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Abstract

Neural networks are prone to learn easy solutions from
superficial statistics in the data, namely shortcut learn-
ing, which impairs generalization and robustness of mod-
els. We propose a data augmentation strategy, named
DFM-X, that leverages knowledge about frequency short-
cuts, encoded in Dominant Frequencies Maps computed
for image classification models. We randomly select X%
training images of certain classes for augmentation, and
process them by retaining the frequencies included in the
DFMs of other classes. This strategy compels the mod-
els to leverage a broader range of frequencies for clas-
sification, rather than relying on specific frequency sets.
Thus, the models learn more deep and task-related seman-
tics compared to their counterpart trained with standard
setups. Unlike other commonly used augmentation tech-
niques which focus on increasing the visual variations of
training data, our method targets exploiting the original
data efficiently, by distilling prior knowledge about de-
structive learning behavior of models from data. Our ex-
perimental results demonstrate that DFM-X improves ro-
bustness against common corruptions and adversarial at-
tacks. It can be seamlessly integrated with other augmenta-
tion techniques to further enhance the robustness of mod-
els. Codes are available at https://github.com/
nis-research/dfmX-augmentation.

1. Introduction

Neural networks are subject to shortcut learning, namely

a tendency to relying on simple solutions to optimization

problems, based on spurious correlations between data and

ground truth. Shortcut solutions are thus one of the factors

that negatively affect generalization and robustness perfor-

mance of trained models [8, 22]. Mitigating shortcut learn-

ing was shown to be beneficial for enhancing the general-

ization performance and robustness of models [18, 2]. By

enforcing models to learn from deeper task-related seman-

tics instead of shallow correlations between data and ground

truth that facilitate easy predictions during training, shortcut

learning can be effectively addressed [15, 7, 14, 16, 17]. Ex-
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Figure 1: DFM-X exploits the original data efficiently, us-

ing model-distilled knowledge about shortcut learning be-

havior that impairs the generalization and robustness of

models, rather than directly adding visual variations to the

images like commonly used augmentation techniques.

isting methods to mitigate the learning of shortcut features

include identifying and imitating shortcut features in the

other class to reduce their specificity for classification [15],

as well as measuring the amount of shortcut information

present in the training data [7, 14, 16, 17]. However, these

approaches are often limited to visually observable shortcut

features (e.g. color patches and lines) or complex training

strategies to learn image representations containing fewer

shortcut features. Imitating or inducing shortcut features

in the images of other classes [15] is a type of data aug-

mentation. Commonly used data augmentation techniques,

e.g. AugMix [10] and AutoAugment [5], do not usually

take shortcut learning into account, but focus more on di-

rectly increasing data variety to bridge the distribution gap

between training and testing data, improving the generaliz-

ability of models.

In this work, we propose a data augmentation method

called DFM-X. It is based on prior knowledge about fre-

quency shortcuts [21, 23], which are identified as small

sets of specific frequencies that contribute to achieving

high-accuracy classification. We compute Dominant Fre-

quency Maps (DFMs) for each class of a previously trained

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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model [21], and use them as prior knowledge of where de-

structive learning behavior happens in existing models to

perform targeted data augmentation. Our work shares a

similar idea with imitating shortcut features, like including

color patches specific for a certain class [15], in the images

of the other class. In this work, we imitate frequency short-

cut features to reduce the reliance of models on specific fre-

quency sets for classification, thus enforcing models to learn

from a wider range of frequencies. We leverage the algo-

rithm proposed in [21] to measure the dominant frequencies

that play a crucial role in classifying each class, resulting

in dominant frequency maps (DFMs). We utilize DFMs in

our augmentation approach as prior knowledge (distilled by

models from the data) to avoid unwanted learning behavior.

This improves the generalizability and robustness of models

to common corruptions and adversarial attacks in computer

vision. We demonstrate the difference between DFM-X and

other commonly used augmentation techniques in Figure 1.

Compared with AugMix and AutoAugment, DFM-X makes

an effort to exploit the original data in an efficient way, us-

ing the model-distilled knowledge about learning behavior

that impairs the generalization and robustness of models,

rather than directly adding variations to the images. Our

contributions are:

• We propose a novel augmentation method called

DFM-X to improve the generalization and robustness

of models against common corruptions and adversar-

ial attacks without sacrificing their performance on the

original test images.

• DFM-X exploits model-distilled prior knowledge from

data about frequency shortcuts, targeting the mitiga-

tion of destructive learning behavior which impairs

generalization, unlike commonly used augmentation

techniques that focus on increasing data variety di-

rectly but rarely consider implicit problems in the data.

2. Related works
We review existing research related to shortcut learning

mitigation and data augmentation in the frequency domain.

Shortcut learning mitigation. Avoiding learning short-

cuts in the data is a promising approach to improve gener-

alization and corruption robustness by encouraging models

to learn more meaningful task-related semantics. Existing

work has explored different strategies to address shortcut

learning and its impact on model performance.

