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Abstract

As an effective way to alleviate the burden of data anno-
tation, semi-supervised learning (SSL) provides an attrac-
tive solution due to its ability to leverage both labeled and
unlabeled data to build a predictive model. While signifi-
cant progress has been made recently, SSL algorithms are
often evaluated and developed under the assumption that
the network is randomly initialized. This is in sharp contrast
to most vision recognition systems that are built from fine-
tuning a pretrained network for better performance. While
the marriage of SSL and a pretrained model seems to be
straightforward, recent literature suggests that naively ap-
plying state-of-the-art SSL with a pretrained model fails to
unleash the full potential of training data. In this paper,
we postulate the underlying reason is that the pretrained
feature representation could bring a bias inherited from the
source data, and the bias tends to be magnified through the
self-training process in a typical SSL algorithm. To over-
come this issue, we propose to use pseudo-labels from the
unlabelled data to update the feature extractor that is less
sensitive to incorrect labels and only allow the classifier
to be trained from the labeled data. More specifically, we
progressively adjust the feature extractor to ensure its in-
duced feature distribution maintains a good class separabil-
ity even under strong input perturbation. Through extensive
experimental studies, we show that the proposed approach
achieves superior performance over existing solutions.

1. Introduction

Semi-supervised learning (SSL) is considered one of

the most practical learning paradigms which can leverage

both labeled and unlabeled samples to build a prediction

model [4]. With the rapid development of deep neural

networks (DNNs), extensive research on deep SSL meth-

ods [18, 28, 23, 30, 3, 35, 26] have been studied. Among

those studies, most of them are evaluated and developed

Figure 1. Visualization of the correct keeping and error correcting

ability of FixMatch and ours approach with a pretrained model.

The y-axis of the left figure denotes the percentage of the initially

correctly labeled data keeping their correct class at a given iter-

ation. The y-axis of the right figure denotes the percentage of

the initially incorrectly labeled data being predicted to the correct

class at a given iteration. The experiment is conducted on FGVC
Aircraft dataset with 15% labels. As seen, FixMatch with a pre-

trained model shows weaker error correcting ability than the ours

approach. Please refer to Section 4.1 for more details.

based on randomly initialized parameters. In recent years,

the release and re-use of pretrained DNNs to alleviate train-

ing costs are becoming common practice for computer vi-

sion research and applications [42]. It seems that applying

the existing SSL method to a pretrained model is straight-

forward. However, recent literatures [45, 32] suggest that

such a naive solution fails to unleash the full potential of

training data and there seems to be a big room to improve

the performance of SSL when a pretrained model is used.

In this study, we postulate the key issue preventing ex-

isting SSL solutions from attaining their full potential with

pretrained models is due to the bias of the pretrained fea-

ture extractor: trained from the source domain data, e.g.,

ImageNet, the feature extractor may not be optimal for the

target problem, e.g., fine-grained visual recognition. Such

a bias could be a much more severe issue for SSL than for

supervised learning. This is because the self-training (or

pseudo-labeling) procedure commonly used in SSL tends to

magnify the bias. For example, at the beginning of the train-

ing, a biased feature extractor and few labeled data could

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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make the classifier vulnerable to spurious correlated pat-

terns, resulting in a wrong prediction on the unlabeled data.

The wrong prediction, however, will be fed back to the clas-

sifier again as pseudo labels and reinforce the bias. While

SSL from randomly initialized network also suffer from the

incorrect pseudo-labels, their feature extractors do not have

the bias inherited from the source domain and thus could be

easier adjusted through standard SSL methods towards the

target problem. In reality, the bias of the feature extractor

leads to the phenomenon that the SSL process from a pre-

trained model is less likely to correct its wrong prediction

at the early training stage, as shown in Figure 1.

