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This document describes our experimental procedure in
detail and provides more results.

1. Experimental details

We test the method in a continual manner on every
benchmark, which means that the methods continually
adapt the models without the reset to the source state in be-
tween the domains, unless it is a part of a tested method, as
proposed in [8].

1.1. SHIFT-C benchmark details

The SHIFT-C benchmark is created using the SHIFT
dataset [5]. The dataset consists of multiple types of au-
tonomous driving data from the CARLA Simulator [1].
We used RGB images from the front view of a car,
discrete domain shifts, and bounding box annotations.
More specifically, we download the required data with the
script from SHIFT’s website https://www.vis.xyz/
shift/, using the following command:

py thon download . py −−view ” f r o n t ” \
−−group ” [ img , d e t 2 d ] ” \
−− s p l i t ” [ t r a i n , v a l ] ” \
−− f r a m e r a t e ” images ” \
−− s h i f t ” d i s c r e t e ” TARGET DIR

To load the data for experiments, we utilized shift-
dev repository: https://github.com/SysCV/
shift-dev.

Following the CLAD-C benchmark [6], we create an im-
age classification task by cutting out the bounding box an-
notations and using each of them as a separate data sample.
Bounding boxes with fewer than 1024 pixels are discarded.
We pad the images by their shortest axis (modify the aspect
ratio to 1:1) and resize them to 32x32. Bounding boxes in
the dataset are categorized into six classes, and so are the
created images. Example images are displayed in Figure 1.
We present a class distribution in Figure 2.

We distinguish between domains by the course anno-
tations of time of day and weather. The source model is
trained on images from train split, taken at daytime in clear
weather. The TTA is also tested on data from the train split,
but from different weather conditions and times of the day.
Details about the size of each domain can be found in Ta-
ble 1.

1.2. Compared TTA methods implementation de-
tails

Implementations of the compared methods were taken
from their official code repositories. We use all hyper-
parameters and optimizers suggested by the papers or found
in the code. We follow the standard model architectures
used in TTA experiments and use WideResnet28 for CI-
FAR10C and ResNet50 for CLAD-C and SHIFT-C. More-
over, since we use a smaller batch size (BS) of 10 and
benchmarks that have not been used before in TTA, we
search for the optimal learning rate (LR) for each method.
We focus on lowering the LR, considering the decreased
batch size. Additionally, we search for the ϵ hyperparame-
ter of EATA to correctly reject samples for adaptation. The
results of the parameter search can be found in Table 2. The
details and parameters used for each method are described
below.

TENT [7] We use Adam optimizer with LR = 0.00003125
for every tested dataset. In the original paper, TENT uses
LR = 0.001 for all the datasets except ImageNet, but it per-
formed worse with this value on our setup.

CoTTA [8] Adam optimizer with LR = 0.00025 is used
for every tested benchmark. The original implementation
set LR to 0.001, but with an adjusted value, it achieved bet-
ter results. We follow the suggestions for other hyperparam-
eter values given by the authors. The restoration probabil-
ity p is set to 0.01, the smoothing factor of the exponential
moving average of teacher weights α is equal to 0.999, and

https://www.vis.xyz/shift/
https://www.vis.xyz/shift/
https://github.com/SysCV/shift-dev
https://github.com/SysCV/shift-dev


Figure 1. Example images sourced from various domains within the SHIFT-C benchmark.

Table 1. The number of samples in each domain in SHIFT-C benchmark
Domain nr TIme of Day Weather Number of images
Source data

daytime

clean 57039
1 cloudy 41253
2 overcast 20497
3 rainy 59457
4 foggy 38590
5

dawn/dusk

clear 29543
6 cloudy 19985
7 overcast 9901
8 rainy 26677
9 foggy 20258

10

night

clear 28639
11 cloudy 18068
12 overcast 9471
13 rainy 32864
14 foggy 25464

Sum 437706
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Figure 2. SHIFT-C benchmark class distribution.



the confidence threshold for applying augmentations pth is
set to 0.92.

EATA [2] We use the SGD optimizer with the momentum
of 0.9 and LR of 0.00025 for CIFAR10C and CLAD-C, and
0.00003125 for SHIFT-C. The original EATA paper uses an
LR value of 0.005/0.00025 for CIFAR10C/ImageNet, but
they used BS = 64. After the search for the optimal ϵ pa-
rameter value for filtering redundant samples, we set it to
0.4/0.05/0.6 for CIFAR10C/CLAD-C/SHIFT. The authors
used ϵ equal to 0.4/0.05 for CIFAR10C/ImageNet. The en-
tropy constant E0 is set to the standard value of 0.4× lnC,
where C was the number of classes, following the original
paper and [3]. The trade-off parameter β is equal to 1, and
2000 samples are used to calculate the fisher importance of
model weights as for the CIFAR10 dataset in the original
paper.

