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Abstract

The principle underlying most existing continual learn-
ing (CL) methods is to prioritize stability by penalizing
changes in parameters crucial to old tasks, while allow-
ing for plasticity in other parameters. The importance of
weights for each task can be determined either explicitly
through learning a task-specific mask during training (e.g.,
parameter isolation-based approaches) or implicitly by in-
troducing a regularization term (e.g., regularization-based
approaches). However, all these methods assume that the
importance of weights for each task is unknown prior to
data exposure. In this paper, we propose ScrollNet as a
scrolling neural network for continual learning. ScrollNet
can be seen as a dynamic network that assigns the ranking
of weight importance for each task before data exposure,
thus achieving a more favorable stability-plasticity tradeoff
during sequential task learning by reassigning this ranking
for different tasks. Additionally, we demonstrate that Scroll-
Net can be combined with various CL methods, including
regularization-based and replay-based approaches. Exper-
imental results on CIFAR100 and TinyImagenet datasets
show the effectiveness of our proposed method.

1. Introduction
In human life, knowledge is consistently acquired and

accumulated. However, deep learning models often experi-

ence knowledge forgetting, a phenomenon known as catas-

trophic forgetting [23, 37], when they are exposed to a series

of tasks. To address this issue, continual learning (CL) [41,

10, 34], also known as lifelong learning, has emerged as a

vital research direction for a variety of learning and repre-

sentation tasks (e.g., image classification[45, 34], semantic

segmentation [12, 60], generative models [56], object detec-

tion, autonomous driving [50]). Continual learning aims to

prevent the loss of previously acquired knowledge in neural

networks over time.

This issue is intricately connected to the stability-

plasticity dilemma [24, 39]. More precisely, when learning

sequentially, the network needs to possess the ability to in-
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Figure 1. Our proposed method employs a dynamic network to

pre-assign weight importance before training. This dynamic net-

work ensures that the most crucial weights for a given task t are

consistently assigned at the top of the ‘roller’ (a metaphor for a

neural network). Once the current task is completed, we scroll the

roller to readjust the order of weight importance for the subsequent

task. This process aims to strike a balance between stability and

plasticity, allowing the model to retain previously learned knowl-

edge while remaining adaptable to new tasks.

corporate new knowledge (plasticity) while also maintain-

ing stability to prevent forgetting previously learned tasks.

Nevertheless, the stability-plasticity dilemma suggests that

achieving both high plasticity and high stability simultane-

ously is challenging. Various continual learning approaches

have been proposed to address this dilemma, which can

be broadly categorized as follows: regularization-based
methods [23, 2] add a regularization term to the objective

function which impedes changes to the parameters deemed

relevant to previous tasks; replay-based methods [42, 31]

prevent forgetting by including data from previous tasks,

stored either in an episodic memory or via a generative

model; parameter isolation-based methods [45, 44] pro-

pose to modify the update rule of parameters of neural net-

work to minimize the inter-task interference.

The key to obtaining a balanced stability-plasticity trade-

off is to acquire the importance of weights for each task.

This information can then be used to prioritize stability by

penalizing changes in parameters crucial to previous tasks

while allowing for plasticity in other parameters. The ex-

isting CL methods mentioned above determine the impor-

tance of weights for different tasks in two different ways:

explicitly or implicitly. The explicit approach, such as

parameter isolation-based methods [33, 32, 45], learns a
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task-specific mask on parameters (or neurons) by introduc-

ing a sparsity loss. On the other hand, the implicit ap-

proach, like replay-based [43, 47, 30] and regularization-

based [28, 23, 2] methods, utilizes memorized old data or

regularization terms on objective functions to acquire the

importance of weights. However, both approaches assume

that the importance of weights for each task is unknown

prior to data exposure.

In contrast to these approaches, we propose a novel

method to pre-assign the weight importance for each task.

Our inspiration comes from an easily overlooked character-

istic of dynamic networks [16, 58, 20]. Dynamic networks

were originally proposed for efficiency, enabling them to

adapt their structures or parameters during inference. For

example, they can allocate computations on demand by se-

lectively activating model components (e.g., layers [54, 22,

4], channels [59, 21, 13], or sub-networks [29, 14, 25])

while avoiding performance degradation. The hidden char-

acteristic under this property of dynamic networks is weight

importance ranking. By splitting the network into small

modules with different parameters, weight importance can

be assigned by defining the composition of the sub-network

in one dynamic network. For instance, the parameters in-

volved in the smallest sub-network will be the most impor-

tant ones for the current task. Note that sub-networks of

different sizes can be mutually inclusive. This allows us

to assign different importance to all parameters in the net-

work even before touching training data. The final realiza-

tion of this pre-assignment of weight importance is achieved

through the optimization of the whole dynamic network.

