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Abstract

Neighbour contrastive learning enhances the common
contrastive learning methods by introducing neighbour rep-
resentations to the training of pretext tasks. These algo-
rithms are highly dependent on the retrieved neighbours
and therefore require careful neighbour extraction in or-
der to avoid learning irrelevant representations. Potential
”Bad” Neighbours in contrastive tasks introduce represen-
tations that are less informative and, consequently, hold
back the capacity of the model making it less useful as a
good prior. In this work, we present a simple yet effec-
tive neighbour contrastive SSL framework, called ”Mend-
ing Neighbours” which identifies potential bad neighbours
and replaces them with a novel augmented representation
called ”Bridge Points”. The Bridge Points are generated in
the latent space by interpolating the neighbour and query
representations in a completely unsupervised way. We high-
light that by careful selection and replacement of neigh-
bours, the model learns better representations. Our pro-
posed method outperforms the most popular neighbour con-
trastive approach, NNCLR, on three different benchmark
datasets in the linear evaluation downstream task. Finally,
we perform an in-depth three-fold analysis (quantitative,
qualitative and ablation) to further support the importance
of proper neighbour selection in contrastive learning algo-
rithms.

1. Introduction

Deep Learning (DL) algorithms have made remarkable

strides across a wide range of applications [13]. The success

Query Good Neighbours Bad Neighbour

Figure 1. Sample images showing ”good” and ”bad” neighbours.

of DL can be attributed to larger architectures, powerful

computation capabilities and more importantly, the avail-

ability of large training data [2]. Collecting large volumes

of labelled data is often expensive, time-consuming, and

very scarce in many domains [40]. Self-supervised Learn-

ing (SSL) is an alternative learning paradigm that enables

models to learn meaningful representations by exploiting

massive raw data without annotated supervision [16]. SSL

models are label agnostic and learn representations that are

generic across several tasks [1]. They capture the underly-

ing relationships, structure or semantics of the data using a

pretext task [37]. Downstream tasks based on the pretext

trained models are therefore able to perform better on fine-

tuning using task-specific labels [25, 32, 41]. Well-designed

pretext tasks which learn proper representations rather than

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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free-style learning would be better priors in various down-

stream tasks.

Pretext tasks can be classified in general into genera-

tive, contrastive or generative contrastive [29]. Generative

models use an encoder-decoder architecture to reconstruct

the sample [22, 23, 36]. Contrastive Learning (CL) algo-

rithms, on the other hand, work on pulling together differ-

ent augmentations (views) of the sample closer (positives)

to each other while repelling those from other instances

(negatives) [21]. CL algorithms use several similarity mea-

surements such as NCE Loss [18], InfoNCE loss [33], and

Redundancy-reduction loss [44] to contrast different views.

SimCLR [8], a breakthrough SSL method used two views

of the same image to learn the visual representations. MoCo

[19] extended SimCLR by using a dynamic queue to store

representations of views. Self-distillation methods such as

BYOL [17], SimSiam [9], and DINO [6, 34] rely on differ-

ent encoders to map the different views to each other. Other

methods such as SWaV [5] and Barlow Twins [44] use cor-

relation to infer relationships between views.

One of the fundamental design criteria in the CL algo-

rithms is the generation of positive views from a given sam-

ple [1]. Data augmentation serves as a common approach

to generate different diverse views from the sample image.

SSL methods learn by contrasting the different views to

learn representations that are invariant to these transforma-

tions [4]. However, there is a potential pitfall in solely using

data augmentation to create different views. The augmen-

tations alone would not be able to cover all variations of a

given class [14].

Neighbour Contrastive Learning (NCL) algorithms are

based on the notion that data augmentations (views) may

not provide sufficient diverse information in selecting posi-

tive samples [14]. NCL algorithms contrast different views

of the image with their nearest neighbours and learn to bring

them in close proximity. This allows for better-learned rep-

resentations as the contrasted pairs are often from different

source samples. Algorithms such as NNCLR [14], Mean-

Shift [24], All4One [15] are able to learn from new data

points that would be different from those generated using

views. SNCLR [10] used cross-attention to compute the im-

portance of neighbours and used them as soft neighbours. A

common entity in these methods is that they use a support

set (queue) to store the representations of samples and use

algorithms such as k-nearest neighbours [14] or mean shift

[24] to retrieve one or few nearest neighbours, which in turn

act as positive samples during CL.

