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Figure 1: Saliency maps extracted from a ResNet50 on CUB200 and CIFAR10 images. The colors indicate pixel impor-

tance predicted by different methods (blue=low; red=high). We show two sample data transformations: FlipLR (geometric

transformation) and Equalize (photometric transformation). GradCAM [22] is consistently focuses on the chest of the bird,

despite the left-right flip. Even with image equalization, GradCAM emphasizes the nose of the dog. While other methods

appear to do well on FlipLR, they struggle with Equalize. The proposed COnsistency-SEnsitivity (COSE) metric quantifies

the equivariant and invariant properties of visual model explanations using simple data augmentations.

Abstract

We present a set of metrics that utilize vision priors
to effectively assess the performance of saliency meth-
ods on image classification tasks. To understand behav-
ior in deep learning models, many methods provide vi-
sual saliency maps emphasizing image regions that most
contribute to a model prediction. However, there is lim-
ited work on analyzing the reliability of saliency meth-
ods in explaining model decisions. We propose the metric
COnsistency-SEnsitivity (COSE) that quantifies the equiv-

*Equal contribution

ariant and invariant properties of visual model explana-
tions using simple data augmentations. Through our met-
rics, we show that although saliency methods are thought to
be architecture-independent, most methods could better ex-
plain transformer-based models over convolutional-based
models. In addition, GradCAM was found to outperform
other methods in terms of COSE but was shown to have lim-
itations such as lack of variability for fine-grained datasets.
The duality between consistency and sensitivity allow the
analysis of saliency methods from different angles. Ulti-
mately, we find that it is important to balance these two met-
rics for a saliency map to faithfully show model behavior.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Given a function f operating on images x ∈ R

m×n×c, a

saliency map M ∈ R
m×n indicates the relative importance

of each pixel in the image x in making the prediction f(x).
Saliency maps have been widely used to understand (possi-

bly black-box) function behavior, especially with deep net-

works. They are important for humans to establish trust in

predictions through transparency, and have been applied in

high-stakes decisions such as medical diagnoses [24] and

bias identification [22]. Given saliency techniques are in-

extricably linked to human understanding, saliency maps

should fulfill certain properties based on our understanding

of the visual system in the world around us.

We propose consistency and sensitivity metrics that mea-

sure two complementary properties of saliency maps. Con-

sistency refers to the property that saliency maps should re-

main unchanged when an input is transformed in a way that

the model predictions don’t change. For example, when an

input is reflected or translated by a small amount, the corre-

sponding saliency maps should also undergo the same ge-

ometric transformation, as we do not expect the class pre-

dictions to change. Similarly, when the input undergoes a

photometric transformation (e.g., change in pixel intensi-

ties or blurring), we expect saliency maps to remain iden-

tical. In short, consistency captures the degree to which

saliency maps are equivariant and invariant to transforma-

tions that don’t affect model predictions. Sensitivity refers

to the property that saliency maps should change when the

model produces a different output. This difference in model

output could be a result of changes in the model parame-

ters (e.g., during the process of training the model) or suf-

ficiently large changes in input. Thus, the model’s explana-

tions must change for it to produce a different output. Prior

knowledge was used to identify transformations that should

result in equivariance and invariance for various computer

vision tasks.

While prior work has focused on evaluating consistency

of saliency maps [12,26,31,35], we show that sensitivity is

also a key consideration and often in conflict with consis-

tency. We propose a combined metric called COSE defined

as the harmonic mean of the consistency and sensitivity.

Our work also considers natural changes to the input, and

model perturbations that occur in realistic training settings.

We develop a benchmark where we evaluate several

saliency methods [4, 13, 21–24, 29], deep network archi-

tectures [7, 9, 16, 17], pre-training procedures [3, 5, 25, 34],

and evaluate these metrics on five different datasets [11, 14,

15, 20, 28]. We find that saliency maps generally produce

more coherent explanations on transformer-based models

than convolutional-based models. GradCAM also demon-

strates better performance across the different metrics and

across the different evaluation settings when compared to

other methods. Finally, we observe common limitations

among saliency methods on balancing consistency and sen-

sitivity, and we recommend future directions for the im-

provement of saliency methods. In summary, our contri-

butions include the following:

• We propose the metrics consistency, sensitivity, and

COSE to evaluate the robustness of saliency methods to

input and model changes based on vision priors.

