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Abstract

In this work, we investigate exemplar-free class incremen-
tal learning (CIL) with knowledge distillation (KD) as a reg-
ularization strategy, aiming to prevent forgetting. KD-based
methods are successfully used in CIL, but they often struggle
to regularize the model without access to exemplars of the
training data from previous tasks. Our analysis reveals that
this issue originates from substantial representation shifts in
the teacher network when dealing with out-of-distribution
data. This causes large errors in the KD loss component,
leading to performance degradation in CIL. Inspired by re-
cent test-time adaptation methods, we introduce Teacher
Adaptation (TA), a method that concurrently updates the
teacher and the main model during incremental training.
Our method seamlessly integrates with KD-based CIL ap-
proaches and allows for consistent enhancement of their
performance across multiple exemplar-free CIL benchmarks.

1. Introduction

One of the most challenging continual learning scenar-

ios is class incremental learning (CIL) [33, 23], where the

model is trained to classify objects incrementally from the

sequence of tasks, without forgetting the previously learned

ones. A simple and effective method of reducing forgetting

is by leveraging exemplars [28, 16, 5, 26] of previously en-

countered training examples, e.g. by replaying them or using

them for regularization. However, this approach presents

challenges, particularly in terms of additional storage needs

and privacy concerns. Therefore, recently there has been a

notable surge of interest in methods for more challenging

exemplar-free CIL.
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Figure 1: Comparison of vanilla Knowledge Distillation ap-

proach and our method of Teacher Adaptation. We allow

the teacher model to continuously update its batch normal-

ization statistics on the new data, which reduces knowledge

distillation loss and leads to an overall more stable model.

A common approach for exemplar-free CIL is knowl-

edge distillation (KD), where the current model (student)

is trained on the new data with a regularization term that

minimizes the output difference with the previous model

(teacher), which is kept frozen [21]. Since then, many

methods such as iCaRL [28], EEIL [6], LUCIR [14], Pod-

NET [11], SSIL [1], or DMC [41, 20] employed KD, but

most of them use exemplars or external data.
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Figure 2: Applying our teacher adaptation (TA) method reduces knowledge distillation (KD) loss and improves stability over

the course of continual learning. (left) KD loss and cross-entropy (CE) loss of training the model with and without TA. Our

method leads to more consistent representations, as visualized by the CKA [18] between the representations of the new data

obtained in the teacher and student models while learning the second task (middle). KD with TA leads to better task-agnostic

accuracy (right). We conduct the experiments on CIFAR100 split into 10 tasks.

Exemplar-free CIL still remains challenging [32] for KD

methods due to the possibility of significant distribution

drift in subsequent tasks, which leads to large errors during

training with KD loss. Motivated by the recent domain

adaptation methods [34, 31], we examine the role of batch

normalization (BN) statistics in CIL training with KD loss

and conjecture that in standard KD methods, the KD loss

between models with different BN statistics may introduce

unwanted model updates due to the data distribution shifts.

To avoid this, we propose to continuously adapt them to the

new data for the teacher model while training the student.

We show that adapting the teacher BN statistics to the new

task can significantly lower KD loss without affecting the CE

loss, which leads to reduced changes in representations (Fig-

ure 2). We note that TA has been used in standard KD [43] or

in the online continual learning with exemplars [12], but we

are the first to apply it to exemplar-free CIL scenario, where

the teacher and the model are trained on non-overlapping

data.

2. Related works

Class Incremental Learning (CIL) [33, 23] aims to learn

incrementally from a stream of tasks, without the knowledge

about the task identifier. Most CIL methods store either

exemplars or features from the previous tasks in the replay

buffer [28, 16, 5, 26], modify the structure of the model [36,

35] or regularize changes in model [17, 21]. Modern CIL

methods usually combine those approaches [6, 37, 29, 28,

21, 1] and often rely heavily on exemplars, which raises

issues with data storage and privacy.

Regularization methods for continual learning employ

either parameter regularization [17, 39, 2] or functional reg-

ularization through knowledge distillation (KD) on model

activations. In CL, KD was first applied in LwF [21], and,

since then, has been widely used [27, 14, 28, 26, 1, 11, 10,

40]. However, most of those methods are impractical for

exemplar-free settings, as their performance heavily relies

on exemplar buffer.

Modifying the teacher model in KD was recently explored

in a setting where both models operate on the same do-

main [43, 22] and the teacher is adapted through meta-

learning to better guide the student. La-MAML [12] applies

a similar idea in online continual learning, using exemplars

for the outer loop optimization.

Batch Normalization (BN) [15] is widely used in deep

learning, but it was shown to be problematic in CL [30] as

its statistics change drastically between the tasks. Alterna-

tive normalization approaches such as LayerNorm [4] or

GroupNorm [38] often lead to decreased performance in

standard CL models. Several domain adaptation methods

use BN statistics for domain transfer [34, 31]. CL-specific

normalization methods also have been proposed [25, 7], but

they are not suited for exemplar-free setting.