One of the critical aspects for the proper functioning

of these algorithms lies in the careful selection of neigh-

bours [14]. Fig. 1 shows some examples of ”good” and

”bad” neighbours. ”Good” neighbours are essential to learn

proper representations of data distribution as they share sim-

ilar features. Good representations possess local smooth-

ness, sparse activation for specific inputs, temporal and spa-

tial coherence, hierarchically organized explanatory factors,

and simple dependencies [3]. ”Good” neighbours do not

need to be from the same semantic class, rather should

produce representative features. ”Bad” neighbours, on the

other hand, may introduce noise or confusion in the repre-

sentations that might lead to less effective representations.

It is therefore crucial to identify good neighbours that can

positively help SSL models to learn proper representations

of the data. With this aim, we explore the question of What
constitutes a good neighbour? We propose a neighbour

correction framework that identifies potential ”bad”, not so
helpful neighbours and uses the identified neighbour repre-

sentations to generate new synthetic representations that are

effective and also different from the representations created

using different views of the samples.

The main contributions of our work are characterized

as follows: (1) We present a neighbour correction frame-

work through which we identify potential ”bad” neighbours

that can harm the pretext training process. (2) We intro-

duce a mechanism to generate representation in the latent

space, called ”Bridge Points” from those identified neigh-

bours such that they move closer to the instances in the la-

tent space. (3) With a detailed analysis of the performance

of our method on different benchmarks, we show the im-

portance of neighbour selection in CL frameworks.

2. Related Works
In this section, we present an overview of the latest self-

supervised visual representation learning literature that is

relevant to our work.

Self-supervised Learning. SSL involves training a model

without using any kind of supervised signal in an attempt to

force it to learn intermediate representations that could be

later transferred to multiple downstream tasks [1]. Exist-

ing SSL methods can be grouped into generative and dis-

criminative algorithms [29]. While the former requires the

use of visual transformers and reconstruction tasks, the lat-

ter has been able to maintain good results with a low bud-

get thanks to their CL pretext tasks [46, 34]. CL works on

grouping similar samples closer and moving diverse sam-

ples farther from each other [21]. In the context of learning

image representations, the objective function relies on pos-

itive pairs, where both representations belong to the same

semantic class and negative pairs, consisting of representa-

tions from different semantic classes. The goal is to bring

the positive pairs closer together in the feature space, while

simultaneously pushing away the negative pairs to avoid the

collapse of the model. In recent years, this principle has

been leveraged into several alternatives that work on clus-

ters [5], using only positive samples [17] using neighbours

as positives [14, 24, 10, 15]. Neighbour-based algorithms
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are characterized by their enhanced generalization capacity

inherited from the use of diverse neighbour representations

obtained by algorithms such as k-NN.

Neighbour Contrast Approaches. Nearest neighbour

(NN) is a simple and effective machine learning algorithm

applied in several computer vision tasks [6, 35, 39]. NN-

based SSL methods leverage the relationships between sam-

ples in the pretext training to enhance the quality of the

learned representations. By exploiting the proximity or

similarity between samples, these methods encourage the

model to capture meaningful patterns, structures, or seman-

tics from the data. NNCLR [14] was the first SSL method

that explicitly adopted the NN approach. NNCLR imple-

mented a memory queue, called a support set, to store the

representations of samples and contrasted representations

between views of samples and their first nearest neighbour

mined from this support set. Mean Shift [24] used a mean-

shift algorithm to group several neighbours together with-

out contrasting them directly. SNCLR [10] used a cross-

attention module to measure the correlation between sam-

ples and used this score to identify positive samples in CL.