• We introduce an evaluation pipeline that incorporates nat-
ural image and model variations encountered by human

end users which we open source for future research.1

• We show the effectiveness of our proposed metrics to

evaluate different model architectures (with supervised

and unsupervised features) to analyze the behavior of

saliency methods across different settings.

2. Related Work
2.1. Saliency Maps

Saliency explanations generally attribute importance to

input features [1]. For images, explanations typically are

represented as saliency heatmaps, in which “important” pix-

els are highlighted. Most explainability methods either in-

volve gradient and activation summation [4, 22], input per-

turbations [21], or some combination of both [13,23,24,29].

CAM methods One popular form of saliency maps is

class activation mapping (CAM) [32], which sums activa-

tions within a layer of the network to produce heatmaps,

weighted by a value related to the output classification. We

consider two variants of CAM known as GradCAM and

GradCAM++. GradCAM weights using the average gra-

dient with respect to the desired output classification [22],

and GradCAM++ builds on this idea but uses second-order

gradients to produce explanations with improved object lo-

calization [4].

IG methods On the other hand, Integrated Gradients (IG)

linearly interpolates between a baseline input (in our case,

a black image) and the target input while summing the gra-

dient of the output along the path [24]. In a variant called

BlurIG, the path is not linear but generated by constantly

blurring the original image using the Laplacian of Gaussian

kernels [29]. Meanwhile, Guided IG follows an adaptive

path along pixels with the smallest derivative with respect

to the output [13].

Other methods We also looked at two methods unrelated

to IG and CAM. SmoothGrad averages the gradient of the

classification output with respect to noisy version of the in-

put image [23]. This method can also be combined with

other methods such as IG, but we used the method with

vanilla gradients highlighted in the paper. Meanwhile,

LIME approximates the model behavior in the neighbor-

hood of a given input using a simple linear model to gen-

erate sparse explanations [21].

1The code is available at https://github.com/cvl-umass/COSE
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2.2. Saliency Metrics

Although defining which explanations are helpful or un-

helpful can be a challenging task [1], several qualitative

characteristics for good explanations have been proposed,

including fidelity to model prediction and generalizability

across explanations [8, 24, 31]. Various quantitative met-

rics have been developed to examine these properties, but

we found these methods either required unnatural, out-of-

distribution perturbations or have focused on examples that

were not meaningful for explaining typical neural network

use cases.

Model perturbation. Some methods randomize parts or

all of the weights in a neural network and expect explana-

tions to change [1, 2], but we question whether the effects

of manual changing sections of a network on corresponding

explanations can be reliably predicted. Instead, we do this

in a less artificial way by saving checkpoints of the model

as it is being trained, ensuring we are able to produce mod-

els in the same way as a typical user might in the process of

training of fine-tuning models.

Input perturbation. Similarly, many metrics perturb in-

puts and observe how explanations change in order to mea-

sure the quality of an explanation [12, 26, 31, 35]. In all

examples we investigated, these perturbed inputs are not in

the training distribution, and we believe it is difficult to jus-

tify that explanations should change or stay the same. In

contrast, we use augmentations which are in the training

distribution to guarantee that the network should behave in

the same way as in training and thus should explain predic-

tions in the same way.

Generating ground truth explanations. Zhou et al. ran-

domizes dataset labels to coincide solely with a single

image augmentation, implying this augmentation is the

ground-truth explanation for this dataset [35]. Similarly, the

BAM dataset generates an artificial dataset by pasting im-

ages from one dataset to another and training models in such

a way that the feature importance is known [30]. Fel et al.
bootstraps networks with different test sets and anticipates

the explanations to be the same between networks which

trained on a given input and those which only encounter the

input in the test set [8]. While these methods are informa-

tive, they fail to capture the full story of a typical usage of

neural networks on a natural dataset.