Once we set the weight importance for one task, the next

problem is how to use this information to achieve a bal-

ance between stability and plasticity in the continual learn-

ing of sequential tasks. Following the principle mentioned

above, we need to re-order the weight importance before

starting the next task. As shown in Figure 1, we propose a

“scrolling” operation applied to the modules, which will as-

sign the least importance to the parameters for the next task,

which are the most important ones for the current task, and

vice versa. Thus, we realize dynamic weight importance in

sequential tasks. We name this novel and simple method

Scrollnet. To the best of our knowledge, this is the first

work that explores weight importance pre-assignment prior

to data exposure in a continual learning setting. Addition-

ally, we emphasize that ScrollNet is orthogonal to various

CL approaches, such as regularization-based and replay-

based methods.

In summary, the main contributions of this work are as

follows:

• We propose ScrollNet, a novel continual learning

method that can pre-assign the weight importance be-

fore starting a new task. Along with the proposed

“Scrolling” strategy, ScrollNet can achieve dynamic

weight importance and explicitly strike a balance be-

tween stability and plasticity.

• Our method is orthogonal to various continual learning

approaches, and it improves performance when com-

bined with them.

• We conduct extensive experiments on CIFAR100 and

TinyImageNet. The experimental results demonstrate

the effectiveness of our proposed method.

2. Related work

2.1. Continual learning

Continual learning [9, 34] methods can be loosely cat-

egorized into three groups of approaches: regularization-

based, replay-based and parameter-isolation methods. We

provide a brief overview of each approach below.

Regularization-based methods. The majority of these

approaches add a regularization term to the loss function

which impedes changes to the parameters deemed rele-

vant to previous tasks. The difference depends on how

to estimate relevance, and these methods can be further

divided into data-focused [28] and prior-focused [23, 5,

2]. Data-focused methods use knowledge distillation from

previously-learned models [30, 56, 28]. Prior-focused

methods [23, 61] estimate the importance of model param-

eters as a prior for the new model. In recent times, there

have been several notable studies that specifically concen-

trate on enforcing weight updates that lie within the null

space of the feature covariance [52, 47]. In this paper, we

apply our method over several regularization-based meth-

ods (including EWC [23], MAS [2] and LwF [28]) to verify

our methods.

Replay-based methods. These approaches usually use

memory and replay/rehearsal mechanism to recall a small

episodic memory of previous tasks while training new tasks

thus reduce the loss in the previous tasks. There are two

main strategies: exemplar replay [5, 43, 47, 7, 6] and

pseudo-replay [46, 56, 17, 30]. The former stores a few

training samples (called exemplars) from previous tasks.

The latter uses generative models learned from previous

data distributions to synthesize data. In this paper, we also

verify the effectiveness of our method combined with sev-

eral exemplar replay-based methods, namely iCaRL [42],

BiC [57], LUCIR [19], etc.

Parameter isolation-based methods. This branch tries to

learn a sub-network for each task in a shared network [38].

In particular, Piggyback/PackNet [32, 33] iteratively as-

signs parameter subsets to consecutive tasks by constitut-

ing binary masks. SupSup [55] also finds masks in or-

der to assign different subsets of the weights for different

tasks. HAT [45] incorporates task-specific embeddings for
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attention masking. Progressive Neural Network [44] allo-

cates a sub-network for each task in advance and progres-

sively concatenates previous sub-networks while freezing

parameters allocated to previous tasks. [51] also proposes

task-conditional hypernetworks for continual learning. [36]

proposes nonoverlapping sets of units being active for each

task. CCGN [1] proposes task-specific convolutional filter

selection for continual learning, but they require a signif-

icantly large number of parameters to represent the masks

for each task. This type of methods is also developed for the

case where no forgetting is allowed in TFM [35]. In gen-

eral, this branch is always restricted to the task-aware (task

incremental) setting. Thus, they are more suitable for learn-

ing a long sequence of tasks when a task oracle is present.

Similar to parameter isolation-based approaches, our

proposed method also segments the entire network into dis-

tinct sub-networks by employing a dynamic neural network

architecture. However, in contrast to parameter isolation

methods, our approach entails the direct and manual speci-

fication of “masks” for sub-networks, thereby explicitly as-

signing weight importance to each task even before touch-

ing the training data. Moreover, our method extends its

applicability to the more general class-incremental learn-

ing setup. Importantly, our approach remains independent

of regularization-based and replay-based approaches, estab-

lishing its orthogonality to those methods.