Recently, All4One [15] combined the neighbour contrast

with feature contrast and transformer-based centroid con-

trast to learn representations from different latent spaces.

The core idea in all the above-listed approaches is ex-

ploiting neighbours to learn relationships between samples.

However, they do not control or measure the neighbours ex-

tracted, which could lead to a performance decrease. Our

work differentiates from them by emphasizing the impor-

tance of a good neighbour selection and proposes useful re-

placements for the ones that should be discarded.

Feature Space Augmentations. Image data augmenta-

tions play a critical role in supervised learning [45, 42, 20,

38] and in most of CL-SSL approaches [8, 44, 17, 10, 15].

Creating two different samples from the exact same initial

sample allowed unsupervised CL, as no labels are required

for the correct selection of the contrasted samples [8]. Sev-

eral pipelines have been proposed in order to enhance the

augmented sample and their usefulness [17, 4]. All these

augmentations are directly applied to the images so when

augmentations are required for latent representations, it is

not really effective. On the contrary, latent space augmenta-

tions can be perfectly applied with negligible computational

efficiency loss. Adding random Gaussian noise, and extrap-

olating or interpolating feature space representations are the

most common approaches to create new augmented repre-

sentations [12, 7]. In recent years, these kinds of augmen-

tations have been used to address diverse problems such as

long-tailed instance segmentation [43], pose prediction [28]

and multimodality [30]. However, the lack of visual con-

trol has made latent augmentations less popular than their

counterpart. In our work, we propose a novel application of

these latent augmentations in an NCL task in order to cre-

ate interpolated representations. These interpolations, when

contrasted, improve the capabilities of the trained model

by enabling the model to capture more discriminative and

meaningful patterns. This way, they provide meaningful re-

placements for neighbours where the extracted ones do not

provide useful information for the CL task.

3. Rationale

NNCLR [14], which marked the inception of NCL al-

gorithms, proved that changing from augmented represen-

tations increased the diversity of contrasted samples and,

consequently, improved the performance of models on sev-

eral downstream tasks. However, NNCLR also showed that

a semi-supervised selection of neighbours achieved better

results compared to an unsupervised selection. This high-

lights the fact that not all neighbours are completely use-

ful. NCL algorithms often use a k-NN to extract the near-

est neighbours of samples by computing the distances in

latent space. These neighbours are later used in learning

meaningful representations of the data. High-quality neigh-

bour representations, therefore, directly impact the perfor-

mance of the trained models [14]. Improving the quality

of neighbour extractions in an unsupervised manner poses

several challenges. Identifying what constitutes a ”good
neighbour representation” is not straightforward. All NCL

models compute their neighbours in feature space, making

their analysis more difficult. Additionally, there are no di-

rect measures of quality between neighbour representations.

Moreover, it is very challenging to differentiate an augmen-

tation of a sample from its neighbour representation. Con-

sidering these complexities, we rise several important ques-

tions in this work: ”Can an image augmentation be a neigh-
bour?”, ”How do we measure the quality of a neighbour
in CL?”, ”How do we identify potential bad neighbours in
feature space?” and, most importantly, ”What does consti-
tute a good neighbour?”. In this work, we hypothesize that

good neighbours are those that are different from data aug-

mentations, but in close proximity to the samples, whereas

bad neighbours are those that are farthest from the augmen-

tations. Based on this hypothesis, we provide ”Mending

Neighbours”, a method based on neighbour selection and

replacement neighbour generation.

4. Mending Neighbours

The foundations of our proposed pipeline are established

with inspirations from the NNCLR [14] framework. The

proposed pipeline is shown in Fig. 2. It contains two

braches, each composed by an encoder followed by an MLP

projector, together defined as f . One of the branches has

an additional MLP predictor. Each f transforms the input
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Figure 2. Overview of our proposed method.

image into an SSL representation. For a given mini-batch

X , we augment the samples twice, one for each branch to

obtain the augmented batches X 1 and X 2. These batches

are passed through their respective branches to obtain their

respective representations Z1 and Z2. On every iteration,

zi is extracted from its respective representation batch and

is used as a query for the k-NN algorithm that extracts its

neighbour representation nni from a fixed-sized Support

Set, Q.

