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Abstract

Among deep generative models, variational autoen-
coders (VAEs) are a central approach in generating new
samples from a learned, latent space while effectively re-
constructing input data. The original formulation requires
a stochastic sampling operation, implemented via the repa-
rameterization trick, to approximate a posterior latent dis-
tribution. In this paper, we introduce a novel approach that
leverages the full distributions of encoded input to optimize
the model over the entire range of the data, instead of dis-
crete samples. We treat the encoded distributions as contin-
uous random variables and use operations defined by the al-
gebra of random variables during decoding. This approach
integrates an innate mathematical prior into the model,
helping to improve data efficiency and reduce computa-
tional load. Experimental results across different datasets
and architectures confirm that this modification enhances
VAE-based architectures’ performance. Specifically, our
approach improves the reconstruction error and generative
capabilities of several VAE architectures, as measured by
the Fréchet Inception Distance (FID) metric, while exhibit-
ing similar or better training convergence behavior. Our
method exemplifies the power of combining deep learn-
ing with inductive priors, promoting data efficiency and
less reliance on brute-force learning. Code available at
https://github.com/VassilisCN/RV-VAE.

1. Introduction

Generative properties in deep learning models can be

achieved through three notable approaches: generative

adversarial networks (GANs)[11], diffusion models[36],

and variational autoencoders (VAEs)[20]. Each possesses

unique challenges: GANs, though able to generate high-

quality images, face training instability and mode collapse

issues. Diffusion models, while powerful, are not easily in-

terpretable and are computationally intensive. VAEs stand

out with stable training and efficiency but need significant

(a) Input image (b) Original VAE (c) RV-VAE

Figure 1: The proposed RV modifications of VAE architec-

tures enhances the models’ capabilities so that a given input

image can be reconstructed by the RV-VAE more satisfac-

tory compared to the original VAE.

amounts of data for optimal performance. Despite advance-

ments in these methods, refining generative models remains

an active research field [38, 32, 37, 44, 42, 31, 17, 10, 47,

14, 25, 12, 29, 13, 7].

We present an enhancement for VAE architectures based

on a novel modification to neural network nodes. Tradi-

tional nodes typically utilize single scalar activations, espe-

cially when approximating probabilistic quantities, like the

reparameterization trick in VAEs. We propose to replace

these scalar activations with Probability Density Function

(PDF)-based activations, represented by expected value

and variance. Through the algebra of Random Variables

(RVs) [39], we compute the expected values and variances

of typical neural operations. In special cases, such as

ReLU and Batch Normalization, certain assumptions ensure

tractable computations. Employing this RV-aware method-

ology, we adapt the decoder section of various tested VAE

architectures, eliminating the need for the reparameteriza-

tion trick, a step essential in other methods [20, 7]. This

revamped VAE structure taps into visual inductive priors to

diminish data needs and enhance data efficiency, all without

compromising the convergence rate during training.

In summary, the contributions of this work are: (a) A

theoretically justified approach for utilizing continuous dis-

tributions in ANNs and specifically in VAEs for incorporat-

ing inductive priors, that (b) significantly improves image

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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reconstruction and (c) achieves similar or improved gen-

erative results, while (d) maintaining training convergence

rate. This paper emphasizes the potential of combining deep

learning with inductive priors, towards more data-efficient

deep learning practices. The source code of our method

is available at https://github.com/VassilisCN/
RV-VAE.

2. Related Work
The related work can be roughly divided into two cat-

egories: works on enhancing and improving VAEs, and

works on neural networks and autoencoders that use a

stochastic or probabilistic approach. Our work fits in both

classes with greater emphasis on the former, since it can

enhance the performance of most VAE-based architectures.

Variational autoencoders (VAEs), one of the first suc-

cessful generative deep learning models, were proposed

by Kingma and Welling [20]. Another very successful

generative model, Generative Adversarial Neural networks

(GANs) [11] was proposed almost simultaneously. Since

VAEs were introduced, a significant amount of work has

been devoted to both theoretical analysis [9] and improv-

ing the base architecture. Improvements on VAEs can be

achieved through various means, including redesigning the

network architecture [37, 44], incorporating stronger pri-

ors [42, 31, 17], adding regularization [10, 47], or incor-

porating adversarial objectives [14, 25, 12, 29, 13].

