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Abstract

Test-time adaptation is a promising research direction
that allows the source model to adapt itself to changes
in data distribution without any supervision. Yet, current
methods are usually evaluated on benchmarks that are only
a simplification of real-world scenarios. Hence, we propose
to validate test-time adaptation methods using the recently
introduced datasets for autonomous driving, namely CLAD-
C and SHIFT. We observe that current test-time adaptation
methods struggle to effectively handle varying degrees of
domain shift, often resulting in degraded performance that
falls below that of the source model. We noticed that the root
of the problem lies in the inability to preserve the knowl-
edge of the source model and adapt to dynamically chang-
ing, temporally correlated data streams. Therefore, we en-
hance well-established self-training framework by incorpo-
rating a small memory buffer to increase model stability and
at the same time perform dynamic adaptation based on the
intensity of domain shift. The proposed method, named AR-
TTA, outperforms existing approaches on both synthetic and
more real-world benchmarks and shows robustness across
a variety of TTA scenarios.

1. Introduction

Test-time adaptation (TTA) aims to adapt the source data

pretrained model to the current data distribution on-the-fly

during test-time, using an unlabeled stream data [16, 14].

Those methods are required to work well in a wide range of

challenging setups, including temporal correlation between

consecutive frames and lengthy sequences with gradual and

abrupt domain shifts.

Existing approaches are based on self-training methods

such as using pseudo-labels or prediction entropy minimiza-

tion [17, 16]. However, when tested over lengthy sequences

with changing distributions, those methods can become un-

stable, and as a result, the self-training feedback becomes

noisier and performance degrade [1]. Moreover, without

Figure 1. Continual test-time adaptation methods evaluated on

synthetic (CIFAR-10C) and realistic (CLAD-C) domain shifts.

Our method is the only one that consistently allows to improve

over the naive strategy of using the (frozen) source model.

using any source data, the model is prone to catastrophic
forgetting [9] of initially acquired knowledge.

TTA approaches are mostly evaluated on datasets with

synthetically generated domain shifts (e.g. image corrup-

tions [5]) or on relatively short-length sequences [16, 17, 2]

and as such it is not known how those methods will work

in real-life scenarios with unlimited streams of data. There-

fore, we adapt the autonomous driving benchmark for con-

tinual learning CLAD-C [15] to the continual test-time

adaptation setting. Moreover, we use a realistic, synthet-

ically generated driving dataset SHIFT [13] to create a

SHIFT-C benchmark.

In the proposed evaluation setup, we find out that current

approaches lack the required stability, as their performance

significantly deteriorates compared to the source model, see

Figure 1. Additionally, we notice that they struggle to cor-

rectly estimate batch norm (BN) statistics with temporally

correlated data streams and low batch sizes. We propose

a method in which we extend a popular self-training frame-

work [17] with a small memory buffer, which is used during

adaptation to prevent knowledge forgetting, without rely-
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ing on heuristic-based strategies or resetting model weights

that are often used [17, 11]. Thanks to using mixup data

augmentation [18], a relatively small number of samples

are required. Further, we develop a module for dynamic

batch norm statistics adaptation, which interpolates the cal-

culated statistics between those of the pretrained model and

those obtained during deployment, based on the intensity

of domain shift. We call our method AR-TTA, as we im-

prove Adaptation by using dynamic batch norm statistics

and maintain knowledge by Repeating samples from the

memory buffer combined with mixup data augmentation.

2. Related Work

Test-time adaptation (TTA). TTA setup is a type of do-

main adaptation in which there is no access to the source

data and the model adapts to the test-time distribution on-

the-fly in an online fashion based on unlabeled test data.

TENT [16] uses prediction entropy minimization to up-

date only batch-norm weights. EATA [10] improves effi-

ciency and reliability by using diverse samples with low

prediction entropy and incorporating EWC regularization.

CoTTA [17] updates the entire model using techniques like

weight averaging and stochastic model restoration, which

randomly resets the model weights to the source model

state. SAR [11] removes noisy samples and adds loss com-

ponents for flat minima but still employs model reset to pre-

vent forgetting.

TTA benchmarks. Test-time adaptation benchmarking

typically involves using synthetic corruptions proposed

in [5] individually, allowing model reset between domains.

However, in practical applications, the target distribution

can continually change over time. For this reason, continual

test-time adaptation, introduced in [17], eliminates model

resets at domain boundaries. Yet, the distribution shifts

arising in the real world may be very different from the

synthetic ones. Therefore, recently a CLAD autonomous

driving benchmark [15] was created. It consists of real-

world images with naturally occurring distribution shifts

like changes in weather and lighting conditions, traffic in-

tensity, etc. In this work, we use it for test-time adaptation,

that is without using any label information.