Human studies. Zimmermann et al. tries to evaluate the

usefulness of visual explanations by having users predict

network activations with and without visual aids [36]. Us-

ing human studies is sensible given the explanations are

meant to improve human understanding, but can be diffi-

cult to formulate and expensive to implement. Quantitative

methods can help analyze other factors and narrow down

methods to examine more closely [33].

Similarity between explanations. Methodology for deter-

mining similarity or distance scores between two explana-

tions quantitatively is not evident a priori, and prior works

are somewhat divided between various methods including

Spearman rank correlation [8, 26], structural similarity in-

dex (SSIM) [1,2], and Pearson correlation on the histogram

of gradients for each explanation [1]. We chose in this work

to use structural similarity index because of its applicability

to images based on human perception. We explored using

Pearson correlation instead of SSIM and found similar re-

sults presented in the supplementary material.

3. Method
3.1. Problem Formulation

We focus on evaluating the performance of saliency

methods on supervised classification models trained on a

set of data points D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
where x ∈ X is an input image and y ∈ Y is the class la-

bel of the image. A model learns a function f : X → Y
that estimates ŷ from the given x, where ŷ is as close as

possible to y. A saliency method Φ tries to estimate a map

Mi ∈ [0, 1]m×n from a given input image xi ∈ R
m×n×c,

its corresponding output ŷi ∈ R
d, and the model f . More

formally, saliency maps can be represented as:

Φ(f, xi) = Mi (1)

To evaluate saliency methods, we measure changes in

Mi by varying either xi or f . The next subsections discuss

these modifications to the input and the model, and propose

measurements on saliency maps that capture their perfor-

mance and reliability.

3.1.1 Data Augmentations

The data augmentation module applies natural image trans-

formations to represent image variation observed in the

wild. To ensure these augmentations are simple, replica-

ble, and reversible, we use a subset of transformations in

TrivialWideAugment [19], which randomly applies a single

augmentation with random magnitude. Each transformation

is either a fixed magnitude (e.g. flipping the image) or uni-

formly sampled from a discrete, linearly spaced set of 61

magnitudes. We removed transformations we deemed to be

not naturally occurring, such as shearing. We define pho-

tometric transformations as those which vary the perceived

colors of the images (e.g. varying the contrast), whereas ge-

ometric transformations vary the orientation of the images

(e.g. rotation, translation). We classify geometric transfor-

mations as the set G and photometric transformations as the

set H and let T = G ∪H .

A model f is invariant to the data transformation t ∈ T
if f(xi) ≡ f(t(xi)). We define a saliency map Φ(f, xi)
as being equivalent to Φ(f, t(xi)) if it is equivariant to ge-

ometric data transformations and invariant to photometric
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Figure 2: GradCAM consistency and sensitivity to data
transformations on ResNet50/Caltech101: the top row

shows the input images, and the bottom row shows the cor-

responding saliency maps. In the reference image (a), the

model correctly classifies the original image as a flamingo.

(b) displays GradCAM’s consistency as the model correctly

classifies the transformed image (f(x) ≡ f(t(xi))) with a

similar saliency map as (a). (c) displays GradCAM’s sen-
sitivity where the model incorrectly classified the trans-

formed image as ibis (f(x) �≡ f(t(x))) and the saliency

map emphasizes differently from (a).

data transformations. In other words, for h ∈ H , we expect

Φ(f, xi) = Φ(f, h(xi)), while for g ∈ G, we reverse the

operation on the saliency maps before evaluation, meaning

we expect Φ(f, xi) = g−1(Φ(f, g(xi))).

On the other hand, data transformations that result to a

different model output f(xi) �≡ f(t(xi)) should also cor-

respond to different saliency maps Φ(f, xi) �≡ Φ(f, t(xi)).
Figure 2 shows this on a sample image using GradCAM

where consistent model behavior should result to equivalent

saliency maps, and changing model behavior should result

to different saliency maps.

3.1.2 Model Augmentations

Prior to training, models have random weights and are un-

able to classify properly. As a model learns, the underlying

weights change and adapt to the data presented. Given the

main goal of saliency maps is to clarify the behavior of the

underlying model, saliency maps should display the model

changes as it undergoes training. When the model updates

from f ′ → f , the corresponding saliency map should also

evolve Φ(f ′, xi) → Φ(f, xi).