We extract the neighbours following NNCLR [14],

which is defined as follows:

NN (zi,Q) = argmin (Sim(zi,Q)) (1)

where Sim(zi,Q) is defined as ||zi − Q||2. Next, we

use a simple neighbour evaluation approach to identify the

”good” and the potential ”bad” neighbours. We evaluate

the goodness, gdi of each neighbour by storing the simi-

larity between the query sample and its nearest neighbour

representation in the feature space. This is defined as:

G(zi,Q) = min (Sim(zi,Q)) (2)

We use the mean gdi of the whole batch as a threshold to

split the neighbours into ”good” and potential ”bad” ones.

For the identified as ”bad” neighbours, we present an

unsupervised feature space interpolation between the ”bad”

neighbour nni and the query sample zi. This interpolation

allows us to create representations in the feature space that

has the characteristics of both the query and the neighbours.

We augment the potential ”bad” neighbour directly in the

feature space by creating an interpolation or Bridge Point

(BP) bpi between neighbour representation and its query.

Though the identified neighbour can deteriorate the learn-

ing of the model, they still would contain representative in-

formation as they are the most similar in the Support Set.

Formally, the interpolation is defined as:

bpi = (zi − nni) ∗ λ+ nni (3)

λ is used to control the strength of the interpolation.

The final neighbour replacement function R is defined

as follows:

R(zi, nni, bpi) =

{
nni, if gdi >

1
n

∑n
k=1 gdk

bpi, otherwise

}
(4)

This approach aims to detect the ”bad” neighbours while

also replacing them with representations created in the fea-

ture space between the query and the ”bad” neighbours. The

final loss is determined as:

Li = −log

(
exp(rn1

i · z2i /τ)∑N
k=1 exp(rn

1
i · z2k/τ)

)
(5)

where rn1
i represents the output of the defined replacement

function R and τ is the temperature constant. The loss is

computed symmetrically.

5. Validation
In this section, we first show the experimental settings of

our proposed framework and then present our results high-
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lighting the need to use ”good” neighbours in NCL. We use

three popular image classification benchmarks: CIFAR-10

[26], CIFAR-100 [26], and ImageNet-100, a reduced Ima-

geNet of 100 classes [27] to validate our method. We com-

pare our proposed method to the NCL SoA, specially to the

benchmark NCL algorithm NNCLR [14].

5.1. Implementation Details

For all datasets, we use a ResNet-18 encoder in a self-

supervised manner. We use solo-learn [11], a Pytorch-

based SSL framework for all our implementations. Re-

garding the architecture, we follow the implementations

of NNCLR [14] and use a common shared-weights dual

encoder-projector architecture with a predictor at the end of

the second branch. We create the projectors using 3 fully-

connected layers of size [2048, 2048, 256] and the predic-

tor using 2 fully-connected layers of size [4096, 256]. All

fully-connected layers are followed by batch normalization.

For all experiments, we initialize the backbones with solo-

learn initialization parameters [11]. We follow the hyper-

parameter settings as defined by solo-learn for all datasets

except for the queue size of CIFAR experiments, where we

increase it to 98304 following NNCLR [14]. We empiri-

cally set the interpolation hyperparameter λ to 0.2 for CI-

FAR10 and ImageNet100 datasets and 0.5 for CIFAR100.

We train all the models using a single NVIDIA RTX 3090

GPU.

5.2. Results

We analyse the benefits of our proposed approach using

linear evaluation on the three benchmark datasets, following

common SSL evaluation schemes. We further present quan-

titative results based on neighbour retrieval and similarity

metrics. We also show visual qualitative results highlight-

ing the advantages of having ”good” neighbours in NCL.