3. Method

The overview of our method is presented in Figure 2.

Weight-averaged Consistency. Following previous

works [4, 17], we propose to employ self-training on

pseudo-labels and keep two models, where one is updated

by the exponential moving average of another’s weights.

We initialize two identical artificial neural network mod-

els, student model fθ and teacher model fθ′ , with the same

weights obtained by training on source data. For each batch

of test data xTt at time step t we generate predictions from
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Figure 2. Our AR-TTA method adapts to unlabeled, continual

data streams using saved exemplars from source pretraining. It

involves two twin neural network models: teacher and student.

Exemplars are sampled from memory and augmented with test

images by mixup augmentation. Pseudo-labels from the teacher

model are mixed up with labels from memory. The student model

is updated using cross-entropy loss between its predictions and

augmented pseudo-labels. The teacher model is adapted using an

exponential moving average of the student’s weights. Predictions

come from the teacher model.

both models. Teacher model predictions ŷ′T
t are used as soft

pseudo-labels. The student model is updated by the cross-

entropy loss between its predictions and the pseudo-labels:

Lθt(x
T
t ) = −

∑

c

ŷ′T
t,c log ŷ

T
t,c (1)

where ŷTt,c is the probability of class c predicted by the stu-

dent model. Lastly, the teacher’s weights θ
′

are updated by

the exponential moving average of the student’s weights θ.

In contrast to most of the existing approaches [10, 16,

11], we adapt every weight of a model. The final predictions

for the current test batch xTt are the classes with the high-

est probabilities in pseudo-labels generated by the teacher

model before the update.

Experience Replay with Adaptation. To alleviate the is-

sue of catastrophic forgetting and strengthen the model’s

initial knowledge, we use the class-balanced replay buffer

combined with the mixup data augmentation [18], inspired

by a few of the continual learning works [7, 19].

We save a predefined number of random exemplars from

labeled source data in the memory. In each test-time adap-

tation iteration, we randomly sample exemplars xS
t , along

with their labels yS
t , from memory. The number of sam-

pled exemplars is equal to the batch size. Mixupped batch

of samples x̃t and pseudo-labels ỹt is generated by linearly

interpolating test data with data from memory:

x̃t = λxTt +(1−λ)xS
t and ỹt = λŷ′T

t +(1−λ)yS
t (2)

where λ ∼ Beta(ψ,ψ), for ψ ∈ (0,∞), and ŷ′Tt is a ma-

trix of pseudo-labels produced by the teacher model based

on the current unmodified test batch. Student model takes
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Table 1. Classification accuracy (%) for the standard CIFAR10-to-CIFAR10C online continual test-time adaptation task.
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method
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Source 67.57 68.92 49.86 83.61 61.67 76.41 80.2 76.81 75.82 70 84.65 65.16 75.32 69.91 80.36 56.5

BN stats adapt 67.3 69.1 59.6 82.7 60.3 81.5 83.1 78.0 78.0 80.3 87.2 83.2 71.2 75.2 68.0 75.0

TENT-continual [16] 67.9 71.4 62.5 83.2 62.9 82.1 83.8 79.5 79.7 81.4 87.8 84.3 73.5 78.2 71.6 76.7

EATA [10] 70.3 74.9 67.1 83.0 65.6 82.3 84.0 80.3 81.4 82.2 88.0 85.1 74.7 80.1 73.8 78.2

CoTTA [17] 72.5 76.4 70.5 80.6 66.6 78.3 80.1 75.8 77.0 77.1 83.8 77.3 72.0 75.5 72.2 75.7

SAR [11] 67.4 69.6 60.8 82.6 61.4 81.5 82.8 78.1 77.7 80.5 87.4 83.4 71.5 75.2 68.2 75.2

Ours (AR-TTA) 68.4 73.7 66.2 84.5 66.2 83.6 85.8 81.4 82.8 84.1 89.5 88.1 77.6 78.0 76.4 79.1

Table 2. Classification accuracy (%) for the CLAD-C continual test-time adaptation task.
t −−−−−−−−−−−−−−−→

Method T1 T2 T3 T4 T5
Mean

Day Acc.

Mean

Night Acc.

Avg. Mean

Class Acc.

Min Mean

Class Acc.
Mean Acc.