2.2. Dynamic networks

Different from the “dynamic networks (with sub-

networks)” mentioned in Section. 2.1, which are specifi-

cally designed in various parameter isolation-based meth-

ods for overcoming catastrophic forgetting in continual

learning, the related works we will briefly review here are

about those that were originally proposed for inference effi-

ciency. As opposed to static networks, dynamic networks

can modify their structure or parameters and control the

computation cost during inference in advance. Depend-

ing on the different types of “dynamic” in the architecture,

the dynamic network methods can be grouped as dynamic

depth, dynamic width, and dynamic routing.

Dynamic depth. The architecture with dynamic depth

can reduce redundant computation by performing inference

with variable depth. The realization approaches include

early exiting [48, 4, 20, 22, 54], which involves execut-

ing only shallow layers for “easy” samples and avoiding

the expensive computation cost of full layers, or layer skip-

ping [15, 53, 49], which selectively skips intermediate lay-

ers depending on the complexity of input samples.

Dynamic width. By performing inference with variable

width and comparing it with dynamic depth, the dynamic

width architecture exhibits finer-grained control over com-

putation costs. Although all layers are executed, multiple

units (e.g., channels, neurons, or branches) within those lay-

ers can be selectively activated. Various implementations of

the dynamic width architecture have been proposed, such as

skipping neurons in fully-connected layers [3, 8], skipping

branches in mixture-of-experts [21, 13], and skipping chan-

nels in CNNs [20, 59]. In this paper, we build our proposed

ScrollNet upon [59].

Dynamic routing. The aforementioned approaches adapt

the computation cost by adjusting the depth or width of

the architectures. An alternative direction involves creat-

ing diverse network forms with multiple potential infer-

ence paths and conducting dynamic routing within these

networks to adjust the computational graph for different

samples. These related methods include path selection in

multi-branch structures [40, 29] and tree-structured net-

works [25, 14].

3. Continual learning with a scrolling neural
network

In this section, we describe our proposed dynamic

network-based continual learning (CL) method, called

ScrollNet. ScrollNet can directly assign the weight impor-

tance for each task with a dynamic neural network. After

training for each task, the model will “scroll” the parame-

ter importance assignments before training for the next task,

which means reassigning the ranking of weight importance

for different tasks. We emphasize that the proposed Scroll-
Net is orthogonal to regularization-based and replay-based

CL approaches, which means it can be combined with those

methods to achieve better performance.

Problem Statement. Consider a supervised continual

learning scenario, a learner needs to solve T tasks sequen-

tially without catastrophic forgetting of old tasks. We de-

note that Dt = {Xt,Yt} is the dataset of task t, composed

of a set of input images Xt and corresponding labels Yt.

We assume a neural network f(·; θ), parameterized by the

model weights θ and a standard continual learning scenario

aims to learn a sequence of tasks by minimizing the opti-

mization problem at each step t:

argminθL (f(Xt; θ),Yt) , (1)

where L(·, ·) is a cross-entropy loss for image classifica-

tion. Dt for task t is only accessible when learning task t.
Note that replay-based continual learning approaches allow

memorizing a small portion of data from old tasks.

To assign the weight importance for each task, we firstly

split the weights θ into N non-overlapped sets: θ =
{θw1

, θw2
, ..., θwN

}. We assume the list of these weight sets

has a descending order of importance at the task t, then the

optimization problem during training will be

argminθL (f(Xt; {θw1
, θw2

, ..., θwN
}),Yt) ,

subject to I(θw1
) > I(θw2

) > .... > I(θwN
),

(2)
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where I(·) stands for the importance score. In the next sec-

tions, we describe how to realize this assignment of weights

ranking and how to reassign it in sequential tasks.

3.1. Weight importance assignment via a dynamic
network

Dynamic networks aim to adapt their structures or pa-

rameters to the input during inference, therefore enjoy fa-

vorable properties which are absent in static models, such as

efficiency, representation power, adaptiveness, etc. Rather

than pursuing these characteristics of the dynamic network,

here we leverage it to assign the ranking of weight im-

portance. Specifically, we utilize a slimmable neural net-

work [59], which comprises multiple sub-networks within

f(·; θ). To assign the desired weight ranking at the first task

as shown in Eq. 2, we can predefine N sub-networks before

training as

f1(·; θ1 = θw1
), f2(·; θ2 = θw1

∪ θw2
), ..., fN (·; θN = θ).