5.2.1 Linear Evaluation

For linear evaluation, we freeze the SSL-trained models and

use them as backbones or feature extractors for a common

linear classification task. Following the solo-learn pipeline

[11], we perform the linear evaluation across all training

epochs and report the best Top-1 accuracy. We present

the linear evaluation results in Table 1. Our ”Mending

neighbour” approach outperforms NNCLR [14] on the three

benchmarks showing the advantages of having a smarter se-

lection and replacement of neighbours. Selection of good

neighbours leads to better-learned models that act as a better

prior in the linear classification task. One interesting point

to note is that the datasets with a high number of classes

show a bigger improvement in terms of performance. This

could be due to the fact that the higher the number of

classes, the easier for the k-NN to fail in retrieving a ”good”

Data aug. Neighbour Bridge

Figure 3. UMAP visualization of the best epoch (100 samples).

neighbour as more confusing classes could be present in the

support set. However, this is not the case for CIFAR-10,

which has a total of 10 well-differentiated classes.

5.2.2 Quantitative Results

In addition to the linear evaluation, we also analyse the ac-

curacy of the neighbours extracted for both NNCLR and the

proposed approach using the k-NN accuracy. We show the

k-NN accuracy for both CIFAR datasets in Table 2. This

measures the number of times the extracted neighbour be-

longs to the same class as that of the query. As can be

seen in Table 2, our approach increases the retrieval accu-

racy of the neighbours in both cases, implying that the gen-

erated bridge point representations of the encoder contain

higher representative information than those obtained using

the NNCLR neighbours.

We also measure the similarity or goodness of the ex-

tracted neighbours for both methods on CIFAR-100. The

goodness is computed using the equation 2. Our approach

is able to preserve the good neighbours while also provid-

ing good alternatives to the replaced ones. Consequently,

our approach shows higher goodness than NNCLR on the

non-replaced neighbours, while having a lower score on the

replaced ones.

5.2.3 Qualitative Results

Bridge Point Analysis. We visualize 100 random sam-

ples of the best training epoch using UMAP [31] along with

their respective neighbours and BP. In Fig. 3, one can see

that in several Aug-BP-NN trios, the created BPs are located

in the middle of the augmentation and nearest neighbours.

This proves the effectiveness of our proposed approach to

obtain representations that mostly are representative of both

the query augmentation and the extracted neighbour. For

the neighbours that are being replaced, new representations
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Method CIFAR-10 CIFAR-100 ImageNet-100

NNCLR [14] 92.13 69.19 79.80*

Ours 92.25 70.77 80.10
Table 1. Linear evaluation results showing Top-1 Test Accuracy. *- Results extracted from solo-learn [11].

CIFAR10 CIFAR100

NNCLR 93.11 78.11

Ours 94.76 87.2

Table 2. k-NN accuracy showing neighbour retrieval accuracy.

Replaced NN Non-replaced NN

NNCLR - 93.14

Ours 84.66 96.37

Table 3. Goodness between queries and extracted neighbours.

are created close to where good neighbours are supposed to

be located.

In order to visualize our BPs, we implement a U-Net++

[47] based encoder-decoder architecture for an image re-

construction task. We initialize the encoder part of the U-

Net with the weights of our pre-trained encoder and freeze

it. Then, we train the decoder for a single epoch. We sim-

ulate a previously stored epoch of our pre-trained model

by passing the same query and neighbour images through

the encoder to obtain their representations and compute the

BPs using Equation 4. Once the BPs are computed, we

can simply pass them through the decoder to obtain their

image visualization. We show the reconstructed queries,

neighbours and BPs in Fig. 4. Most of the BPs resem-

ble the original NN, but are enhanced with the character-

istics of the query, making them contain information from

both NN and queries. The created BPs combine proper-

ties such as colours from the query and the neighbour (first

row), make mixed samples (second row), or remove por-

tions of the query. Ultimately, we find the resemblance of

the examples to the ones that could be obtained by com-

mon image augmentation techniques such as MixUp [45].

However, while those techniques augment the images by

applying modifications to the pixels, our approach acts di-

rectly in the learnt feature space, which is more efficient and

completely unsupervised.