The tools of probability theory have been heavily used

in the field of neural networks, mostly for facilitating the

theoretical analysis of their behavior. Mean-field theory has

been applied to the analysis of networks, either on single

layers [35] or on multiple layers [26, 6], closely resem-

bling modern deep architectures. Furthermore, Bayesian

Neural Networks (BNNs) embed probabilistic modeling di-

rectly into neural architectures [24]. By placing priors on

the weights and biases [3] and with the usage of variational

inference [41], BNNs introduce a principled uncertainty es-

timation into deep learning, making them particularly ad-

vantageous for tasks where understanding uncertainty is

crucial. On the practical front, mainstream Deep Learning

frameworks such as TensorFlow [1] and PyTorch [28] in-

clude libraries [8, 2, 34, 43] that facilitate the development

and integration of stochastic operations in neural networks.

Recently, Kim [19] presented work on the VAE architecture

that employs an inference model to enhance the encoding of

the data, aiming to reduce the posterior approximation error

of inference in VAEs. While both approaches aim to im-

prove the performance of VAEs, Kim’s work focuses on a

more accurate modeling of the computation of latent space

values. In contrast, our work focuses on a theoretically jus-

tified way of utilizing the encoded latent space.

Within this research area, a particular direction that is

closely related to ours is that of Probabilistic Circuits. Poon

Figure 2: The proposed VAE formulation avoids the need

for stochastic sampling from the latent space variables z,

by directly forwarding the encoded distributions qφ to the

decoder. This is achieved by treating the latent space as

an instance from a family of distributions and employing

random variable operations inside the decoder. The final

output is also a distribution and, by minimizing its variance,

we effectively constrain it to become a constant (image).

Following standard VAE notation (as e.g. in Kingma and

Welling [20]), qφ(z|x) and pθ(x|z) denote the encoder and

decoder part of the network respectively, and vectors φ, θ
and x denote respectively the parameters of the encoder,

decoder, and the input.

and Domingos [30] and Shen et al. [33] have explored the

possibility of developing deep probabilistic models, where

the propagation of the PDF throughout the network nodes

is constrained to use specific operations, similar to our ap-

proach. Vergari et al. [45] compiled a comprehensive list

of operations that can be used for the layers of the net-

work toward this end. Additionally, Jaini et al. [16] and

Cohen et al. [5] advocate for the use of tensor decomposi-

tions to bring probabilistic models closer to modern deep

neural networks. Compared to traditional deep neural net-

works, probabilistic circuits have some limitations such as

their high computational cost and the lack of diversity of

their generated samples.

The proposed work can be categorized as a general im-

provement for VAE architectures, applicable to any VAE

architecture that employs sampling in the latent space. The

modification is applied only to the decoder part of the archi-

tecture, where we substitute the traditional components with

our proposed Random Variable-aware ones. To the best of

our knowledge, no similar approaches have been proposed

so far in the relevant literature.

3. Random Variable Modules
All data that are processed by ANNs such as images,

video sequences, audio, and text, are samples of (possibly

implicit) underlying distributions. Even though the distri-

bution domains can be infinite, the networks we employ al-

ways operate on specific, constant instances belonging to

these domains, that is, samples of the distributions. This is

the assumption on which we base the design of the opera-

tions that comprise an ANN, such as fully connected layers,

convolutional layers, activation functions, etc.
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A simple, effective and powerful way to represent a po-

tentially infinite range of such instances is to resort to a

stochastic representation of the input, a representation that

must also be propagated in the same way through the net-

work. If we want the network to process a tensor of non-

constant values, such as Random Variables (RVs), we must

redefine the network’s operations to treat the tensors as

such. This can be achieved through the algebra of random

variables [39]. Representing network inputs and activations

as RVs is very general and powerful, however in practice

it quickly leads to intractable computations. In order to

come up with a practical solution that can compete the ex-

tremely efficient modern neural networks, some simplifying

assumptions need to be made. We adopt those assumptions

as they are validated empirically1.