In this work, we find that a surprisingly simple solution

can largely resolve such an issue: we do not use unlabeled

data and the corresponding pseudo-label to update the clas-

sifier but the feature extractor. Only labeled data are used

to train the classifier. The rationale for this strategy is that

the feature extractor is more tolerant to the label noise since

it does not directly produce the final prediction, and with a

good feature representation, it is possible to achieve good

performance with only a few labeled data. More specifi-

cally, we require the feature representation should become

closer to its class center while being pushed away from

other class centers. Inspired by FixMatch [26], we also ex-

pect the above property holds for strongly-augmented data.

The proposed method only modifies existing FixMatch by

changing a few lines of code but has demonstrated a dra-

matic performance boost and even outperforms other care-

fully designed contrastive-learning-based approaches by a

large margin. In summary, the main contribution of this pa-

per are as follows:

• We provide an insight into the issue that standard SSL

methods perform unsatisfactory with pretrained mod-

els and provide empirical evidence for a better under-

standing.

• We discover that a simple solution that can signifi-

cantly improve SSL from a pretrained model. Note

that we do not claim the operation of aligning feature

to its class-wise embedding is our novelty but the dis-

covery that such a simple strategy can be a good solu-

tion to our studied issue.

• We establish a strong baseline for SSL with pretrained

model, providing practioner a simple-to-use solution

for practical semi-supervised classification.

2. Related Work

Semi-supervised learning (SSL) has experienced rapid

progress with the development of deep neural networks

(DNNs) [3, 2, 26, 44, 33]. The current state-of-the-art SSL

approaches [18, 28, 23, 3, 26, 20, 37] usually depend on the

consistency regularization [3] and pseudo-labeling [20]. A

common framework is to employ two processes: one pro-

cess generates a prediction target, usually in the form of

pseudo-labeling [26, 20], but could also be logits [28] or

other supervision forms [3, 38, 36]. Then the generated

pseudo supervision will be used to update the network with

a different input, e.g., a different augmentation of the origi-

nal input image [26, 7], mixed image [3], or a network with

different parameters [28].

However, existing SSL approaches are primarily op-

timized from randomly initialized weights, and recent

works [45, 32] show that the impressive performance im-

provement of these standard SSL methods (includes the

state-of-the-art method FixMatch [26]) will disappear when

models are training from a pretrained model. Despite the

initial findings reported in [45], it still lacks a clear picture

of why existing SSL methods perform unsatisfactory when

pretrained models are used. In this paper, we investigate

the optimization procedure of SSL from pretrained models

and provide some empirical evidences to reveal barriers that

limit performance. Based on the analysis, we further pro-

pose a feature adjustment module to progressively adjust the

feature extractor and achieve great performance improve-

ment on multiple vision benchmarks.

3. Preliminary of Semi-supervised Learning

In semi-supervised learning, two sets of samples are

normally provided: {x1
l , x

2
l , · · · , xNl

l } ∈ XL whose

annotations {y1l , y2l , · · · , yNl

l } ∈ YL are available and{
x1
u, x

2
u, · · · , xNu

u

} ∈ XU where Nu � Nl but without

accessing label information.

Although there are many existing SSL methods in the

literature, this work mainly takes one of the state-of-the-

art approaches FixMatch [26] as an example. It is because

FixMatch successfully integrates two popular techniques in

SSL together, i.e., consistency regularization and pseudo-

labeling, through decoupling the artificial label generation

and model update with weak and strong data augmentations.

Specifically, for samples from XL, the model M is trained

via a standard classification loss. For each unlabeled data

xi
u ∈ XU , “hard” pseudo label is firstly produced on the

weakly augmented image

p(y|xi
u) = M (

A0(x
i
u)
)
; ỹ = argmax

c
p(y = c|xi

u), (1)

where A0(·) denotes weak data augmentation. Then, the

model is optimized to have a consistent prediction on the

strongly augmented image

Lu =
1

|Bu|
∑
i∈Bu

�
(
p(ỹ|xi

u) ≥ τ
)
CE

(
M(

A1(x
i
u)
)
, ỹ

)
,

(2)

where p(ỹ|xi
u) means the ỹ-th output probability on weakly

augmented xi
u. Here, �(·) is the indicator function to select
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samples whose predicting confidence is greater than a pre-

defined confidence threshold τ . Additionally, CE(·, ·) is the

standard cross-entropy loss, A1(·) is the strong augmenta-

tion and Bu denotes the size of unlabeled samples in one

mini-batch.