(3)

Finally, we can realize this pre-assigned ranking by using

the following loss during training:

Ldynamic =

N∑

n=1

L (fn(Xt; θ
n),Yt) . (4)

As we can observe from this loss function, θ1 serves as

the foundational sub-network for task t and holds the high-

est significance. On the other hand, θ2 and others, despite

carrying more parameters, primarily serve to enhance the

performance of this foundation, indicating a comparatively

lesser importance. An illustration is presented in Figure 2

(see Task 1), where red connections represent one of the

sub-networks with the most significant parameters, while

the combination of red and green connections represents an-

other sub-network with the first and second most important

parameters.

3.2. Scrolling neural network for continual learning

In the previous section, we addressed the assignment and

realization of weight importance ranking before and during

training for each task. The challenge now lies in leveraging

this knowledge to achieve a better stability-plasticity trade-

off in continual learning. As mentioned earlier, the prin-

ciple used for overcoming catastrophic forgetting is penal-

izing changes in parameters that are important for previ-

ous tasks while allowing updates to less important param-

eters. Building upon this principle, we propose a param-

eter “scrolling” approach before starting the current task.

As shown in Figure 2, we always assign the most impor-

tant parameters on the top/red connections (corresponding

to the sub-network θ1 in Eq. 4) and less important parame-

ters on the bottom connections (i.e., weight importance de-

creases from red connections to blue connections). The op-

eration of “scrolling” reassigns the less important parame-

ters from the previous task to become the most important

parameters for the current task, and vice versa for the most

important parameters from the previous task. Consider the

assignment of weight importance ranking at the first task,

as shown in Eq. 3. The weights will be scrolled accordingly

with scrolling step size S at task t as

θ1 = θw(t%N)∗S , θ
2 = θw(t%N)∗S ∪ θw(t%N)∗S+1

, ..., θN = θ.
(5)

To implement this updated assignment, the same loss func-

tion as in Eq. 4 will be utilized during training for task t.

3.3. Combination of ScrollNet and continual learn-
ing methods

To demonstrate the orthogonality of our proposed Scroll-
Net to regularization-based and replay-based continual

learning methods, we first rephrase Eq. 4 as

Ldynamic = L
(
fN (Xt; θ

N ),Yt

)
+

N−1∑

n=1

L (fn(Xt; θ
n),Yt) .

(6)

Then we can see that the first term in the loss function of

ScrollNet is a normal cross-entropy loss at each task which

encompasses the entire network (equivalent to the loss func-

tion in Eq. 1). Additionally, it incorporates a series of cross-

entropy losses applied to other sub-networks for realizing

weight ranking. Here, we present two examples showcas-

ing the combination of ScrollNet with LwF [28] and the

combination of ScrollNet with EWC [23]:

(1) Loss function of ScrollNet + LwF:

LN

(
fN (Xt; θ

N
new),Yt

)
+ λ ∗ LO

(
fN (Xt; θ

N
new), fN (Xt; θ

N
old)

)

+
N−1∑

n=1

LN (fn(Xt; θ
n
new),Yt) ,

(7)

where LN and LO represent the cross-entropy loss applied

to the output of the new task and old task for new data,

respectively. θnew and θold denote the parameters of the

current model and the frozen old model, respectively. λ is a

hyperparameter that determines the weight of regularization

strength. In our experiments, we set λ to 1.

(2) Loss function of ScrollNet + EWC:

LN

(
fN (Xt; θ

N
new),Yt

)
+

∑

i

λ

2
∗ F i(θN,i

new − θN,i
old )

2

+
N−1∑

n=1

LN (fn(Xt; θ
n
new),Yt) ,

(8)
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Figure 2. An illustration figure for our proposed ScrollNet. We use color-coded connections to represent the importance of parameters

for each task. The red connections indicate the most important parameters, the green connections represent the second most important

parameters, and the blue connections denote the third most important parameters. Before starting a new task, a “scroll” operation is

performed, which reorders the parameter importance. This reassignment ensures that the upcoming task’s most crucial parameters are

appropriately positioned at the top of the network.

where F is the Fisher information matrix and i labels each

parameter. We set λ to 5000 in our experiments.

Please see the pseudo algorithm. 1 for the summarized

optimizing procedure of our ScrollNet.