One approach is to explicitly identify and manipulate

shortcuts present in the data. The authors in [15] identi-

fied shortcuts (i.e. color patches) in a class and induced

similar patches in the other class. This forces the models to

ignore spurious correlations between the color patches and

the class, thus effectively mitigating the influence of short-

cuts. Another line of research focuses on addressing short-

cut learning without explicitly identifying shortcuts. The

work of [16] proposed a regularization term that decouples

feature learning dynamics, allowing the networks to learn

from as many features as possible rather than a subset of

features that easily minimizes cross-entropy loss. Similarly,

[6] used an auxiliary network with low capacity to measure

the degree of shortcut information in images, because im-

age classes containing shortcuts are easier to learn in early

training stages and a low-capacity network is more prone to

shortcut learning than a high-capacity one. Leveraging this,

the target network with high capacity can selectively learn

less from images with high shortcut degrees. Other methods

use gradient-based scores [1] to measure the shortcut degree

of training samples or adversarial training [14, 17] to learn

image representations containing less shortcut information.

Existing methods mainly focus on mitigating learning

shortcut features that are visually observable. Our work, in-

stead, aims at the mitigation of shortcut implicit in the data

from a frequency perspective. We exploit the learned fre-

quency shortcuts as prior knowledge of unwanted learning

behaviors, and learn to avoid them by using the proposed

DFM-X augmentation strategy in the training.

Frequency-based data augmentation. Data augmenta-

tions applied to images are usually spatial transforma-

tions, such as flipping, rotation, and cropping. These are

commonly used in augmentation techniques such as Aug-

Mix [10], AutoAugment [5], AugMax [20], among oth-

ers. Inspired by the research analyzing the learning be-

havior in the frequency domain of neural networks (NNs),

there is a trend in developing frequency-based augmenta-

tion techniques. Chen et al. [4] discovered that enforcing

NNs to learn more from the phase spectrum than the ampli-

tude spectrum can improve model robustness toward com-

mon corruptions. Xu el al. [25] proposed amplitude-mixed

augmentation, where NNs are trained with phase-invariant

images with fused amplitude spectrum because the phase

information is considered to be robust to domain change.

Rather than mixing frequency information, the work

of [11] drops frequency components of images if their dis-

crete cosine transformation coefficients are below a ran-

domly selected threshold. Inspired by the work [27] which

demonstrates how noise consisting of different frequency

affect classification performance, Soklaski et al. [19] added

Fourier-basis noise to the operation candidate pool in the

AugMix framework [10]. The work in [24, 26] proposed

Fourier domain adaptation for segmentation tasks and deep

metric learning respectively, which replaces the low fre-

quency of target images with that of source images. As

low frequency contains shape information, the annotations

of the source images are used as ground truth for training.
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Figure 2: The scheme of DFM-X augmentation. For each training epoch, X% training images are randomly selected for

augmentation. A randomly chosen DFM serves as a mask to filter the Fourier spectrum of the images. If the DFM and the

image belong to the same class, the image is not processed. Thus, the images of class i are filtered with the DFM of class k
(i �= k). This reduces the specificity of the frequency sets to the classification of the corresponding classes, thus mitigating

frequency shortcut learning.

Most augmentation approaches focus on increasing data

variety to bridge the distribution gap between training and

testing data, or enforcing specific characteristics that benefit

the performance. However, they do not consider shortcuts

in the data during training. We develop an augmentation

strategy based on prior knowledge about frequency short-

cuts that we gain by analyzing models trained for image

classification. We devise a form of augmentation, in which

the models are induced to exploit a larger amount of fre-

quency components and avoid learning shortcut solutions,

thus improving model robustness against common corrup-

tions and adversarial attacks.

3. Methods

As discovered in [21], convolutional neural networks can

use small, specific sets of frequencies, i.e. frequency short-

cuts, to classify images of certain classes. Because short-

cuts harm the generalization of models, we aim to develop

an augmentation technique, to improve model robustness

and generalization performance by mitigating the learn-

ing of frequency shortcuts (prior knowledge distilled from

data). We achieve this by reducing the reliance of models

on specific frequency sets for the classification of shortcut-

affected classes. The models thus rely on a wider range of

frequencies to classify images and are induced to learn more

semantics. We further evaluate the benefits on corruption

robustness and adversarial robustness of models.

3.1. DFM-X augmentation

CNNs can be biased toward specific sets of frequencies

to achieve classification [21]. Our goal is to reduce such

bias and enforce the models to learn more semantics, by

inducing the use of larger sets of frequencies. Hereby, we

design a DFM-based augmentation technique.

Obtaining DFMs: model-distilled prior knowledge.
DFMs record the importance of each frequency to the clas-

sification of a certain class. They can carry knowledge of

shortcuts in the data which are learned by a model. We

use them as priors in our augmentation approach to avoid

unwanted shortcut learning behavior, exploiting data more

efficiently and resulting in robust models.