4. Semi-supervised Learning from Pretrained
Models

In this section, we first investigate the bias inherented in

pretrained models and how existing SSL methods are trou-

bled to achieve satisfactory performance. Then, we propose

a feature adjustment module for SSL to resist the bias.

4.1. Pretrained Models as a Double-edged Sword
for SSL

With the growth of data and the enrichment of comput-

ing resources, developing powerful pretrained models have

attracted increasing attention from both the academia and

industry [10, 13, 5, 24, 40, 43]. On the one hand, pre-

training on large-scale images gives models the general fea-

ture extraction ability for various kinds of downstream ap-

plications [46, 22, 39]. On the other hand, the generated

feature representations will inevitably bring a bias inher-

ited from the source data, and thus it is usually necessary

to fine-tune the model on target datasets for effective usage

of pretrained models [34, 12, 15].

For the SSL scenario, it is natural to expect that state-of-

the-art performance can be achieved by applying the state-

of-the-art SSL method to a pretrained model, i.e., semi-

supervised fine-tuning. However, evidence from recent lit-

eratures [45, 32] show that this solution is far from the best,

and there is a big room to improve SSL when a pretrained

model is used. This motivates us to revisit SSL and under-

stand what hinders it from achieving its full potential. We

postulate the major issue is that the use of pretrained model

is a double-edged sword for SSL: on the one hand, it brings

the prior knowledge learned from the source data and boosts

the performance. On the other hand, it also introduces a

strong prediction bias inherited from the source data. After

all, the feature learned from the source domain data may not

be optimal for the target task. In effect, the prediction bias

will encourage the classifier to use certain features or visual

patterns for prediction, especially when the labeled data is

limited in quantity and diversity. However, not all those vi-

sual patterns are true causal factors to determine the class

and the spurious correlation might be mistakenly identified

during training, e.g., prediction could rely on the clue from

background [25].

Worse, as most of the state-of-the-art SSL methods [26,

3, 20, 2, 44] are built upon self-training, a.k.a., pseudo-

labeling framework, which generates pseudo labels from

the prediction on the unlabeled data, such a process tends

to further magnify the prediction bias. For example, we can

consider the scenario of applying FixMatch, one of the most

commonly used SSL methods, with a pretrained model. At

the beginning of training, due to the limited amount of la-

beled (and pseudo-labeled) samples and biased feature rep-

resentation, the learned classifier tends to be affected by the

spurious correlation between features and class labels. Then

if the classifier generates incorrect pseudo labels from unla-

beled data, the bias will thus reinforce itself by further train-

ing with such pseudo labels. Consequently, this will make

the SSL less prone to correct its wrong prediction made dur-

ing the training process.

In order to verify our assumption, we conduct an empiri-

cal analysis on FixMatch with pretrained models. Specif-

ically, we introduce two measurements called correct-

keeping rate (CKR) and error-correcting rate(ECR). The

former is defined as a percentage of the initially1 correctly

labeled data keeping their correct class at a given iteration,

while the latter one is defined as the percentage of the ini-

tially incorrectly labeled data being predicted to the correct

class at a given iteration. The statistical results are shown

in Figure 1. Then we can observe that FixMatch (with a

pretrained model) has a descent CKR metric when training

converges. However, the ECR of FixMatch (with a pre-

trained model) quickly reaches a plateau and has a poor

ECR metric. This issue becomes more evident by compar-

ing its ECR with the proposed method.