Algorithm 1 Scrolling Neural Network (ScrollNet) for CL.

Input: Sequential data {Dt}Tt=1, model weights θ
Input: Number of sub-networks N
Input: Loss function LCL of the combined CL method

Input: Set scrolling step size S � always 1 in this work

1: Randomly initialize θ
2: Equally split the model as θ = {θw1

, θw2
, ..., θwN

}
3: Initialize sub-networks as Eq. 3

4: for task t = 1, ..., T do
5: Scroll the weights in each sub-network as in Eq. 5

6: for batch bt ∼ Dt do
7: Set Total loss = 0

8: for n = 1, ..., N do
9: if n == N then

10: Calc L = L
(
fN (Xt; θ

N ),Yt

)
+ LCL

11: Total loss += L
12: else
13: Calc L = L (fn(Xt; θ

n),Yt)
14: Total loss += L
15: end if
16: end for
17: Backpropagation with Total loss

18: Update model weights θ
19: end for
20: end for

4. Experiments

4.1. Experimental settings

Datasets. We evaluate performance on two datasets: CI-

FAR100 [26], and TinyImageNet [27]. CIFAR100 contains

N
um

be
r o

f i
np

ut
 c

ha
nn

el
s:

 6

Number of output channels: 6

Scroll
Convolutional Kernel

Sub-networks

Figure 3. Illustration for one scrolling convolutional layer with

three switchable widths as 2, 4, and 6.

100 classes, each with 600 images, among which 500 im-

ages are for training and the other 100 are for test usage.

Tiny ImageNet contains 100,000 images of 200 classes (500

for each class) downsized to 64×64 colored images. Each

class has 500 training images, 50 validation images and 50

test images. In our experiments, we consider different num-

bers of dataset splits (e.g., 5 splits, 10 splits, and 20 splits) to

verify the effectiveness of our proposed method on various

lengths of sequential tasks.

Architecture. In our experiments, our proposed Scroll-
Net is built on ResNet18 [18], a commonly used archi-

tecture in the literature for CIFAR100 and TinyImageNet

datasets. Firstly, following [59], we transform ResNet18

into a channel-wise dynamic network by incorporating

slimmable convolutional layers, slimmable FC layers (used

as classification heads), and switchable batch normaliza-

tion layers instead of normal convolutional layers, FC lay-

ers, and standard batch normalization layers. In our experi-

ments, we build the slimmable ResNet18 with two different

numbers of sub-networks, 2 and 4. Subsequently, we imple-

ment scrolling for the slimmable convolutional layers and

the slimmable FC heads, moving them in a predetermined

direction when starting a new task, as depicted in Figure 3.
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Please see Figure 2 for the scrolling FC layer. Note that

we do not apply scrolling to switchable batch normalization

layers since satisfactory performance was observed with a

fixed order in sequential tasks. Finally, we implement two

variants of our proposed method, namely ScrollNet-2 and

ScrollNet-4, which involve 2 and 4 sub-networks (or can

be viewed as the number of model splits) in the slimmable

ResNet18, respectively. In this paper, we set the step size

for scrolling constantly as S = 1.

Baselines. Besides the standard fine-tuning, to demon-

strate the efficacy of the proposed ScrollNet mechanism,

we integrate it with different continual learning approaches.

Specifically, we combine ScrollNet with three exemplar-

free methods such as EWC [23], MAS [2], and LwF [28].

Additionally, we also incorporate ScrollNet with three

exemplar-based frameworks including iCaRL [42], LU-

CIR [19], and BiC [57]. We report average accuracy at

each task on both task-aware and task-agnostic settings.

Note that the implementation of all these baseline methods

is from the CL framework1 proposed in [34].

Training details. We train the model for 200 epochs per

task for different numbers of splits. The learning rate is

initialized to 0.1 and is decayed by a rate of 0.1 at the 80th

and 120th epochs. We use an SGD optimizer with a batch

size of 64. For the exemplar-based methods, we utilize 2000

exemplars selected with herding [42], constituting a fixed

memory.

4.2. Main results

In Table 1 and Table 2, we present the average accuracy

after the last task for all baseline methods, as well as their

combinations with our proposed ScrollNet, on CIFAR100

and TinyImageNet, respectively. Additionally, Figure 4 and

Figure 5 display the curves of average accuracies at each

task on CIFAR100, representing the task-agnostic and task-

aware settings, respectively.

