with original data

augmented with synthetic samples, its classification accu-

racy is on par with the Standalone training, possibly due

to the learned generative latent spaces that likely tend to

smooth different modes of non-i.i.d. data. Our method,

on the other hand, surpasses its centralized counterpart but

trails slightly behind Standalone training (with a difference

of 1.5 percentage points). While this might seem like a

drawback initially, it is crucial to remember that the aim of

federated learning is to construct a model capable of better

generalization, by harnessing the various data distributions

present within the federation to potentially accommodate

future data drifts. To assess the generalization capacity of

the trained models, we analyze how a local node model per-

forms on test datasets from other nodes. These findings are

detailed in Table 2, and indicate a high average accuracy,

coupled with a low standard deviation, suggesting that each

node model performs just as well on its own dataset as it

does on others’ datasets (i.e., all node models converge to

similar decisions). In contrast, Standalone training results

in significantly lower accuracy and higher standard devia-

tion than our method, making it a less effective strategy for

achieving the desired generalization capabilities.

Furthermore, we evaluate our approach against state-

of-the-art federated learning methods, such as: a) cen-

tralized federated methods like FedAvg [22] and Fed-

Prox [18], which are generally known to outperform decen-

tralized methods [28, 17], and b) a personalized method,

FedBN [20]. For a fair evaluation, we employ the official

code repository1 for FedBN [20] and the selection of hyper-

parameters for the tested datasets was conducted through a

grid search on training rounds/epochs, learning rate, and μ
for FedProx [18], using a 5-fold cross-validation as to our

method.

1https://github.com/med-air/FedBN
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Table 3: Classification Accuracy w.r.t. buffer size. Each

local model is evaluated on all test sets of the federation

in order to measure convergence and generalization (lower

standard deviation corresponds to higher convergence).

Node Convergence

Buffer Shenzhen Montgomery

0 70.62± 11.97 80.33± 10.84
256 80.46± 2.96 81.67± 4.24
512 80.54± 1.20 85.67± 2.36

1024 82.23± 1.31 86.00± 3.01
2048 82.08± 1.39 88.67± 2.97

The outcomes for the tuberculosis and melanoma tasks,

presented in Table 1, demonstrate that our proposed method

surpasses all other techniques in comparison. Notably, our

learning strategy outperforms: a) centralized methods, such

as FedAvg [22] and FedProx [18], indicating that experi-

ence replay serves as a more efficient feature aggregation

method than basic parameter averaging; and b) personal-

ized methods like FedBN [20], which affects a restricted

portion of feature representation (i.e., input layer distribu-

tions), whereas our strategy adjusts the entire model to suit

both local and remote tasks.

Experience replay proves effective in federated learn-

ing, aiding in merging features from varied data distribu-

tions. We also evaluated its influence using different buffer

sizes. Results for the tuberculosis task, shown in Table 3,

highlight the buffer’s role in performance and model con-

sistency. Without it, performance drops and variability in-

creases. While performance rises with buffer size, gains

plateau after 512. Thus, considering data sharing and com-

munication costs, we opted for a 512-size buffer.

4.4. Privacy-preserving performance

In this section, we evaluate the amount of information

from real samples that our privacy-preserving Generator re-

tains using the projection method suggested in [15]. Given

an actual image x, we identify an intermediate latent point

w such that the generated image G(w) closely resembles

x. This is achieved by optimizing w to reduce the LPIPS

distance [33] between x and G(w).
In practical terms, we perform backprojection for each

image in the dataset used for GAN training to identify its

closest synthetic counterpart, and measure the LPIPS dis-

tance between the original and projected images. Fig. 2

presents the histograms of the resultant distances on the

Shenzhen dataset, using GAN models trained both with and

without our proposed privacy-preserving loss (for fairness,

both models start the backprojection from the same w). The

histograms reveal that standard GAN training tends to yield

distances nearer to 0, substantiating that real images are in-

deed incorporated into the generator latent space. However,

Figure 2: Quantitative analysis of privacy-preserving
generation. In blue, LPIPS distance histogram between

real images and the corresponding images obtained through

latent space projection using a GAN trained without the pro-

posed privacy-preserving loss. In red, LPIPS distance his-

togram between real images and the closest images gener-

ated with the proposed approach.

our model significantly counters this issue, by generating

samples that are considerably different from the original

ones.

5. Conclusion

In this study, we introduce a decentralized federated

learning framework that supersedes the conventional pa-

rameter averaging with a more methodical feature inte-

gration strategy leveraging the combination of experience

replay and privacy-preserving generative models. Nodes

share information by exchanging local models and buffers

of synthetic samples; local model updates are performed

in such a way as to promote the adoption and modification

of features learned by other nodes, thus mitigating any po-

tentially disruptive effects brought about by indiscriminate

feature averaging. Our empirical results indicate that our

method surpasses current state-of-the-art centralized strate-

gies in non-i.i.d. scenarios, a common setting in the medical

field. In future work, we plan to investigate some unex-

plored features of our method. For instance, unlike existing

methods based on parameter averaging, our strategy does

not require that all nodes adopt the same model architecture.

Model heterogeneity could be used to establish a shared en-

semble and fuse diverse feature learning capabilities.
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