An arbitrary probability distribution over the real num-

bers is fully determined by the infinite series of its mo-

ments. In this work we choose to approximate it using only

the first two moments, namely the expected value E[X] and

variance var[X]. Throughout the computations performed

over the layers, we keep this representation by calculating

the new expected value and variance. Another simplifying

assumption is the handling of correlations between the in-

volved random variables. Similarly to Batch Normaliza-

tion [15], for computational efficiency, we choose to ignore

all correlations between the inputs to a network layer, and

only estimate the variance of each Random Variable.

The rules provided by the algebra for symbolic manipu-

lation are applied in two cases: (a) between two RVs, and

(b) between an RV and a constant. Since all commonly

used ANN operations are essentially instances of one of

these cases, we can adapt and use them to derive all the

cases we are interested in. In summary, for a RV X that can

be sufficiently described by its mean and variance, and an

ANN operation op(·), in order to compute Y = op(X), it is

sufficient for our representation to calculate E[op(X)] and

var[op(X)]. It is important to note that, the number of net-

work parameters remains constant, even as the number of

operations and network activations increases. In the follow-

ing sections, we elaborate on the calculation of expected

value and variance for the most common operations of an

ANN’s modules.

3.1. Linear operations

General linear operations between the inputs of a neuron

are commonly used to implement fully connected layers and

convolution operations. Such a linear operation is defined

as:

yyy = xxxAAAT + bbb, (1)

wherexxx is the input vector of RVs,AAA the matrix of learnable

weights, and bbb the learnable bias vector. The expected value

1More details on this are documented in the supplementary material.

for the output vector of RVs yyy is given by:

E[yyy] = E[xxxAAAT + bbb] = E[xxx]AAAT + bbb, (2)

and its variance is given by:

var[yyy] = var[xxxAAAT + bbb] = var[xxx](AAA�AAA), (3)

where � denotes the Hadamard (element-wise) product.

As already mentioned, convolution operations are simi-

larly treated. A derivation for this case can be found in the

supplementary material.

3.2. ReLU activation function

For the case of the ReLU activation function, the out-

put vector yyy is defined as yyy = max(xxx, 0). Thus, in this

case, the calculation of the expected value and variance is

not straightforward. To calculate the expected value and

variance of a RV that is distributed according to the output

of the ReLU function, we make the assumption that each

input RV follows a normal distribution. This hypothesis

is grounded on the empirical observation that after some

ANN linear operations, data tend to become approximately

normally distributed. This is evidenced in the cases of uni-

formly and normally distributed data, where the summation

of such data is approximately normally distributed2 as well

as for the mixed cases of normal plus normal and normal

plus uniform [46]. This applies to our cases as well, as

most of the defined operations perform linear operations

over their input. It is also further supported by our own

experiments.

Using the law of total expectation, we can define the ex-

pected value of max(X, c) for a normally distributed RV X
and a constant c, as follows:

E[max(X, c)] = E[X|X > c]P (X > c)

+ E[c|X ≤ c]P (X ≤ c),
(4)

where P (·) denotes the probability function for the pro-

vided event. From Eq.(4), for the case c = 0 of ReLU,

E[0|X ≤ 0]P [X ≤ 0] = 0. Since X is assumed to follow

a normal distribution, P (X > c) = 1−Φ(a) where Φ(·) is

the standard normal cumulative distribution function (CDF)

of the normally distributed RV X , and a = c−μ
σ with μ the

mean of the normal distribution which is also the expected

value, and σ its standard deviation where σ2 = var[X]. The

term E[X|X > c] can be calculated based on the one-sided

truncated normal distribution, as:

E[X|X > c] = μ+
σφ(a)

1− Φ(a)
, (5)

where φ(·) is the standard PDF of the normally distributed

RV X . By injecting Eq.(5) in Eq.(4) we obtain the final

2Specifically, it is distributed according to the Irwin-Hall distribution.
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form of the expected value as follows:

E[max(X, 0)] = (1− Φ(a))

(
μ+

σφ(a)

1− Φ(a)

)
. (6)

For calculating the variance, we use the law of total vari-

ance in a similar manner:

var[max(X, c)] = var[X|X > c]P (X > c)

+E[X|X > c]2(1− P (X > c))P (X > c).
(7)

In this case, the one-sided truncated normal distribution

gives us the term:

var[X|X > c] = σ2

(
1 +

aφ(a)

1− Φ(a)
−

(
φ(a)

1− Φ(a)

)2
)
.

(8)

Using the equations (8) and (5) in Eq.(7) we obtain the final

expression of the variance:

var[max(X, 0)] = (1− Φ(a))(
σ2

(
1 +

aφ(a)

1− Φ(a)
−

(
φ(a)

1− Φ(a)

)2
)

+

(
μ+

σφ(a)

1− Φ(a)

)2

Φ(a)

)
.

(9)

3.3. Batch normalization

As described by Ioffe and Szegedy [15], the batch nor-

malization operation can be broken down into the follow-

ing two steps: (1) data normalization and (2) data scaling

and shifting. The authors state that data normalization is

performed for each feature dimension of the data. After

normalizing the data they add a linear operation that scales

and shifts the data given the learnable parameters γ and β,

respectively. Since the second step is essentially a linear

operation, it can be handled as in Sec. 3.1. On the contrary,

the first step needs further analysis, as follows.

We follow the same reasoning we stated in Sec. 3.2 that

all our data become normally distributed after an ANN lin-

ear operation. This holds since a batch normalization layer

is used only after linear ones. As already stated in Sec. 3.2,

all data become normally distributed after some ANN oper-

ations. Since each network activation is an RV that follows

a distribution, the normalization in the feature dimension

can be described as an equally weighted mixture of these

distributions in that dimension. Consequently, we want to

calculate the mean and the variance of an equally weighted

mixture of normal distributions. Toward this end, for a mix-

ture of n component distributions with X1, . . . Xn RVs with

known expected values and variances, the total mean is de-

fined as:

E[X] =
1

n

n∑
i=1

E[Xi]. (10)

The total variance can be calculated as:

var[X] = E[X2]− E[X]2

=

(
1

n

n∑
i=1

E[Xi
2]

)
− E[X]2

=

(
1

n

n∑
i=1

(var[Xi] + E[Xi]
2)

)
− E[X]2 .

(11)

4. Random Variable Variatonal Autoencoders
The building blocks described, are capable of handling

RVs, and can be used to replace stochastic procedures in

ANNs. A suitable group of architectures is VAEs, which

feature a stochastic process using scalar value samples. The

stochastic usage of latent encoded data distributions at the

bottleneck layer that forwards samples of these distributions

to the decoder, makes them suitable to be used with RV

modules. By design, the encoded latent space in most VAE

architectures is normally distributed, and consequently is

able to use RVs of appropriate distributions to represent it.

Therefore, we can adjust VAE architectures to incorporate

RV modules.

4.1. Relation to the original VAE formulation

Our goal in this work is to avoid imposing a stochas-

tic estimation in the lower bound. To better understand this

proposed contribution in the VAE approach, we first present

here the variational lower bound as defined in the original

VAE formulation by Kingma and Welling [20]. The evi-

dence lower bound L(θ, φ;x(i)) is defined for a single input

data point x(i) as:

L(θ, φ;x(i)) = −DKL(qφ(z|x(i))||pθ(z))
+ Eqφ(z|x(i))[log pθ(x

(i)|z)]. (12)

The formulation follows the standard VAE notation of [20].

qφ(z|x) and pθ(x|z) denote the encoder and decoder part of

the network respectively, and vectors φ, θ and x denote the

parameters of the encoder, decoder, and the input.