From the tables, we observe that ScrollNet, when com-

bined with various CL methods, outperforms most of their

corresponding baselines in the task-agnostic setting across

all different dataset splits, except for only LUCIR on Tiny-

ImageNet with 5 splits. Notably, ScrollNet demonstrates

particularly promising results when paired with parame-

ter regularization-based CL methods, such as EWC and

MAS. For instance, when combined with EWC, the high-

est improvements reach up to 9.40% (5 splits), 8.47% (10

splits), and 5.61% (20 splits) on CIFAR100, as well as

2.67% (5 splits), 5.86% (10 splits), and 5.36%(20 splits)

on TinyImageNet. It is worth mentioning that while EWC

was not originally proposed for class incremental learning,

the improvements observed in the task incremental learn-

ing setting (task-aware) are even higher, reaching 10.04%

(5 splits), 12.40% (10 splits), and 16.64% (20 splits) on

1https://github.com/mmasana/FACIL

CIFAR100, and 6.70% (5 splits), 13.16% (10 splits), and

19.73% on TinyImageNet. Those results verify the or-

thogonality of our proposed method to regularization-based

and replay-based CL methods, especially to the parame-

ter regularization-based methods. Furthermore, we observe

that the performance improvements brought by ScrollNet in

the task-agnostic setting are comparatively less pronounced

on TinyImageNet than on CIFAR100. This could be at-

tributed to the limited capacity of ResNet18 for handling

larger datasets, thereby constraining the effectiveness of

ScrollNet.
Regarding the task-aware setting, our method also out-

performs most of the baselines, except for LwF on CI-

FAR100 with 10 splits, BiC on TinyImageNet with 20

splits, and LUCIR on TinyImageNet with 5/10 splits. One

possible reason for this is that the accuracies of these base-

lines in the task-aware setting are already quite high, leav-

ing limited room for further improvement. Additionally,

we find that the benefits of combining ScrollNet and LwF

are not evident in other cases within the task-aware setting.

This suggests that the advantage of incorporating ScrollNet
with LwF in terms of cross-task representation learning may

diminish in the task-aware setting. As for BiC and LU-

CIR, similar to the previous discussion, the limited capacity

of ResNet18 on TinyImageNet also constrains the perfor-

mance of our method.

Comparing the performance of the two variants of Scroll-
Net, we find that ScrollNet-4 consistently outperforms

ScrollNet-2 in most cases. The reason behind this is that

more model splitting corresponds to a finer weight rank-

ing, providing a more precise “scrolling” mechanism that

achieves a better stability-plasticity tradeoff. This holds par-

ticularly true for longer sequences of tasks, such as 20 splits,

where ScrollNet with more model splitting yields superior

results.

5. Discussion and future works
We believe that our work presents a novel direction for

the continual learning community, as it introduces the pre-

assignment of weight importance ranking before learning

each task using a dynamic network, and provides an ex-

plicit way to strike a balance between stability and plastic-

ity. The experiments have demonstrated the effectiveness of

our proposed method. However, it is important to note that

in this work, we have just implemented a simple dynamic

network, i.e., considering only channel-wise model splitting

and up to four splits throughout the network. Furthermore,

our strategy (i.e., “scrolling”) to leverage weight ranking

knowledge for improving the performance of various CL

methods is straightforward. Moving forward, we plan to

explore more refined splitting techniques borrowing from

the field of dynamic networks, and investigate alternative

strategies for utilizing this prior knowledge. For example,
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Method Exemplar Task-agnostic Task-aware
5 splits 10 splits 20 splits 5 splits 10 splits 20 splits

FT No 25.47± 0.35 15.17± 1.06 7.27± 0.67 54.23± 1.46 49.97± 2.35 42.67± 4.15

ScrollNet-2 No 28.70± 0.56 16.60± 0.26 8.13± 0.31 58.17± 1.00 53.00± 1.56 49.70± 1.84

ScrollNet-4 No 31.67± 1.59 18.66± 0.49 9.33± 0.95 60.47± 1.53 56.60± 1.35 55.27± 2.11
LwF No 43.80± 0.35 30.46± 1.74 17.90± 0.62 78.83± 0.76 80.97± 0.91 80.30± 0.70

ScrollNet-2 No 45.67± 0.67 30.63± 2.76 17.93± 1.27 79.77± 0.72 80.40± 0.85 79.47± 0.90

ScrollNet-4 No 46.70± 0.60 32.37± 0.76 19.60± 0.56 79.30± 0.72 79.93± 0.96 81.47± 1.06
EWC No 31.57± 0.72 19.56± 0.65 9.80± 1.40 61.43± 0.64 57.47± 2.54 51.33± 1.70