3. Method
We propose Teacher Adaptation - a simple, yet effective

method for CIL with KD presented in Figure 1. Our method

allows the teacher model to continuously update BN statistics

alongside the student when training on the new data, which

addresses the problem of diverging BN statistics between the

teacher and student model caused by the shifts in training

data between subsequent tasks.

Knowledge Distillation in Continual Learning. Knowl-

edge distillation (KD) methods for continual learning save

the (teacher) model Θt trained after each task t and use it

during learning the (student) model Θt+1 on new task t+ 1,

with general learning objective:

L = LCE + λLKD, (1)
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T10S10 T20S5 T11S50 T26S50

AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓

a) CIFAR100

GKD 42.52±0.76 22.26±0.31 31.89±0.45 34.68±1.87 41.69±1.18 18.09±0.88 17.64±0.93 9.67±0.26

+TA 44.09±0.97 19.41±0.60 35.99±0.79 23.32±1.79 44.05±1.12 12.97±0.43 19.37±1.73 8.31±0.68

TKD 43.74±0.84 23.65±0.79 34.58±0.34 21.13±1.17 40.44±1.40 12.20±0.46 14.64±0.33 6.02±0.54
+TA 45.29±1.02 19.42±0.85 34.62±0.92 14.72±1.28 41.68±1.03 9.29±0.75 16.66±1.66 6.88±0.36

b) ImageNet100

GKD 54.62±0.52 25.95±0.11 42.82±0.58 35.39±0.88 52.67±0.93 9.92±0.83 21.91±0.06 9.29±0.69
+TA 55.82±0.61 20.52±0.24 45.88±0.79 23.25±0.62 51.44±0.51 14.55±0.76 22.31±0.64 11.28±0.98

TKD 55.70±0.49 23.55±0.35 45.71±0.37 25.85±0.26 54.72±0.86 10.16±0.34 19.32±0.23 9.67±0.61
+TA 56.23±0.70 18.09±0.26 45.14±0.78 15.62±0.51 53.85±0.39 13.15±0.16 22.55±0.83 9.96±0.28

Table 1: Comparision of standard Knowledge Distillation (KD) techniques with added Teacher Adaptation (TA) on different

splits of a) CIFAR100 and b) ImageNet100. Adapting the teacher is beneficial to the learning process for all the tasks.

where LCE is the cross-entropy loss, LKD is the KD loss

and λ is the coefficient that controls the trade-off between

stability and plasticity.

The most popular formulation of KD loss was proposed

in [21]. Following [1], we refer to it as global KD (GKD)

and define it as:

LGKD(yo, ŷo) = −
|Ct|∑

i=1

p(i)o log p̂(i)o , (2)

where |Ct| is the number of classes learned by previous

model Θt and p
(i)
o , p̂

(i)
o are temperature-scaled softmax prob-

abilities:

p(i)o =
eyo/T

∑
j e

yo/T
, p̂o

(i) =
eŷo/T

∑
j e

ŷo/T
(3)

We denote temperature parameter with T and use o to em-

phasise that the logits y
(i)
o , ŷ

(i)
o only relate to old classes

from previous tasks.

Ahn et al. [1] noticed that GKD formulation encourages

forgetting of previous tasks and proposed task-wise knowl-

edge distillation (TKD), which computes softmax probabili-

ties separately across the model classification heads:

LTKD(yo, ŷo) =
t∑

i=1

DKL(p
(i)
o log p̂(i)o ), (4)

where DKL is Kullback–Leibler divergence and p
(i)
o , p̂

(i)
o

are computed task-wise across the outputs for task i as in

Equation (3)).

Teacher Adaptation. Most models used in CIL for vision

tasks are convolutional neural networks such as ResNet [13],

which typically use BN layers and keep the parameters and

statistics of those layers in the teacher model Θt fixed during

learning Θt+1. However, when changing the task, BN statis-

tics in both models quickly diverge, which leads to higher

KD loss. Gradient updates in this case not only regularize the

model towards the previous tasks, but also compensate for

the changes in BN statistics, harming the learning process.

Inspired by test-time adaptation methods [34], we propose

to reduce this negative interference with a simple method that

we label Teacher Adaptation (TA). Our method updates BN

statistics of both models simultaneously on new data while

learning the new task. As shown in Figure 2, it allows for

significantly reduced KD loss over learning from sequential

tasks in CIL, which improves the overall model stability.