To have realistic changes in model weights, we capture

the changing model as it is trained from the first epoch until

it reaches the final trained state. In the final state, the model

should have learned where and how to look at the images

and classify images correctly. We quantify this performance

using the test set classification accuracy. In other words, we

should see that as a model learns, the saliency maps should

reflect the increasing accuracy of this changing model.

3.2. Proposed Metrics

Structural Similarity Index Measure (SSIM) [27] is used

on the saliency maps to quantify the deviation of maps due

to variations from data and model augmentations. Equa-

tion 2 defines the similarity of two maps Mx and My using

SSIM, which lies between 0 and 1. The variable μMx
is

the pixel sample mean of Mx, σ2
Mx

is the variance of Mx,

and C1 = 0.01, C2 = 0.03 are variables to stabilize the di-

vision for small denominator values. Subsequent sections

on the proposed metrics will use this similarity measure for

comparing two output saliency maps.

SSIM(Mx,My) =

(
2μMxμMy + C1

) (
2σMx,My + C2

)
(
μ2
Mx

+ μ2
My

+ C1

)(
σ2
Mx

+ σ2
My

+ C2

)

(2)

3.2.1 Consistency

Based on the idea described in § 3.1.1, we propose the con-
sistency metric. The metric measures the robustness of

saliency maps to data augmentations. Given a model ro-

bust to a set of data augmentations, reliable saliency maps

should show equivalent explanations for the input xi and its

transformed counterpart t(xi) (Equation 3).

f(xi) ≡ f(t(xi)) =⇒ Φ(f, xi) ≡ Φ(f, t(xi)) (3)

Let (X,H)∗ be a set such that for x ∈ X and h ∈ H ,

(x, h) ∈ (X,H)∗ if and only if f(x) ≡ f(h(x)) and sim-

ilarly for (X,G)∗. We evaluate the robustness of a given

method Φ based on the similarity of the two maps and pro-

pose the following consistency metric:

consistency =
1

N

∑
(x,h)∈(X,H)∗

SSIM(Φ(f, xi),Φ(f, h(xi)))

+
1

N

∑
(x,g)∈(X,G)∗

SSIM(Φ(f, xi), g
−1(Φ(f, g(xi)))),

(4)

where N = |(X,H)∗ ∪ (X,G)∗|.

3.2.2 Sensitivity

Complementing the idea of consistency, if a model predic-

tion changes due to either a change in input (§ 3.1.1) or

a change in the model itself (§ 3.1.2), an optimal saliency

method should also reflect these changes. We call this char-

acteristic sensitivity. A saliency method should be sensitive

to the underlying changes in the model itself (Equation 5) or
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to the response of a model to an input augmentation t ∈ T
(Equation 6).

f(xi) �≡ f ′(xi) =⇒ Φ(f, xi) �≡ Φ(f ′, xi) (5)

f(xi) �≡ f(t(xi)) =⇒ Φ(f, xi) �≡ Φ(f, t(xi)) (6)

We reformulate minimizing SSIM to instead maximize

d(M1,M2) = 1−SSIM(M1,M2) to maintain a similar no-

tation as the consistency metric. Let (x, h) ∈ (X,H)′ for

x ∈ X and h ∈ H if and only if f(x) �≡ f(h(x)) and sim-

ilarly for (X,G)′. Furthermore, let (x, f ′) ∈ (X,F )′ for

x ∈ X if and only if f(x) �≡ f ′(x) for a naturally perturbed

model f ′. We propose the following sensitivity metric:

sensitivity =
1

M

∑
(x,h)∈(X,H)′

d(Φ(f, xi),Φ(f, h(xi)))

+
1

M

∑
(x,g)∈(X,G)′

d(Φ(f, xi), g
−1(Φ(f, g(xi))))

+
1

M

∑
(x,f)∈(X,F )′

d(Φ(f, xi),Φ(f
′, xi)), (7)

where M = |(X,F )′ ∪ (X,G)′ ∪ (X,H)′|.