4.2. Progressive Feature Adjustment

The above analysis suggests that the standard SSL ap-

proach could suffer more from the biased feature extractor

and we may need a special process to alleviate the impact of

bias. In this work, we propose to only use the labeled data

to train the classifier, while pseudo-labels generated from

the larger amount of unlabeled samples will only be used

to update the feature extractor. In this way, unlabeled data

influences the classifier indirectly by producing better fea-

ture representations. As the classifier is always trained on

noise-free labeled data, even if the feature representation is

imperfect, the classifier can suppress the noisy dimensions

and identify the discriminative patterns in the feature repre-

sentation. Thus the feature extractor can be more tolerant

to the noise in pseudo-labels. It seems that one drawback

of the above method is the lack of training examples for

the classifier. However, since a pretrained feature extractor

has already been able to provide a reasonable starting point

and will be further refined by the proposed progressive ad-

justment method, training the classifier on a limited number

of samples can guarantee a good performance. The overall

architecture is shown in Figure 2.

Specifically, given a batch of labeled samples (xl, yl) ∈
1“Initially” here means an unlabeled sample was falsely labeled for the

first time in the whole training process.
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Figure 2. Overview of our approach. The feature extractor is initialized with a pretrained model and the classifier is random initialized for

the target dataset. In order to alleviate the bias as presented in Section 4.1, we let the classifier only trained on the labeled samples and

use the large amount of unlabeled samples to adjust the feature extractor alone through pulling the immediate feature representation to its

corresponding class embedding and pushing away to other class embeddings. The class-wise embeddings are progressively updated along

the model optimization as presented in Eq. 6 and Eq. 7.

Bl, both of the feature extractor f and the linear classifier

W := {w1,w2, · · · ,wc, · · · } will be optimized together

p(y = c|xi
l) =

exp
(
wT

c f(x
i
l)
)

∑
j exp

(
wT

j f(x
i
l)
) ,

Ll =
1

|Bl|
∑
i∈Bl

CE
(
p(y|xi

l), y
i
l

)
(3)

where wc denotes the classifier for class c. CE(·, ·) is the

standard cross-entropy loss.

For a batch of unlabeled samples xu ∈ Bu, we utilize

the up-to-date classifier to generate posterior probability es-

timation p(y|xi
u)

p(y = c|xi
u) =

exp
(
wT

c f
(
A0(x

i
u)
))

∑
j exp

(
wT

j f
(
A0(xi

u)
)) , (4)

where f(A0(x
i
u)) denotes the feature extracted by first go-

ing through the weak data augmentation module A0 and

then the feature extractor f (same as that in FixMatch). The

class corresponding to the maximal posterior probability is

the predicted class of the given unlabeled sample, that is,

ỹi = argmaxc p(y = c|xi
u). If p

(
ỹi|xi

u

) ≥ τ where τ is

the confidence threshold which can be a fixed scalar, e.g.,

0.95 as in FixMatch [26] or a dynamic generated scalar as

in FlexMatch [44], then ỹi will be used as a pseudo-label

for the corresponding unlabeled sample.
Instead of using the pseudo-labeled unlabeled samples to

train on the feature extractor and classifier altogether, as in
FixMatch, we propose to use them to adjust the feature ex-
tractor only. Without introducing an additional linear con-
nected layer, we maintain a set of class-wise embeddings

{μc}C0 and try to minimize the following loss:

L̂f =
1

|Bu|
∑
i∈Bu

(
p(ỹi|xi

u) ≥ τ
)Lf (x

i
u, ỹ

i) +
1

|Bl|
∑
i∈Bl

Lf (x
i
l, y

i
l ).

where,Lf (x, y) = − log

exp

(
cos

(
μy, f

(
A1(x)

))
/T

)

∑
j exp

(
cos

(
μj , f

(
A1(x)

))
/T

) ,

(5)

where cos(·, ·) denotes the cosine similarity and T is a tem-

perature hyperparameter. We empirically set T = 0.1 in our

study. A1 denotes a different type of data augmentation to

A0 and we use RandAugment [8] followed by Cutout [11]

as the strong data augmentation A1. μc is the running class

mean vector for the c-th class.

In effect, the above loss function will pull features from

the same class closer while push features from different

classes far apart. For labeled data, we could use the ground-

truth class label for assigning samples to their correspond-

ing class embeddings. For unlabeled data, we use pseudo-

labels instead and only apply the loss to samples that can

generate pseudo-labels. Also, motivated by FixMatch, we

propose to apply this loss on strongly augmented data to

further avoid the confirmation bias. Note that the above loss

also implicitly encourages same-class features from the la-

beled and unlabeled data move closer relative to the distance

to other class samples. Thus it tends to make the classifier

learned from the labeled data more generalizable to unla-

beled data.