Source 76.4 86.0 75.5 86.5 68.5 86.2 73.1 54.1 4.8 81.7

BN stats adapt 72.2 69.0 74.6 74.3 62.2 71.1 69.6 41.7 1.6 70.6

TENT-continual [16] 72.4 68.9 76.3 75.3 61.9 71.4 70.3 40.1 0.0 71.1

EATA [10] 72.2 69.1 74.6 74.3 62.1 71.2 69.6 41.8 1.6 70.6

CoTTA [17] 74.8 67.6 79.2 76.2 65.1 71.1 73.2 38.6 0.0 71.8

SAR [11] 72.1 69.1 74.6 74.3 62.2 71.2 69.6 41.7 1.6 70.6

Ours (AR-TTA) 78.0 85.9 78.8 87.1 69.6 86.4 75.3 54.0 4.8 82.6

augmented batch x̃t as input. Its predictions are compared

with interpolated labels ỹt to calculate the loss.

Dynamic Batch Normalization Statistics. Due to domain

shift, state-of-the-art test-time adaptation methods [17, 10,

16, 11] usually discard statistics calculated during training

and estimate data distribution based on each batch of data

separately. However, this way of calculating the statistics is

flawed since the sample size from data is usually too small

to correctly estimate the data distribution, depending on the

batch size.

Therefore, we take the inspiration from [6] and propose

to use BN statistics from source data to estimate BN statis-

tics φt = (μt, σt) at time step t during test-time by linearly

interpolating between saved statistics from source data φS

and calculated values from current batch φT
t :

φt = (1− β)φS + βφT
t (3)

where β is a parameter that weights the influence of saved

and currently calculated statistics.

Since the severity of distribution shift might vary, we uti-

lize the symmetric KL divergence as a measure of distance

between distributions D(φt−1, φ
T
t ) to adjust the value of β

accordingly:

D(φt−1, φ
T
t ) =

1

C

C∑

i=1

KL(φt−1,i||φT
t,i)+KL(φT

t,i||φt−1,i)

(4)

βt at time step t is calculated as follows:

βt = 1− e−γD(φt−1,φ
T
t ) (5)

where γ is a scale hyperparameter.

To provide more stability for the adaptation, we take into

account previous β1:t−1 values and use an exponential mov-

ing average for βt update:

β = (1− α)βt−1 + αβt (6)

where α is a hyperparameter.

4. Experiments
Baselines. To evaluate the performance of our method and

validate its efficacy in handling realistic domain shifts, we

conduct experiments involving five state-of-the-art meth-

ods as baselines in image classification task: TENT-

continual [16], EATA [10], CoTTA [17], and SAR [11].

Moreover, we show results for discarding BN statistics from

source data and calculating the statistics for each batch sep-

arately (BN stats adapt) [12]. Additionally, we showcase

the results obtained from the frozen source model to verify

the effectiveness of adaptation (Source).

Artificial Domain Shifts. For comparing the TTA methods

on standard artificial domain shifts, we utilize CIFAR10-

to-CIFAR10C task [16, 17], which includes sequentially

adapting to different image corruption types on the 5th level

of severity. Following other state-of-the-art TTA methods,

we use the pretrained WideResnet28 model from Robust-
Bench [3] model zoo. The results are shown in Table 1. Ar-

tificial domain shifts pose a great challenge for the source

model, achieving only 56.5% mean accuracy. Calculating

BN statistics for each batch separately already significantly

improves the result to 75% accuracy on corrupted images.

Each of the compared state-of-the-art TTA methods uses the

BN stats adapt technique. Therefore their performance im-

proves over it, but the increase in accuracy value is not sig-
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Table 3. Classification accuracy (%) for the SHIFT-C continual test-time adaptation task.
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method
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Source 97.6 97.9 97.4 93.1 92.8 93.8 93.8 93.4 91.7 88.8 89.2 91.2 88.6 90.0 91.3 86.8 93.4

BN stats adapt 90.2 89.9 89.2 87.2 85.9 85.7 88.2 84.7 85.5 81.9 82.0 81.1 80.5 84.0 71.8 58.8 86.0

TENT-continual [16] 89.6 88.8 87.5 84.6 83.3 81.2 85.0 80.7 80.2 78.0 77.0 76.1 75.7 77.6 57.6 35.4 82.7

EATA [10] 90.2 90.0 89.3 87.3 86.0 86.0 88.2 84.9 85.8 82.0 82.2 81.3 80.7 84.1 72.6 60.8 86.1

CoTTA [17] 89.7 88.2 86.1 82.7 80.9 78.3 82.2 75.3 76.7 72.9 71.2 67.4 64.3 64.9 50.6 19.6 78.6

SAR [11] 90.2 89.9 89.2 87.2 85.9 85.7 88.2 84.7 85.5 81.9 82.0 81.1 80.5 84.0 71.8 58.8 86.0

Ours (AR-TTA) 97.2 97.5 96.8 95.2 91.6 93.5 93.5 92.5 93.9 89.9 91.5 91.2 89.2 92.5 91.5 89.0 93.7

nificant. Our method AR-TTA outperforms all of the com-

pared techniques achieving 79.0% of mean accuracy. This

shows the effectiveness of our method on the standard con-

tinual TTA test benchmark.