3.2.3 COSE

Saliency methods should satisfy both consistency and sen-

sitivity. Consistency enforces saliency methods to be ro-

bust to input changes that don’t affect the model. Sensi-

tivity imposes saliency methods to reflect changes that do

affect the model. An optimal saliency map should balance

between these two metrics. Thus, we combine these into a

single metric COnsistency-SEnsitivity (COSE) using their

harmonic mean. This allows evaluation by only looking

at a single metric, enabling faster and easier estimation of

saliency method performances. To achieve a high COSE, a

method should have both high consistency and sensitivity.

COSE =
2 · sensitivity · consistency
sensitivity+ consistency

× 100% (8)

3.3. Evaluation Setup

Models. We trained eight types of models with five

datasets. The models are variations of four base models:

ResNet50 [9], ConvNext [17], ViT-B/16 [7], and Swin-T

[16] to cover convolutional-based models and transformer-

based models. Each model was trained to achieve at least

75% average accuracy on the test set across all datasets.

The settings and performances of all models trained on each

dataset are provided in the appendix. Supervised and unsu-

pervised training for each model was also considered. Mod-

els were pre-trained on ImageNet [6] using self-supervised

Figure 3: The distributions of COSE for ConvNets and
Transformers compared for all saliency methods, shown
as a violin plot. Within each violin, the thin line shows the

1.5x interquartile range, the thick line shows the interquar-

tile range, and the white dot shows the median. The shape

of the violin shows how data points are distributed. Trans-

formers outperform ConvNets on average for all methods.

learning methods DINO [3], MoCov3 [5], iBOT [34], and

SparK [25], respectively. The models were then fine-tuned

on the downstream task of image classification.

Datasets. The datasets CIFAR-10 [14], Caltech 101 [15],

Caltech-UCSD Birds (CUB200) [28], EuroSAT [11], and

Oxford 102 flowers (Oxford102) [20] were used in the eval-

uation of saliency methods on classification tasks. These

were chosen to look at the performance of saliency meth-

ods across a variety of data, ranging from fine-grained to

coarse-grained datasets.

Saliency Methods. The methods GradCAM [22], Grad-

CAM++ [4], IG [24], BlurIG [29], Guided IG [13], Smooth-

Grad [23], and LIME [21] were analyzed in this paper. Each

of these saliency methods were evaluated for all types of

models and for all datasets. The recommended parameters

from the corresponding papers of the saliency methods were

used and are provided in the appendix.

Data Transformations. We apply two sets of data transfor-

mations for images: photometric and geometric. Photomet-

ric transformations involve changes in blur, contrast, bright-

ness, equalization, smoothness, sharpness, and color. Ge-

ometric transformations consider translation, rotation, and

flipping. These were applied during training to make sure

the model is invariant to both types of transformations.

4. Results and Analysis
We present findings from running evaluations on differ-

ent saliency methods, and their performances based on our

proposed metrics consistency, sensitivity, and COSE.

4.1. Transformers have better explanations

Transformer explanations had higher COSE and sensi-
tivity for all methods. Figure 3 shows transformer model

explanations consistently outperforming those of ConvNets.
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Figure 4: Results of saliency methods on ViT-B/16 (a transformer model), ResNet50 (a convolutional model), and
Oxford102/Caltech101. We qualitatively observe the explanations for ViT-B/16 to be similar (Guided IG, SmoothGrad) or

better (BlurIG, IG, LIME, GradCAM, GradCAM++). In general, we find transformer model explanations are more coherent

than convolutional model explanations.

Table 1 supports this even further, with transformers ob-

taining a higher average COSE score than ConvNets for

every dataset and saliency method. Transformers also dis-

played higher sensitivity than ConvNets for almost every

dataset and saliency method. In terms of consistency, al-

though we observed ConvNets outperformed transformers

for CAM-based methods and CUB, the difference is neg-

ligible when looking at the overall performance. Figure 4

illustrates how explanations appear more coherent for ViT-

B/16 than ResNet50.

Transformer vs ConvNet receptive fields could explain
the difference in saliency maps. The self-attention mech-

anism of transformers doing patch-wise operations allow

for better interpretability due to the availability of a global

view of the image. ConvNets, on the other hand, use local

operators that have limited receptive fields, restricting the

amount of information that can be utilized by saliency meth-

ods [10, 18]. In addition, given unsupervised vision trans-

formers have been found to outperform similarly-trained

ConvNets in terms of various segmentation tasks [3], we

speculate this better spatial understanding may extend to ex-

planations of vision transformers as well. We explore this

further by looking at supervised and unsupervised network

comparisons in the appendix.