To sum up, we train the classifier with labeled data only

and both labeled and unlabeled data with the loss in Eq. 5.

The overall loss function L is the weighted summation of

both: L = Ll + λ · L̂f , where λ is the fixed weight hyper-
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parameter.

In order to adjust the feature extractor efficiently, oracle

class-wise embeddings of target dataset should be an ideal

choice. However, it is unrealistic due to the lack of annota-

tions for unlabeled samples and the inherent bias in the pre-

trained feature extractor. Thus, we propose to progressively

update these class-wise embeddings from both labeled and

unlabeled data. For labeled data, μc is updated via

μnew
c = βμold

c + (1− β)f
(
A1(x

i
l)
)
�(yil = c), (6)

and for unlabeled data, μc is updated via

μnew
c = βμold

c + (1− β)f
(
A1(x

i
u)
)
�

(
p
(
c|A0(x

i
u)
) ≥ τ

)
,

(7)

where the indicator function �(yil = c) selects samples

from the c-th class from the labeled data, the indicator func-

tion �
(
pt
(
c|A0(x

i
u)
) ≥ τ

)
selects unlabeled samples that

are confidently classified into the c-th class by the classifier.

This is identical to the criterion of generating pseudo-labels.

β is a momentum term that controls how far the class-wise

feature reaches into embedding history.

5. Experimental results
In this section, we compare our approach with several

SSL methods with pretrained models.

5.1. Experimental details

We strictly follow [32] to design our experiment, includ-

ing the evaluation datasets and pretrained model choices.

We made such a choice since Self-Tuning [32] has demon-

strated the state-of-the-art performance and its experimental

evaluation is comprehensive and realistic. Our code will be

released after the anonymity period. Some experimental de-

tails are as follows:

Datasets: Following the protocol of [32], which ad-

dressed the same research problem as this paper, four vision

benchmarks are evaluated, i.e., FGVC Aircraft [21], Stan-
ford Cars [16], CUB-200-2011 [31], and CIFAR-100 [17].

Specifically, the first three are challenging fine-grained clas-

sification datasets and label proportions ranging from 15%

to 50% are tested. Label partition of CIFAR-100 follows the

standard SSL protocol: 4/25/100 labeled images per class.

Methods: Nine popular deep SSL approaches are included

for comparison, i.e., Π-model [19], Pseudo-Labeling [20],

Mean Teacher [28], UDA [35], FixMatch [26], Flex-

Match [44], SimCLRv2 [6], FixMatch+AKC+ARC [1] and

Self-Tuning [32]. Meanwhile, performance of Fine-Tuning

on labeled data is also reported for a reference baseline. For

our approach, we also consider a simple extension by in-

corporating it into the recently proposed consistency-based

Method
Label Number

400 2500 10000

Fine-Tuning (baseline) 60.79 31.69 21.74

Pseudo-Labeling [20] 59.21 – –

MT [28] 60.68 – –

UDA [35] 58.32 – –

FixMatch† [26] 52.88 25.63 18.38

FlexMatch† [44] 40.41 23.19 17.73

Self-Tuning [32] 47.17 24.16 17.57

Ours† 45.48 23.12 16.89

Ours+† 37.36 22.06 16.58
Table 1. Error rates (%) on CIFAR-100 with EfficientNet-B2. †
means ours implementation based on [32].

SSL method FlexMatch [44], which uses dynamically as-

signed threshold with a FixMatch framework. We call this

extension Ours+. Note that it shows our approach can still

boost the performance even with more advanced SSL al-

gorithms. In our work, all experiments were implemented

in PyTorch and run on a GeForce RTX 2080Ti GPU with

11GB memory.