SAR [3] SGD optimizer is used with the momentum of
0.9 and LR = 0.001 for CIFAR10C, and LR = 0.00025 for
CLAD-C and SHIFT-C. It almost aligns with the authors’
choice since, in original experiments, they used a learning
rate equal to 0.00025/0.001 for ResNet/Vit models. The pa-
rameter E0 is set to 0.4× lnC, as in the paper, similarly
to EATA. We follow the authors’ choice of a constant reset
threshold value e0 of 0.2, and a moving average factor equal
to 0.9. The radius parameter ρ is set to the default value of
0.05.

AR-TTA (Ours) We use SGD optimizer with momen-
tum of 0.9 and LR of 0.001 for every dataset. The scale
hyper-parameter γ is set to 0.1 for CLAD-C, and 10 for CI-
FAR10C and SHIFT-C. α value for weighting the exponen-
tial moving average of β is equal to 0.2. We set the initial
β value to 0.1. The ψ parameter used for Beta distribution
to sample λ for mixup is equal to the standard value of 0.4.
We store 2000 of exemplars from source data for memory
replay.

2. Proposed AR-TTA method analysis

The γ is a scale parameter of the distance between dis-
tributions D(ϕS , ϕTt ). It determines the magnitude of the
calculated values of β, which is used for linear interpolation
between the saved source batch normalization (BN) statis-
tics ϕS and the BN statistics calculated from the current
batch ϕTt . The higher the value of γ, the higher the val-
ues of β tend to be. At the same time, the higher the β
values, the more influence BN statistics from current batch
have on interpolation and calculation of the finally used
BN statistics. In Figure 3 we show the relationship be-
tween γ parameter value and mean accuracy of our AR-TTA

method for CIFAR10-to-CIFAR10C and CLAD-C bench-
marks. We can see the contradicting trend between the two
benchmarks. This suggests that the discrepancy in the data
distribution between the source domain and the estimated
distribution for each test data batch is more prominent in CI-
FAR10C compared to CLAD-C. This is in agreement with
the results of the BN stats adapt [4] baseline method. BN
stats adapt discards the BN statistics from the source data.
Its performance was significantly better on CIFAR10C and
worse on CLAD-C, compared to the fixed source model.

Figure 3. The relationship between mean classification accuracy
(%) and the value of parameter γ for CIFAR10C and CLAD-C
benchmarks.

3. Additional results
We present a batch-wise accuracy plots for CIFAR10C

benchmark in Figure 6 and SHIFT-C benchmark in Fig-
ure 5.



Table 2. Mean classification accuracy (%) for CIFAR10C, CLAD-C, and SHIFT-C continual test-time adaptation task for compared state-
of-the-art methods with different learning rates and EATA’s ϵ parameter.

Method learning rate ϵ Mean CIFAR10C Mean CLAD-C Mean SHIFT-C

CoTTA [8]
0.001 - 49.3 71.5 74.3

0.00025 - 75.7 71.8 78.6
0.00003125 - 74.5 71.8 76.2

TENT-continual [7]
0.001 - 24.3 64.4 63.4

0.00025 - 72.3 71.0 75.3
0.00003125 - 76.7 71.1 82.7

SAR [3]
0.001 - 75.2 70.6 86.0

0.00025 - 75.1 70.6 86.0
0.00003125 - 75.0 70.6 86.0

EATA [2]

0.001 0.60 68.6 70.1 80.4
0.001 0.40 76.3 70.6 80.4
0.001 0.10 75.0 70.6 86.0
0.001 0.05 74.9 70.6 86.0

0.00025 0.60 77.8 70.5 85.6
0.00025 0.40 78.2 70.6 86.1
0.00025 0.10 74.9 70.6 86.0
0.00025 0.05 74.9 70.7 86.0

0.00003125 0.60 76.5 70.6 86.1
0.00003125 0.40 76.5 70.6 86.0
0.00003125 0.10 74.9 70.6 86.0
0.00003125 0.05 74.9 70.6 86.0
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Figure 4. Batch-wise classification accuracy (%) averaged in a window of 100 batches on CLAD-C benchmark for the chosen methods
continually adapted to the sequences of data. The ticks on the x-axis symbolize the beginning of the next sequence and, at the same time,
a different domain. The window to calculate the average values is cleared in between the sequences. Best viewed in color.
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Figure 5. Batch-wise classification accuracy (%) averaged in a window of 500 batches on SHIFT-C benchmark for the chosen methods
continually adapted to the sequences of data. The ticks on the x-axis symbolize the beginning of the next sequence and, at the same time,
a different domain. The window to calculate the average values is cleared in between the sequences. Best viewed in color.
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Figure 6. Batch-wise classification accuracy (%) averaged in a window of 500 batches on CIFAR10C benchmark for the chosen methods
continually adapted to the sequences of data. The ticks on the x-axis symbolize the beginning of the next sequence and, at the same time,
a different domain. The window to calculate the average values is cleared in between the sequences. Best viewed in color.
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McDonagh, Eduardo Pérez-Pellitero, Matthias De Lange, and
Tinne Tuytelaars. Clad: A realistic continual learning bench-
mark for autonomous driving. Neural Networks, 161:659–
669, 2023.

[7] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

[8] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Con-
tinual test-time domain adaptation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pages 7191–7201.
IEEE, 2022.