ScrollNet-2 No 39.47± 0.76 26.57± 1.27 13.23± 1.27 69.03± 0.40 67.00± 2.57 62.80± 0.88

ScrollNet-4 No 40.97± 0.75 28.03± 1.88 15.41± 1.85 71.47± 0.85 69.87± 2.15 67.97± 1.63
MAS No 35.23± 0.49 21.50± 1.48 9.70± 0.98 65.03± 0.21 61.53± 2.65 55.20± 2.26

ScrollNet-2 No 39.83± 0.90 25.93± 2.21 13.80± 1.85 69.03± 0.31 68.33± 2.79 64.73± 0.65

ScrollNet-4 No 40.04± 1.11 27.40± 0.52 15.50± 1.32 70.40± 1.14 69.83± 1.06 69.97± 1.02
iCaRL 2000 53.76± 0.55 42.83± 2.38 32.57± 1.80 77.07± 0.59 78.97± 2.15 81.10± 1.39

ScrollNet-2 2000 54.90± 0.46 45.30± 2.21 35.93± 1.60 77.87± 0.61 80.73± 1.75 82.97± 1.01

ScrollNet-4 2000 54.80± 0.74 44.87± 1.17 37.03± 1.53 77.93± 0.35 81.17± 1.04 83.40± 1.56
BiC 2000 58.20± 0.62 49.26± 1.05 37.70± 1.51 80.60± 0.26 83.43± 1.17 85.40± 0.62

ScrollNet-2 2000 58.50± 0.36 49.67± 1.44 39.00± 1.44 81.27± 0.42 83.60± 1.45 85.97± 0.68
ScrollNet-4 2000 58.77± 0.87 49.72± 1.73 38.64± 0.47 81.00± 0.47 83.47± 1.50 85.73± 0.57

LUCIR 2000 54.80± 0.82 41.97± 1.80 34.23± 0.51 81.03± 0.15 83.23± 1.50 85.37± 0.76

ScrollNet-2 2000 54.50± 0.78 42.90± 1.41 34.83± 1.76 80.87± 0.57 83.43± 1.29 85.17± 1.07

ScrollNet-4 2000 55.53± 0.82 45.46± 0.58 37.23± 1.00 81.60± 0.69 84.13± 1.10 86.10± 1.05

Table 1. Average accuracy after the last task for various continual learning methods and their combination with ScrollNet-N (N is the

number of sub-networks). We run experiments three times with random class orders on CIFAR100 and report averages± deviations.

Method Exemplar Task-agnostic Task-aware
5 splits 10 splits 20 splits 5 splits 10 splits 20 splits

FT No 18.60± 0.46 10.70± 0.30 5.80± 0.62 37.20± 1.13 31.93± 1.62 28.67± 1.18

ScrollNet-2 No 20.77± 1.21 12.60± 0.61 6.97± 0.68 41.83± 1.50 38.67± 1.25 35.83± 1.50

ScrollNet-4 No 20.50± 0.56 12.37± 0.61 7.63± 0.81 43.60± 0.75 40.03± 0.70 40.07± 1.47
LwF No 34.67± 0.76 24.23± 1.66 15.83± 1.22 65.87± 0.29 67.93± 1.10 68.03± 1.12

ScrollNet-2 No 35.76± 0.84 24.80± 1.74 15.33± 1.38 66.40± 0.61 68.03± 0.90 67.27± 1.23

ScrollNet-4 No 36.47± 0.93 24.88± 1.17 18.33± 1.40 65.70± 0.00 66.97± 1.12 72.13± 0.56
EWC No 29.37± 0.90 19.37± 1.08 9.87± 0.42 54.03± 1.70 51.07± 0.38 44.27± 1.21

ScrollNet-2 No 32.00± 0.10 24.70± 0.98 15.17± 0.21 60.73± 0.83 61.27± 0.64 60.40± 2.10

ScrollNet-4 No 30.87± 1.46 25.23± 0.38 17.23± 1.02 59.70± 2.04 64.23± 0.40 64.00± 1.68
MAS No 27.57± 0.90 16.43± 0.64 9.40± 0.35 51.57± 1.51 47.70± 0.46 45.40± 1.90

ScrollNet-2 No 31.70± 0.36 21.70± 0.62 12.77± 0.42 58.03± 0.67 57.57± 0.60 55.63± 1.63