Pretrained models: Following [32], three models pre-

trained on ImageNet [9] are chosen for evaluation, i.e.,

ResNet-50 [14] and EfficientNet [27] which are pretrained

in a supervised way, and a ResNet-50 which is trained

through an unsupervised learning method MoCo v2 [13].

5.2. Train from Supervised Pretrained Models

In this section, we compare various SSL methods trained

from supervised pretrained models.

Fine-grained Classification benchmarks: We use a

ResNet-50 network, which is supervised pretrained on Im-

ageNet, to initialize all SSL models. The results are shown

in Table 2. It is clear that our proposed method achieves

overall significant improvement than other comparing SSL

approaches. Specifically, compared with traditional SSL

methods, our approach increases the test accuracy by a large

margin on all kinds of partitions of three benchmarks. Tak-

ing the state-of-the-art method FixMatch [26] as an exam-

ple, the performance gain of our approach exceeds 10 per-

cent on both Stanford Cars and CUB-200-2011 with 15%

labels. This is thanks to the proposed feature adjustment

module in our approach which greatly reduces the bias in-

herented in the pretrained model. Furthermore, our ap-

proach is also superior to the recently proposed Self-Tuning

method [32] especially when labels are limited, e.g., only

15% training samples are labeled. When the CPL mod-

ule proposed in FlexMatch [44] is added to our approach,

Ours+ leads to a further performance boost.

Standard SSL benchmarks: We choose CIFAR-100
dataset [17] which is one of the most challenging datasets

among standard SSL benchmarks to evaluate SSL methods
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Dataset Method
Label Proportion