4.2. GradCAM is more reliable than other methods

GradCAM has the highest COSE for most of the experi-
ments. Table 1 shows the performance of different saliency

methods across all datasets and models. In 65% of the

evaluation settings, GradCAM outperformed other saliency

methods, with BlurIG having the highest COSE for 22.5%

of the experiments, IG for 5%, GradCAM++ for 5%, and

GuidedIG for 2.5% of the experiments. Although COSE is

a descriptive single metric for overall performance, we also

look at the performance of saliency methods on consistency

and sensitivity individually to give further insight into what

contributes to the performance of the saliency methods.

GradCAM can reflect changing model behavior. Fig-

ure 5 shows the relationship between the model accu-

racy at a collection of intermediate model training epochs

e and the difference in saliency maps Mfinal and Me

(SSIM(Me,Mfinal)). Mfinal is the saliency map for a

fully trained model, and Me is the saliency map of an

untrained or a partially trained model. Both LIME and

GradCAM show a significant positive correlation between

SSIM and accuracy, indicating that saliency maps from

these methods can illustrate changes in model performance.

GradCAM is more robust to data transformations.
Looking at the consistency metrics in Figure 6, GradCAM

has the highest average consistency. The general distribu-

tion also shows GradCAM having more samples with high

consistency values when compared to other methods. This

indicates that GradCAM, followed by GradCAM++ and

BlurIG, are robust to data transformations that do not affect

model behavior.

Limitations of GradCAM. Although GradCAM is shown

to do better than other methods for most of the models

and datasets, it evidently struggles with CUB200. Table

1 shows the COSE for various saliency methods across

datasets and metrics. It also shows GradCAM has low

scores on CUB200. Figure 7 shows that across different

saliency methods, CUB200 has the lowest average COSE.
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Dataset Model BlurIG GradCAM GradCAM++ GuidedIG IG LIME SmoothGrad
[29] [22] [4] [13] [24] [21] [23]

Caltech101 ConvNext 63.01% 63.50% 65.28% 54.25% 62.53% 61.51% 60.90%

ResNet50 65.77% 61.86% 45.41% 52.41% 58.80% 56.69% 59.60%

Swin-T 67.81% 67.15% 57.50% 52.54% 64.68% 63.17% 61.95%

ViT-B/16 69.60% 68.66% 60.30% 57.48% 66.67% 61.12% 66.41%

CIFAR10 ConvNext 61.46% 66.74% 66.72% 53.02% 60.91% 62.06% 58.85%

ResNet50 60.47% 62.29% 42.75% 48.27% 51.20% 59.86% 52.02%

Swin-T 66.35% 69.66% 58.29% 50.11% 63.05% 65.76% 56.95%

ViT-B/16 66.46% 71.54% 59.11% 55.72% 66.68% 63.85% 61.00%

CUB200 ConvNext 54.15% 60.61% 59.81% 59.59% 61.20% 56.90% 47.89%

ResNet50 58.63% 44.01% 40.74% 56.50% 60.05% 55.50% 52.38%

Swin-T 62.37% 62.51% 49.78% 60.14% 64.02% 59.06% 56.05%

ViT-B/16 59.07% 64.80% 56.65% 61.26% 60.42% 58.31% 53.70%

EuroSAT ConvNext 59.17% 65.47% 63.58% 52.83% 61.45% 60.23% 57.17%

ResNet50 57.28% 62.27% 45.17% 40.87% 46.14% 59.47% 47.96%

Swin-T 64.74% 66.49% 53.82% 47.51% 61.99% 59.60% 60.43%

ViT-B/16 67.85% 70.31% 57.95% 57.90% 68.12% 60.63% 62.48%

Oxford102 ConvNext 58.60% 62.78% 61.74% 58.73% 60.71% 57.23% 57.77%

ResNet50 61.13% 61.90% 40.30% 54.93% 55.07% 58.32% 56.60%

Swin-T 66.57% 67.38% 56.87% 52.86% 63.42% 62.06% 59.41%

ViT-B/16 66.90% 68.31% 59.14% 59.67% 65.92% 61.44% 62.95%

Overall 63.23% 64.66% 54.59% 54.73% 61.33% 60.11% 57.94%

Table 1: COSE score of different saliency methods on various models and datasets. For each dataset and model combi-