Natural Domain Shifts. Our experiments on natural do-

main shifts involve utilizing CLAD-C and SHIFT-C bench-

marks. Since CLAD-C is designed for testing the contin-

ual learning setup and the model is originally supposed to

be trained sequentially on the train sequences, we slightly

modify the setup and pretrain the source model on the first

train sequence. TTA is continually tested on the 5 remain-

ing ones.

The SHIFT-C benchmark is created from the SHIFT

dataset. The source model is trained on images taken in

clear weather during the day, and the adaptation methods

are tested in various weather and time of day combinations.

We utilize ResNet50 architecture with weights pre-

trained on ImageNet obtained from torchvision library [8]

and finetuned to the source data for the specific benchmark.

Results for CLAD-C are shown in Table 2. Calculating

BN statistics for each batch (BN stats adapt) does not im-

prove the performance over the frozen source model and

degrades the mean accuracy. Similarly, the state-of-the-art

TTA methods achieve significantly lower results compared

to the frozen source model, rendering them not effective for

natural domain shifts. It suggests that benchmarking such

methods on artificial domain shifts in the form of corrup-

tions is not a valuable estimate of the TTA method’s per-

formance in practical applications. Moreover, it shows that

keeping the precalculated statistics intact might sometimes

be more beneficial for less severe domain shifts, on which

the source model performs relatively well. Our method,

which uses precalculated statistics and exemplars of source

data during adaptation, outperformed state-of-the-art meth-

ods and achieves higher accuracy than the source model,

which shows the effectiveness and adapting capabilities.

Similar conclusions can be drawn from SHIFT-C bench-

mark results in Table 3. The frozen source model achieves

impressive results, while state-of-the-art methods signifi-

cantly degrade it. Moreover, the adaptation schemes of

TENT and CoTTA methods caused the accuracy to be lower

than the simple BN stats adaptation approach. Only AR-

TTA was able to improve the source model performance

during TTA.

Table 4. Mean classification accuracy (%) for CIFAR10C and

CLAD-C tasks for different configurations of the proposed

method.
Method CIFAR10C CLAD-C

A Pseudo-labels 75.4 70.6

B + Weight-avg. teacher 75.6 70.6

C + Dynamic BN stats 76.0 82.2

D + Replay memory 78.3 82.2

E + Mixup 79.1 82.6

5. Conclusion

We evaluate existing continual test-time adaptation

(TTA) methods in real-life scenarios using more realis-

tic data. Our findings reveal that current state-of-the-art

methods are inadequate in such settings, as they fall short

in achieving accuracy comparable to the frozen source

model. To address these limitations, we propose a novel

and straightforward method called AR-TTA, based on the

self-training framework. AR-TTA utilizes a small memory

buffer of source data, combined with mixup data augmen-

tation, and dynamically updates the batch norm statistics

based on the intensity of domain shift.

Through experimental studies, we demonstrate that the

AR-TTA method achieves state-of-the-art performance on

various benchmarks. Notably, AR-TTA consistently out-

performs the source model, which serves as the ultimate

baseline for feasible TTA methods. Our more realistic eval-

uation of TTA with a variety of different datasets provides

a better understanding of their potential benefits and short-

comings.
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De Lange, and Tinne Tuytelaars. Clad: A realistic continual

learning benchmark for autonomous driving. Neural Net-
works, 161:659–669, 2023.

[16] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Ol-

shausen, and Trevor Darrell. Tent: Fully test-time adaptation

by entropy minimization. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net, 2021.

[17] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Con-

tinual test-time domain adaptation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pages 7191–7201.

IEEE, 2022.

[18] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. International Conference on Learning Representations,

2018.

[19] Fei Zhu, Zhen Cheng, Xu-yao Zhang, and Cheng-lin Liu.

Class-incremental learning via dual augmentation. In M.

Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and

J. Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems, volume 34, pages 14306–14318.

Curran Associates, Inc., 2021.

3495