15 % 30 % 50 %

FGVC Aircraft

Fine-Tuning (baseline) 39.57±0.20 57.46±0.12 67.93±0.28

Π-model [19] 37.32±0.25 58.49±0.26 65.63±0.36

Pseudo-Labeling [20] 46.83±0.30 62.77±0.31 73.21±0.39

Mean Teacher [28] 51.59±0.23 71.62±0.29 80.31±0.32

UDA† [35] 59.50±0.36 74.08±0.41 81.10±0.42

FixMatch† [26] 60.19±0.43 75.28±0.39 81.19±0.41

FlexMatch† [44] 63.21±0.15 77.08±0.34 82.56±0.22

SimCLRv2 [6] 40.78±0.21 59.03±0.29 68.54±0.30

FixMatch+AKC+ARC† [1] 63.87±0.41 75.99±0.38 81.24±0.31

Self-Tuning [32] 64.11±0.32 76.03±0.25 81.22±0.29

Ours† 69.64±0.41 82.36±0.44 85.02±0.33

Ours+† 71.23±0.26 82.80±0.15 85.53±0.32

Stanford Cars

Fine-Tuning (baseline) 36.77±0.12 60.63±0.18 75.10±0.21

Π-model [19] 45.19±0.21 57.29±0.26 64.18±0.29

Pseudo-Labeling [20] 40.93±0.23 67.02±0.19 78.71±0.30

Mean Teacher [28] 54.28±0.14 66.02±0.21 74.24±0.23

UDA† [35] 61.88±0.39 79.16±0.36 86.79±0.31

FixMatch† [26] 64.97±0.37 81.23±0.31 87.74±0.35

FlexMatch† [44] 71.96±0.28 83.81±0.26 88.12±0.21

SimCLRv2 [6] 45.74±0.16 61.70±0.18 77.49±0.24

FixMatch+AKC+ARC† [1] 68.63±0.38 82.81±0.27 87.98±0.32

Self-Tuning [32] 72.50±0.45 83.58±0.28 88.11±0.29

Ours† 77.22±0.42 86.91±0.07 90.38±0.16

Ours+† 79.70±0.31 87.92±0.32 90.71±0.13

CUB-200-2011

Fine-Tuning (baseline) 45.25±0.12 59.68±0.21 70.12±0.29

Π-model [19] 45.20±0.23 56.20±0.29 64.07±0.32

Pseudo-Labeling [20] 45.33±0.24 62.02±0.31 72.30±0.29

Mean Teacher [28] 53.26±0.19 66.66±0.20 74.37±0.30

UDA† [35] 52.23±0.23 67.93±0.25 75.63±0.28

FixMatch† [26] 54.21±0.26 69.28±0.28 77.49±0.31

FlexMatch† [44] 61.26±0.18 71.62±0.32 78.06±0.21

SimCLRv2 [6] 45.74±0.15 62.70±0.24 71.01±0.34

FixMatch+AKC+ARC† [1] 63.21±0.35 73.61±0.32 79.08±0.29

Self-Tuning [32] 64.17±0.47 75.13±0.35 80.22±0.36

Ours† 65.55±0.21 74.99±0.33 80.00±0.11

Ours+† 68.06±0.22 76.09±0.34 80.40±0.21

Table 2. Test accuracy (%) ↑ on three fine-grained SSTL benchmarks. We empirically find strong augmentation for labeled data used

in Self-Tuning [32] can bring performance gains to other SSL methods. Following the same setting of Self-Tuning, Methods with † are

implemented by ourself based on the released codebase of Self-Tuning [32].

from a pretrained model. Due to the lack of open-resourced

pretrained checkpoints on WideResNet-28-8 model [41],

EfficientNet-B2 model [27] supervised pretrained on Ima-

geNet is adopted in this work. Table 1 presents the error

rates of each method. Our proposed method yields the best

performance among the comparing methods.

5.3. Train from Unsupervised Pretrained Models

Various semi-supervised learning approaches have been

shown to benefit from supervised pretrained models in Sec-

tion 5.2, we continue to study the transfer effect from Mo-

Cov2 [13] which is pretrained on ImageNet without using

any annotations. As the test accuracy presented in Figure 4,

our best performed model, Ours+, excels to other semi-

supervised learning baselines.

5.4. Ablation Study

We are interested in ablating our approach from the fol-

lowing perspective views:

5.4.1 The distribution of feature representation:

In our approach, the progressive feature adjustment module

is introduced to update the feature extractor separately for
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Figure 3. Feature embedding visualizations of (left) FixMatch and (right) Ours approach for the first 10 classes of FGVC Aircraft dataset

by using t-SNE [29]. Both of the models are initialized with identical ResNet-50 supervised pre-trained on ImageNet.
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Figure 4. Test accuracy (%) ↑ of comparing methods on CUB-
200-2011 with MoCov2 which is unsupervisedly pre-trained on

ImageNet1K [9].

alleviating the bias inherented in pretrained models. There-

fore, we are interested in the effect of using such module

or not on the feature distribution. Figure 3 presents the fea-

ture distribution of FixMatch and ours approach for some

classes of FGVC Aircraft with t-SNE [29]. We can find that

our method encourages same class features to be close to

each other while staying away from the other class samples

and produces a more distinguishable distribution for the tar-

get data, while FixMatch suffers from the inherented bias of

pretrained model and poorly adapts the feature distribution

given the observation whose features from different classes

are mixed together, thus its performance is heavily limited.

3https://github.com/kekmodel/FixMatch-pytorch
(CC BY)

Method
Label Number

400 2500 10000

FixMatch [26] 42.50 27.07 21.88

HCCMatch (ours) 42.69 26.16 21.39

Table 3. Error rates (%) ↓ on CIFAR-100 with a randomly initial-
ized WideResNet-28-8 [41] network. We implement HCCMatch

based on the PyTorch implementation3of FixMatch which has ob-

tained better performance than the reported ones in [26].

Method
(w/ same pre-trained model)

Label Proportion

15 30 50

UDA [35] 59.50 74.08 81.10

UDA+Feature Adjustment(ours) 65.74 80.11 83.83
Table 4. Ablation study to the effectiveness of the proposed pro-

gressive feature adjustment module to the popular consistency-

regularization based SSL method UDA on FGVC Aircraft.