ScrollNet-4 No 30.57± 1.40 24.30± 0.56 15.63± 0.86 58.30± 2.00 60.67± 0.42 62.03± 1.89
iCaRL 2000 37.10± 0.70 31.50± 0.78 21.13± 0.68 60.57± 0.93 67.50± 1.21 68.57± 1.01

ScrollNet-2 2000 39.40± 0.87 32.6± 1.06 23.17± 1.45 61.80± 0.70 68.37± 1.46 70.3± 1.65

ScrollNet-4 2000 38.93± 0.91 33.97± 1.11 25.33± 1.24 61.63± 0.67 69.10± 1.04 71.17± 1.10
BiC 2000 43.70± 0.72 36.03± 0.50 26.03± 1.65 66.73± 0.92 71.80± 1.13 76.03± 1.12

ScrollNet-2 2000 45.00± 0.40 36.93± 0.55 26.87± 1.10 68.17± 0.50 72.27± 0.83 75.73± 0.66

ScrollNet-4 2000 45.10± 1.05 37.17± 0.29 27.30± 1.21 67.93± 0.15 72.33± 0.96 75.50± 0.82

LUCIR 2000 36.97± 1.06 24.67± 1.00 17.73± 1.46 66.70± 0.92 70.30± 0.44 73.33± 0.40

ScrollNet-2 2000 35.23± 0.29 23.90± 1.71 16.83± 1.25 65.53± 0.78 68.93± 1.50 72.33± 0.51

ScrollNet-4 2000 34.43± 0.67 24.77± 1.50 18.17± 0.81 66.17± 0.60 70.27± 0.85 74.53± 0.60

Table 2. Average accuracy after the last task for various continual learning methods and their combination with ScrollNet-N (N is the

number of sub-networks). We run experiments three times with random class orders on TinyImageNet and report averages± deviations.
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Figure 4. Results on CIFAR100 dataset (task-agnostic). We report the average accuracies of three runs after each task, each with a random

class order.

Figure 5. Results on CIFAR100 dataset (task-aware). We report the average accuracies of three runs after each task, each with a random

class order.

one potential approach could involve calculating the step

size of ‘scrolling’ based on the correlation between each

task. Given that the performance improvement on TinyIm-

ageNet is not particularly evident, we are also planning to

explore the effectiveness of our method when using larger

models, such as ResNet101 and ViTs [11].

6. Conclusion

In this paper, we introduce ScrollNet, a scrolling neu-

ral network designed for continual learning. ScrollNet

functions as a dynamic network that assigns the ranking

of weight importance for each task before data exposure,

thereby achieving a more favorable tradeoff between sta-

bility and plasticity during sequential task learning by ad-

justing this ranking for different tasks. Furthermore, we

demonstrate that ScrollNet can be combined with various

continual learning methods, including regularization-based

and replay-based approaches. We validate the effectiveness

of our proposed method through experiments conducted on

CIFAR100 and TinyImagenet datasets.

7. Limitation
The training time will increase when combined with our

proposed ScrollNet due to multiple forward passes with

different sub-networks during training. This is especially

true when ScrollNet has a larger number of model split-

tings. However, during inference, the computational cost

of combining ScrollNet will remain the same because only

the whole model will be executed.
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Podolak, Jacek Tabor, Marek Śmieja, and Tomasz Trzcinski.

Zero time waste: Recycling predictions in early exit neural

networks. Advances in Neural Information Processing Sys-
tems, 34:2516–2528, 2021.

[55] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu,

Aniruddha Kembhavi, Mohammad Rastegari, Jason Yosin-

ski, and Ali Farhadi. Supermasks in superposition. Advances
in Neural Information Processing Systems, 33:15173–15184,

2020.

[56] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Wei-

jer, Bogdan Raducanu, et al. Memory replay gans: Learn-

3354



ing to generate new categories without forgetting. NeurIPS,

31:5962–5972, 2018.

[57] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-

cremental learning. In CVPR, pages 374–382, 2019.

[58] Fei Yang, Luis Herranz, Yongmei Cheng, and Mikhail G

Mozerov. Slimmable compressive autoencoders for practical

neural image compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 4998–5007, 2021.

[59] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and

Thomas Huang. Slimmable neural networks. In Interna-
tional Conference on Learning Representations, 2018.

[60] Lu Yu, Xialei Liu, and Joost Van de Weijer. Self-training

for class-incremental semantic segmentation. IEEE Trans-
actions on Neural Networks and Learning Systems, 2022.

[61] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. pages 3987–3995.

PMLR, 2017.

3355