The formulation’s goal is to differentiate and optimize

this lower bound w.r.t. φ, the variational parameters, and θ,

the generative parameters. In order to estimate the second

term, the authors suggest forming Monte Carlo estimates of

expectation, where the lower bound is estimated as:

L(θ, φ;x(i)) � L̃(θ, φ;x(i))

= −DKL(qφ(z|x(i))||pθ(z))

+
1

L

L∑
l=1

(log pθ(x
(i)|z(i,l))),

(13)

where L is the number of samples drawn. The authors state

that L = 1 is sufficient since the training procedure is per-

formed in batches of satisfactory size.
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In this work, instead of adopting a stochastic approach

in the estimation of the lower bound that also depends on

the batch size, we employ the whole distribution qφ(z|x),
according to which the RV z is distributed, as seen and in

Fig. 2. Therefore, by implementing differentiable RV oper-

ations during the generative process, the method we propose

is closely related to the original lower bound formulation of

Eq.(12), using this term directly during training, instead of

the commonly used approximation Eq.(13).

4.2. Architecture modifications

The modifications needed to make any VAE-based archi-

tecture appropriate for handling RVs are mainly on the de-

coder of the architecture. Since the encoder outputs the la-

tent distribution (in the form of means and variances), in an

unmodified VAE architecture we would forward it through

the decoder via sampling. In our case, we do not need to

perform any sampling operation, therefore we operate on

the expected values and variances resulting from the en-

coder, and defer the conversion of distributions to values

until the end of the pipeline. Any VAE-based architecture

that decodes the encoded distribution can take advantage

of the proposed modification. Every layer/module of the

decoder must be replaced with the appropriate RV module

described in Sec. 3. Specifically, the decoder of a VAE con-

sists in most cases of linear modules (such as fully con-

nected layers and convolutional/transposed convolutional

layers Sec. 3.1), ReLU activation functions (Sec. 3.2) and

batch normalization layers (Sec. 3.3).

4.3. Loss adjustment

Since every module outputs RVs (represented by their

means and variances), by doing the above modifications in

the decoder, the final output of the network will also be a

RV. This is not useful in our test cases, but can be accom-

modated with the following adjustment in the loss function.

Provided that the goal of a VAE is to output a result of a con-

stant form (e.g. an image), we can make the modified VAE

architecture to achieve this by enforcing a constraint on the

output RVs of the final layer. A constant can be expressed

as a RV in a form of a Dirac delta function, with expected

value the constant itself and variance equal to zero. The net-

work’s output can be viewed as a constant value if we retain

only the mean value and enforce the variance to be close

to zero. This can be achieved by minimizing the following

term:

Lc(yyy) =
λ

n

n∑
i=1

var[yyyi]
2, (14)

where yyy is the final output vector of n RVs of a VAE and λ
an experimentally determined constant scale factor that acts

as a balancing weight between the terms. The final loss is

therefore defined as the sum of the original variational lower

bound and the new term Lc:

L(xxx) = L(θ, φ;xxx) + Lc(yyy). (15)

5. Experiments
The conducted experiments aim to verify and assess the

following goals of our approach: (1) the ability and ease to

adopt RV-awareness by different VAE-based architectures,

(2) the improvement in image reconstruction , (3) the im-

provement of generative capabilities, while (4) maintaining

satisfactory or even improved training convergence time.

To tackle these goals we used four different VAE-based

architectures, i.e., the original VAE [20], β-TCVAE [4],

Soft-Intro-VAE [7] and DC-VAE [27]. The first two are

very popular VAE approaches, whereas the latter two are

recent state-of-the-art approaches. These methods were

trained and tested on several datasets, each using the re-

spective implementation by the authors wherever possible.

The VAE and β-TCVAE architecture implementations were

used from [40]. Our evaluation employed the following

datasets: MNIST [22], CIFAR-10 [21], CelebA [23] and

CelebA-HQ [18] resized to 128× 128.

5.1. Constructing RV-aware VAE architectures

Using the modifications of Sec. 4.2 we created an RV-

based version of all the above architectures. As mentioned,

the modifications were on the decoder and the loss function.