Neighbour Selection and Replacement. The hypothesis

of the existence of bad neighbours consequently implies the

existence of neighbours that are good for the CL task and

should not be replaced by BPs. We use the histogram of

goodness values as in Fig. 5 of all extracted neighbours to

analyze the goodness of neighbours. In Fig. 5, we show

the histogram for the best epoch of pre-training, which rep-

resents the whole training set. As can be seen, while most

Query Decoded Bridge Point NN

Figure 4. Decoded BP visualizations of Query, BP and NN using

encoder-decoder image reconstruction.

of the extracted neighbours achieve a very high goodness

value, there is still a considerable number of neighbours

that possibly do not manage to be good enough for the task.

However, deciding an exact threshold that divides good and

bad neighbours, is a hard task when we take into account

that these values vary during the whole training. At first,

when the encoder is not well-trained, the generated rep-

resentations do not provide the same richness as the ones

generated on the final part of the training, making the good-

ness value fluctuate. For this reason, the selected thresh-

old should be dynamic. In fact, this fluctuation also applies

to the different batches that are computed during the train-

ing. As can be seen in Figure 6, the mean goodness value

(marked in red) deviates depending on the batch. Given

these observations, we find that the batch mean threshold is

an effective alternative that is dynamic, and adaptative with

respect to the training batches.

Finally, we show the effectiveness of the batch-mean
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Figure 5. Histogram of Goodness for the complete best epoch.

The threshold is shown using a red vertical line.

threshold using Figure 7. Overall, it can be observed that

the replacements align with the notion of a bad neighbour.

Most of the bad neighbours belong to a different class while

still sharing some features with the original query. How-

ever, due to the vast variation of the augmentations used

in the pretraining phase, our approach manage to also re-

place neighbours that could be considered good ones. By

looking at their goodness score, we observe that these sam-

ples could possibly be very near to the threshold used for

that batch. Positively, bridge points tend to share informa-

tion from both augmentation and the neighbours, therefore

the impact of not using the original good neighbour is de-

creased.

5.3. Ablation Study

We empirically analyze the four components of our ap-

proach by a careful ablation study: the representation used

as a replacement, the origin of the bridge point used, the re-

placement strategy type and, finally, the used threshold. For

each ablation experiment, we exclusively modify the com-

ponent to analyse from our best experimental setup. All

ablations are done on the CIFAR-100 dataset for a linear

classification downstream task.

Replacement Representation Type. In this experiment,

we analyse the effect of using different alternatives to the

bridge point as a replacement representation. As a first al-

ternative, we replace the bad neighbours with the original

query augmentation. As shown in Table 4, this approach

manages to outperform the baseline, proving once again

the effect of bad neighbours on the model. However, this

replacement does not provide any kind of diversity to the

contrastive task, and therefore the effect would be the same

as switching between NNCLR [14] and SimCLR [8] loss

functions depending on the quality of the neighbour. As a

second option, we add random Gaussian noise to the query

augmentations before contrasting them. This increases the

diversity, but it does not produce good evaluation results.

The main idea of our proposed bridge points resides in the

hypothesis of generating points that could have the poten-

tial to be good neighbours i. e. points with proper diversity

that would be useful and not confusing to the model. This

might not be obtained by the use of simple image augmen-

tations or uncontrolled latent augmentations such as using

Gaussian noise.

Bridge Point Type. In this analysis, we explore the effect

of using augmentation as the second term in Eq. 4. This

way, the bridge point would be based on the query augmen-

tation instead of the neighbour (extrapolation). The bridge

point based on the query augmentation does not provide

good diversity and, in fact, performs worse than just using

the augmentation. This is because the first term is meant to

be added to the neighbour for a correct interpolation. Ad-

ditionally, if we completely interpolate the augmentations

instead of just changing the second term, we can observe

an improvement. However, it is still less diverse than our

proposed bridge point.

Replacement Strategy Type. To prove the effectiveness

of our batch mean replacement, we ablate the replacement

strategy by experimenting with two different alternatives.