5.4.2 Is our approach effective for randomly initialized
network?

In our formulation, the progressive feature adjustment mod-

ule can be seen as a special SSL method for SSL from

a pretrained model. So we are interested to know its ef-

fectiveness for randomly initialized network. To investi-

gate this, we train our approach with a randomly initial-

ized WideResNet-28-8 [41] network on CIFAR-100. As

the results shown in Table 3, our approach does not produce

significant improvement as what we have observed in the

SSL with pretrained models task. We postulate that this is

because the feature extractor of a randomly initialized net-

work does not inherited the prediction bias from the source

domain, and thus the original design in FixMatch algorithm

has already been sufficient to adjust the feature extractor for

the target problem.
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Figure 5. Ablation study to the hyperparameter sensitivity.

5.4.3 Does our approach work for other SSL method?

We are also interested in if the proposed progressive fea-

ture adjustment module can be extended to other SSL meth-

ods. To investigate this, we apply this module to UDA [35]

which is another popular consistency-regularization based

SSL method. We conduct experiments on FGVC Aircraft
dataset and present the results in Table 4. As seen, by incor-

porating the proposed progressive feature adjustment mod-

ule, we can significantly improve UDA in the SSL from

pretrained models setting. This suggests that the proposed

progressive feature adjustment module could be used to up-

grade various consistency-regularization based SSL meth-

ods when pretrained models are available.

5.4.4 The ways of updating class-wise embeddings

In our approach, the class-wise embedding, i.e., class mean

vectors, are dynamically updated from features of strongly

augmented labeled images and features of strongly aug-

mented unlabeled samples whose pseudo-supervisions are

confident enough. In this section, we investigate two al-

ternative strategies: 1) accumulate features of weakly aug-

mented images to update mean vectors, 2) estimate param-

eters from features of unlabeled samples without a confi-

dence threshold. As the results shown in Table 5, both of

these two alternatives will result in a slight performance

drop to our method.

5.4.5 The sensitivity analysis of hyperparameter selec-
tion in our approach:

There are two hyperparameters in our method: one is the

momentum term beta (i.e., β) for updating the class-wise

embedding μ in Eq. 6 and Eq. 7, and the other one is the bal-

ance weight lambda (i.e., λ) for the overall loss. As shown

Ways of updating μ in HCCMatch
Label Proportion

15 30 50

w/ weakly augmented images 68.38 82.06 84.79

w/o confidence threshold 68.73 81.61 84.49

default (ours) 69.64 82.36 85.02
Table 5. Ablation study to the ways of implementing online gen-

erative classifier learning in the proposed HCCMatch approach on

FGVC Aircraft dataset.

in Figure 5, Our method is robust to the selection of both β
and λ hyperparameters.

6. Conclusion

Semi-supervised learning from pretrained models is an

encouraging research direction, because it combines the ad-

vantages of the two learning paradigms to achieve more

data-efficient learning. Given the observations in the litera-

ture show that existing semi-supervised learning algorithms

do not produce a satisfactory performance boost compared

to their training-from-scratch version, we investigate the

learning procedure of semi-supervised learning from pre-

trained models and find that the bias inherented in the orig-

inal pretrained models may be magnified along the semi-

supervised training. Empirical evidences are also provided

for a better understanding. Based upon the analysis, we

propose a progressive feature adjustment module to decou-

ple the process of pseudo-supervision generation and model

update and thus alleviate the bias successfully. Extensive

experimental results on four vision benchmarks verify the

effectiveness of our proposed approach.

Acknowledgement. This work was done in Adelaide Intel-

ligence Research (AIR) Lab and Hai-Ming Xu and Lingqiao

Liu are supported by the Centre of Augmented Reasoning

(CAR).

3299



References
[1] Abulikemu Abuduweili, Xingjian Li, Humphrey Shi, Cheng-

Zhong Xu, and Dejing Dou. Adaptive consistency regular-

ization for semi-supervised transfer learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6923–6932, 2021. 5, 6

[2] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex

Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel.

Remixmatch: Semi-supervised learning with distribution

alignment and augmentation anchoring. ArXiv preprint,
abs/1911.09785, 2019. 2, 3

[3] David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nico-

las Papernot, Avital Oliver, and Colin Raffel. Mixmatch: A

holistic approach to semi-supervised learning. In Hanna M.

Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
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