4. Experiments

TA on standard CIL benchmarks. We evaluate knowl-

edge distillation approaches described in Section 3 on the

standard continual learning benchmarks CIFAR100 [19]

and ImageNet-Subset [9], each containing images from 100

classes. For experiments on CIFAR100, we keep the class

order from iCaRL [28] and we use ResNet32 [13]. For

ImageNet Subset, we use ResNet18 [13]. We investigate dif-

ferent class splits, which we denote using the total number of

tasks T (which includes the first pretraining task if present),

and the number of classes in the first task S. We use FACIL

framework provided by Masana et al. [23], and always use

the same hyperparameters for each KD method within a

single setting. We train the network on each new task for

200 epochs in all experiments, using SGD optimizer without

momentum or weight decay. Following Zhou et al. [42], we

use a learning rate scheduler with the initial learning rate

of 0.1 and 10x decay on the 60th, 120th, and 160th epoch.

We report the results averaged over three random seeds. We

provide the description of reported metrics in Appendix.

We present the results obtained on standard CIL baselines

in Table 1. On CIFAR100, TA consistently improves the

accuracy across all the settings. On ImageNet, our method

improves upon the baseline for most settings, or at worst

stays within the margin of error of the baseline. We observe

that applying our method generally leads to a more stable

network and therefore reduces forgetting, i.e. TKD+TA for

equally split ImageNet (T10S10, T20S5).

Teacher Adaptation under varying degrees of distribu-
tion shift. We also introduce a corrupted CIFAR100 setting

where data in every other task contains a noise of varying
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Figure 3: Average incremental accuracy for standard KD and our method of TA under varying strength of data shift on splits

of CIFAR100. We vary the shift strength by adding Gaussian noise of different severity to every other task. As the noise

strengthens, the gap between TA and standard KD widens. Our method leads to more robust learning in case of data shifts.

severity, which allows us to measure the impact of TA under

varying and controllable degrees of data shift. We corrupt

every other task in this setting with Gaussian noise, so that in

subsequent tasks the data distribution changes from clean to

noisy or vice versa. We obtain varying strength of distribu-

tion shift by using different levels of noise severity, following

the methodology from [24]. We show the results of this ex-

periment in Figure 3. As the noise severity increases, the

gap between standard KD and TA widens, indicating that

our method is better suited to more challenging scenarios of

learning under extreme data distribution shifts.

Alternative solutions to problems with batch normaliza-
tion. To justify the validity of our method, we compare it

with other potential solutions for the problem with BN layers.

We use GKD on CIFAR100 split into 10 tasks and compare

the following solutions: 1) standard training with BN statis-

tics from the previous task fixed in the teacher model, but

updated in the student model, 2) BN layers removed, 3) BN

statistics fixed in both models after learning the first task,

4) BN layers replaced with LayerNorm [4] layers, and 5)

finally our solution of Teacher Adaptation. We show the

results of those experiments in Table 2. Fixing or removing

BN leads to unstable training, which can be partially fixed by

setting a high gradient clipping value or lowering the lambda

parameter, but at the cost of the worse performance of the

network. Training the networks with LayerNorm is stable,

but ultimately those networks converge to much worse so-

lutions than the variants with BN. Our solution is the only

one that improves over different values of λ and without the

need of clipping the gradient values.

5. Conclusions

We propose Teacher Adaptation (TA), a simple, yet ef-

fective method to improve the performance of KD-based

methods in exemplar-free CIL. During learning a new task,

TA updates the teacher network by adjusting its BN statis-

tics with new data. This mitigates the changes in the model

clip = 100 λ = 5 λ = 10

AccFinal AccInc AccFinal AccInc

1) GKD 25.47±0.57 41.59±0.32 27.96±0.34 42.28±0.67

2) -BN 0.33±1.15 2.01±2.67 0.33±1.15 2.85±3.81

3) fix BN - - - -

4) -BN +LN 21.94±0.95 34.7±0.48 22.76±1.05 34.48±0.15

5) +TA 31.39±0.17 44.98±0.38 31.85±0.10 44.06±0.69

clip = 1 λ = 5 λ = 10

AccFinal AccInc AccFinal AccInc

1) GKD 20.80±0.56 34.28±0.24 27.96±0.34 42.28±0.67

2) -BN 19.47±0.18 29.83±0.53 0.33±1.15 2.85±3.81

3) fix BN 20.21±0.31 32.07±0.20 - -

4) -BN +LN 18.49±1.41 30.39±0.72 22.76±1.05 34.48±0.15

5) +TA 24.19±0.90 36.13±0.24 31.85±0.10 44.06±0.69

Table 2: Results for different solutions to the problem of

diverging BN layers when using KD in CL. "-" indicates that

training crashes due to instability. TA is the only solution

that improves upon the baseline.

caused by KD loss that arise as the current learner constantly

tries to compensate for the diverging normalization statis-

tics between itself and the teacher model. We show that

TA consistently improves the results for different KD-based

methods on several CIL benchmarks in an exemplar-free

setting. Moreover, we demonstrate that benefits from our

method increase as we increase the degree of shift in data

between subsequent tasks. TA can be easily added to the

existing CIL methods and induces only a slight computa-

tional overhead, making it a valuable addition to existing

exemplar-free KD-based CIL methods.
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