First, we show the effects of replacing all neighbours with

bridge points. This improves the baseline, however, is held

back by the fact that some neighbours do not require a re-

placement. Good neighbours, contrary to the bridge points,

do not contain any explicit information from the query. For

this reason, they provide useful information that is better

and more diverse than the bridge point generated. In fact,

just randomly replacing half of the neighbours with bridge

points is enough to outperform the all-replace alternative.

However, a random replacement is less stable compared to

the proposed approach.

Threshold Type. We compare our batch mean threshold

with a static threshold and a threshold based on the epoch

mean. The batch mean threshold provides more dynamism

than the epoch mean threshold or the static threshold. For

the cases we explored, the additional dynamism of our se-

lected threshold strategy keeps a better balance of the bor-

derline samples than the epoch mean strategy. Depending

on the batch, some higher goodness samples are replaced

and some lower goodness samples are maintained, which

proves to be beneficial for the model. On the contrary, the

epoch mean threshold is more restrictive, which leads the

model to lower performance. In the case of the static thresh-

old, we do not find it suitable for this task, as it introduces an

extra hyperparameter that is very hard to tune in a way that

makes the strategy useful for the whole pretraining phase.

Overall, our strategy empirically outperforms the other two
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Figure 6. Histogram of Goodness for three different batches of the best epoch. The threshold is shown using a red vertical line.

Augmented QueryOriginal Query Original NNAugmented NN

Squirrel Bear 0.79

Snake Flatfish 0.69

Palm Tree Telephone 0.72

Snake Snail 0.86

Query Label NN Label Query-NN Similarity

Lamp Lamp 0.92

Tulip Tulip 0.92

Figure 7. Replaced NN Visualization.

strategies both in performance and simplicity, as it does not

Method Top-1

NNCLR 69.19

Replacement Representation Type
Data Augmentation 69.38

Noisy Data Augmentation 69.10

Bridge Point Type
Data Augmentation Extrap. 68.85

Data Augmentation Interp. 70.03

Replacement Type
Replace All Neighbours 69.51

Replace Random Neighbours 70.10

Threshold Type
Epoch Mean Threshold 69.99

Static Threshold 0.8 69.62

Ours 70.77
Table 4. Ablation study.

require any further tuning.

5.4. Limitations

While the current study provides valuable insights for

NCL, there are still some limitations in the current pro-

posed scheme. We carefully elucidate the limitations that

can serve as potential research directions.

Better Threshold Strategy. In the proposed Mending

Neighbours approach, we use batch mean threshold due to

its effectiveness and simplicity. However, it is difficult to

address borderline neighbours where some good neighbours

are also replaced. A better threshold strategy could avoid

replacing these neighbours.

Measure of Goodness. Based on our initial hypothesis,

we use cosine similarity as a Goodness metric. However,

it is simple in terms of providing distance information. A

more advanced metric could provide a better measure of

goodness and help in better selecting bad neighbours.

Entanglement of Features. We hypothesize that the

common entanglement of the features generated by the en-

coder holds back the whole neighbour selection pipeline.

The introduction of a disentanglement process similar to
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the ones applied in generative algorithms could increase the

independence of the features, making them more differen-

tiable and easy to create improved bridge points.

6. Conclusions

In our work, we analyze the current NCL SoTA ap-

proaches and identify critical aspects that can affect the

performance of NCL algorithms. We propose a novel

neighbour correction framework, called ”Mending Neigh-

bours” that correctly identifies potential ”bad neighbours”

and replaces them with a bridge point, a novel represen-

tation created directly in the latent space using neighbours

and queries. The generated bridge points are more useful

than a ”bad neighbour” in NCL algorithms and this pro-

vides important informative prior information for down-

stream tasks. We validated our method using different

SSL benchmarks and metrics and highlighted our improve-

ments over NNCLR, a popular benchmark NCL algorithm.

With in-depth quantitative, qualitative and ablation analysis

we showed a measure of neighbour quality and obtained a

scheme to identify what constitutes a good neighbour. In fu-

ture, we plan to generate good neighbours through advanced

generative processes that could provide representations of

higher quality.
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