In practice, in all architectures we omitted the reparameteri-

zation trick, and sent the encoded distributions directly into

the respective decoders.

The loss adjustment described in Sec. 4.3 was employed

by all architectures and was added to their originally de-

fined losses. Specifically, for every output RV tensor Y , the

E[Y] was responsible for minimizing the reconstruction er-

ror, while var[Y] was used for the added loss Lc described in

Eq. (14), with λ = 50 for all the experiments. All architec-

tures were trained using the proposed hyper-parameters in

their respective manuscripts and provided code and trained

for 150 epochs.

5.2. Implementation details

We implemented the modules described in Sec. 3 using

PyTorch [28]. We used implementations (also in PyTorch),

of all the architectures we experimented with, and replaced

the appropriate network layers with their RV-enabled re-

spective ones. In practice, we found that our modified VAE

architecture implementation is about 3 times slower. How-

ever, it only required approximately 30% more FLOPS than

the unmodified version. Therefore, we believe that suitable

optimizations, such as implementing demanding modules

like ReLU and Batch Normalization in C++ API, can sig-

nificantly increase the overall speed of our implementation.

More specifically, we expect the speed to improve to around
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Figure 3: The epoch of training (as bar height) that each

architecture reached its minimum validation loss value on

the CIFAR-10 dataset.

70% of the unmodified version, as judged by the number of

additional FLOPS required by our approach. Overall, our

experiments demonstrate that the benefits of our approach

in terms of improved reconstruction error and generative ca-

pabilities justify the additional computational cost.

5.3. Training speed convergence comparison

With the elimination of sampling in the latent space

during training, an RV-based VAE network does not rely

on thoroughly sampling the training data space, since the

whole data distribution is being forwarded to the decoder.

This can lead to faster convergence. This is documented in

Fig. 3 which illustrates the time (in epochs) needed for each

VAE architecture to reach its minimum validation loss dur-

ing training. In all cases, the RV-aware architectures reach

their minimum loss in a similar or earlier epoch than their

original counterparts. Moreover, the minimum loss of RV-

based networks is always, by far, lower than the loss of the

original architectures, despite the fact that the loss of RV-

aware VAEs includes the additional, non-negative term, Lc.

5.4. Image reconstruction

To demonstrate the reconstruction capabilities of the RV-

aware VAEs, we conducted several experiments comparing

the original architectures with our RV-aware modified ones

on the employed datasets. Table 1 shows the Mean Square

Error (MSE) for all test sets of datasets between the orig-

inal images and their reconstructed ones. In all cases, our

proposed RV modifications enhance the reconstruction per-

formance of all the reported architectures, even by a large

margin in some cases. To further illustrate those results in a

qualitative context, we also provide some reconstructed test

samples in Figs. 4 to 6.

5.5. Image generation

The proposed RV modifications are also beneficial due

to their generative properties. To illustrate this, we report

in Table 2 the Fréchet Inception Distance (FID) based on

50, 000 generated samples. For generating new samples, we

follow the same procedure as in the original VAEs by sam-

pling the mean from a Gaussian distribution and fixing the

variance to var[X] = 1. For all cases, we observe lower

FID in the modified RV-aware networks. We can also see

in Figs. 7 to 9 some qualitative results of RV-aware gen-

erated samples compared to the samples generated by the

unmodified networks. Moreover, to show the continuity of

the latent space, in Fig. 10, we present generated images

that are created by interpolating between two latent space

samples.

5.6. Transferability (from RV-VAE to regular VAE)

Despite the proposed changes, the trainable parame-

ters of the resulting, RV-aware networks remain the same.

Therefore, after training, it is conceivable to consider the

same network weights transferred to a non-RV counterpart.

This should be expected to operate without any changes

since the Expected Values of the involved quantities be-

have linearly: For scalar parameters a and b, a relation

Y = aX + b between two RVs X and Y implies that

the Expected Value of their samples is similarly related,

E[y ∼ Y ] = aE[x ∼ X] + b. Therefore, we can transfer

the learned parameters of an RV-VAE network to a regular

VAE and keep its functionality.