nation, the best saliency method is bolded and the second-best is underlined. For most models and datasets, GradCAM has

the highest COSE, followed by BlurIG and IG. It can also be seen that most methods (GradCAM, GradCAM++, BlurIG)

apart from IG and GuidedIG struggle with CUB200.

Figure 5: SSIM of the saliency map of the final trained model Mfinal with respect to the saliency map of a partially
trained model Me. GradCAM and LIME generally has increasing SSIM with increasing model accuracy. The correlation

(r) and the corresponding p-values (p) are also annotated in each plot. We use alpha=0.05 (correlation for GuidedIG is

insignificant).
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Figure 6: GradCAM has the highest average consistency.
We can also observe the distribution of consistency across

different samples, with GradCAM having more samples

with high consistency.

Figure 7: Most saliency methods struggle with CUB200.
Looking at each saliency method group, CUB200 has

the lowest average performance for all methods except

GuidedIG and IG.

This could be contributed to the tendency of CAM methods

to emphasize larger areas of importance. Unlike GradCAM

and GradCAM++, IG and GuidedIG focus on specific de-

tails (also see Figure 1 for sample results), and are observed

to perform better on CUB200 based on COSE. The abil-

ity to distinguish between small differences on fine-grained

datasets like CUB200 can significantly affect the perfor-

mance of a saliency method.

4.3. How do we improve existing saliency methods?

Balancing consistency and sensitivity. GradCAM is

shown to outperform other saliency methods on several an-

gles. However, with a COSE of 64.66%, GradCAM still

has areas for improvement. Figure 1 shows that GradCAM

tends to predict general areas, which limits its sensitivity to

model changes. Due to the large salient area presented, it’s

more difficult to isolate differences due to model changes.

SmoothGrad and BlurIG show more specific areas, but they

tend to be unstable to input perturbations. Future work on

saliency methods should aim to balance performance on

both - being robust while maintaining good sensitivity.

Methods should consider both geometric and photomet-
ric consistency. Figure 8 shows saliency methods generally

have lower consistency and higher sensitivity as transforma-

tion magnitudes increase, but ultimately average to a stable

COSE over all transformation magnitudes. Splitting into

geometric and photometric transformations, we observe in

the same figure that this trend is mostly for photomet-

Figure 8: Average performance for all methods on all
transformations and separately for geometric and pho-
tometric transformations. While photometric transforma-

tions have decreasing sensitivity and increasing fidelity as

transformation magnitudes increase, geometric transforma-

tions seem to have approximately the same performance re-

gardless of transformation magnitude.

ric transformations, as saliency methods perform about the

same even when geometric transformations increase. This

suggests that saliency methods struggle in different ways for

photometric and geometric transformations. While COSE

gives an overview of overall performance across all trans-

form magnitudes, we recommend saliency method devel-

opers consider photometric changes and geometric changes

as separate problems while trying to achieve consistency in

both.

5. Conclusion

We presented an evaluation pipeline measuring two

crucial characteristics for saliency methods - consistency,

which requires images with the same classification to have

the same explanation, and sensitivity, which describes that

images with different classifications to have different expla-

nations. We combine these two measures into a single met-

ric COSE which is only maximized by balancing the two

properties. By applying natural augmentations to images in

arbitrary datasets, we show our metrics can emphasize the

advantages and the limitations of saliency methods when

ground truth model explanations are not available.

Through our metrics, we analyzed the performance of

seven commonly used saliency methods across five datasets

and eight models. Fundamentally, our metric COSE is best-

suited for saliency metrics whose explanations closely re-

flect the prediction of the network - giving similar expla-

nations for the consistent model behavior and contrasting

explanations for different model behavior. We see our work

as a starting point for researchers to further explore and im-

prove saliency methods for better model understanding.
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