To provide evidence of this, in Fig. 11 we present some

examples of reconstructed images. Specifically, we can

observe that the third row which presents the reconstruc-

tions from a non-RV network that had its parameters trans-

ferred from a RV-aware one, has similar results to the last

row which has the reconstructions of the original RV-aware

network. Moreover, as stated previously these results are

significantly better than the ordinary trained non-RV net-

work, second row. This is also justified by the MSE be-

tween the RV-aware reconstruction and the reconstruction

of transferred RV parameters to a non-RV network to be

1.85× 10−6.

Apart from the theoretical feasibility and the experimen-

tal validation, it is also useful to address the reason to follow

such an approach. Training an RV-aware network is demon-

strably beneficial as already presented. Furthermore, eval-

uating using a non-RV network is computationally faster

since the computation of the variances in each layer is no

longer necessary. Essentially, the proposed approach acts

as a regularization technique that enables better/more accu-

rate results.
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MSE ↓ on MNIST MSE ↓ on CIFAR-10 MSE ↓ on CelebA MSE ↓ on CelebA-HQ

Method Original RV-VAE Original RV-VAE Original RV-VAE Original RV-VAE

(ours) (ours) (ours) (ours)

VAE [20] 0.0081 0.00050.00050.0005 0.0763 0.01070.01070.0107 0.0478 0.01920.01920.0192 - -

β-TCVAE [4] 0.0021 0.00040.00040.0004 0.0412 0.01570.01570.0157 0.0412 0.01300.01300.0130 - -

DC-VAE [27] - - 0.1245 0.11390.11390.1139 - - - -

Soft-Intro-VAE [7] 0.0194 0.01290.01290.0129 0.0211 0.01550.01550.0155 - - 0.0247 0.01510.01510.0151

Table 1: Image reconstruction results for all datasets.

Figure 4: Reconstructions of CelebA-HQ images (1st row) by Soft-Intro-VAE (2nd row) and RV-Soft-Intro-VAE (3rd row).

(a) VAE (b) β-TCVAE

Figure 5: 1st rows: CelebA images; 2nd, 3rd rows: recon-

structions by original VAEs & their RV-aware versions.

FID ↓ FID ↓
CIFAR-10 CelebA-HQ

Method Orig. RV-VAE Orig. RV-VAE

(ours) (ours)

DC-VAE [27]* 26.78 23.4423.4423.44 - -

Soft-Intro [7]* 5.31 5.265.265.26 2.85 2.822.822.82

Table 2: Comparison of FID scores for CIFAR-10 and

CelebA-HQ datasets. *FIDs calculated by the implemen-

tations provided by the authors.

6. Summary
In this work, we have introduced an approach to incorpo-

rate continuous distributions into VAE architectures, which

(a) VAE (b) β-TCVAE

(c) DC-VAE (d) Soft-Intro-VAE

Figure 6: 1st rows: CIFAR-10 images; 2nd, 3rd rows: re-

constructions by original VAEs & their RV-aware versions.

improves latent space utilization, using the algebra of ran-

dom variables to treat decoder node activations as distri-

butions. This modification can be readily applied to most

VAE architectures by simply replacing decoder layers with

RV-aware ones, followed by retraining. This novel prior de-
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Figure 7: Generated samples on CelebA-HQ using original Soft-Intro-VAE (1st row) and our RV-Soft-Intro-VAE (2nd row).

(a) DC-VAE

(b) Soft-Intro-VAE

Figure 8: Generated samples on CIFAR-10 using original

VAEs (1st rows) and their RV-aware versions (2nd rows).

(a) VAE (b) RV-VAE

Figure 9: Generated samples on CelebA using (a) original

VAE and (b) RV-VAE.

parts from the traditional sampling-based method, enhanc-

ing both reconstruction quality and generative result fidelity

without hindering convergence rate. Future work aims at

expanding the proposed mathematical framework with ad-

ditional RV-aware ANN layers. We will also explore the

viability of this approach in network types other than VAEs.
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