The algorithm in [21] computes DFMs by evaluating

the importance of frequencies from images based on the

degradation of classification performance. To compute the

DFM of a certain class, they iteratively remove an individ-

ual frequency from the Fourier spectrum of images of the

class in the test dataset, and measure the loss in classifica-

tion. If the degradation is above a certain threshold, the fre-

quency is considered important to the classification of the

class and it is kept in the Fourier spectrum of images for

the following iterations. Otherwise, less important frequen-

cies are removed. We limit the performance degradation to

be within 30% when the models classify the images of the

class retaining only the dominant frequencies, compared to

the standard performance. One can obtain DFMs after the

importance of each frequency of the images of the corre-

sponding classes is measured, which are in the form of bi-

nary masks demonstrating the specific sets of frequencies

possibly used as shortcuts for classification (see examples

of DFMs in Figure 2). Through leveraging the information

contained in the DFMs, we guide the learning behavior of

models, aiming to reduce their reliance on specific sets of
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frequencies associated with shortcut learning.

Augmentation strategy. We show the schematic of our

augmentation strategy in Figure 2. Given a dataset contain-

ing images {xc
m} where c is the class of the mth image

in the dataset, we compute the DFM of each class for a

model f . We use the DFMs as priors to guide the train-

ing of new models, as they can carry information about un-

wanted learning behavior. We randomly select X% training

images to be augmented. This helps to control the impact

of augmentations by adjusting the number of images being

augmented. The selected images are augmented by retain-

ing the dominant frequencies of other classes. That is, we

use the DFMs as masks to filter the Fourier spectrum of the

images:

x̂i
m = F−1[F [xi

m]�DFMk] (i �= k),

where xi
m is the mth image in the dataset of class i, DFMk

is the dominant frequency map of a randomly selected class

k, F and F−1 indicate the Fourier transform and the in-

verse transform, and x̂i
m is the augmented version being fil-

tered by the DFM. We apply element-wise multiplication of

the Fourier spectrum of xi
m and DFMk (the process of fil-

tering), and obtain the augmented image x̂i
m through com-

puting the inverse Fourier transform of the filtered Fourier

spectrum of xi
m. Note that, i is not equal to k. This en-

forces that the models learn from the dominant frequencies

of class k to classify the images of class i. To sum up,

DFM-X augmentation mitigates frequency shortcut learn-

ing by highlighting features or visual cues across the whole

dataset that are originally specific for certain classes.

3.2. Evaluation of corruption robustness

Common image corruptions are visual transformations

applied to images and might affect the ability of models to

extract semantic features (e.g. Gaussian noise and defocus

blur [9]), thus negatively influencing model robustness. We

utilize the mean corruption error (mCE) and the relative

corruption error (rCE) to evaluate the corruption robustness

of models on datasets containing sub-datasets, e.g. CIFAR-

C that are corrupted by one corruption [9], computed as:

mCE =
1

|C|
∑

c∈C

∑5
s=1 CE

f
s,c∑5

s=1 CE
baseline
s,c

,

rCE =
1

|C|
∑

c∈C

∑5
s=1(E

f
s,c − Ef

clean)∑5
s=1(E

baseline
s,c − Ebaseline

clean )
,

where CEf
s,c is the classification error of model f on a test

set corrupted by c (e.g. defocus blur and shot noise) with

severity s ∈ {1, 2, 3, 4, 5}. The higher the severity, the more

influence the corruption effect has on the images. C is the

set of corruptions in the entire test set and baseline is the

baseline model for comparison. The mCE measures the rel-

ative classification performance of a model normalized by

that of the baseline. The rCE additionally measures the per-

formance degradation of model f on corrupted images w.r.t.

their clean version. When mCE and rCE are less than one,

this indicates that model f is more robust than the baseline,

as it has less classification error in general. Additionally,

we use standard accuracy (SA) to evaluate the performance

of models on the original test dataset. The robust accuracy

(RA), instead, is the average accuracy of the models tested

on the corrupted versions of the test set.

3.3. Evaluation of adversarial robustness

We evaluate the accuracy of models under FGSM and

PGD attacks. These attacks usually have a bias toward high-

frequency. As shown in [3], inducing low-frequency bias to

models during training can improve adversarial robustness.

Differently, our augmentation approach enforces models to

learn from a wider range of frequencies with the model-

distilled prior knowledge from data, which might be benefi-

cial for adversarial robustness. We use L∞-norm bounded

perturbation ε ranging from 1/255 to 10/255. For the PGD

attack, we use 10 steps and set the step size 2.5ε/10 to en-

sure that the boundary of the ε-ball is reached.

4. Experiments and results
4.1. Datasets

We use CIFAR-10 [12], which contains 10 classes of

50000 training images and 10000 testing images. For the

evaluation of corruption robustness, we use its corrupted

variant CIFAR-C [9], which includes 19 corrupted subsets.

The 19 corruptions are categorized into four groups, includ-

ing noise (Gaussian, impulse, shot, speckle), blur (defocus,

glass, Gaussian, motion, zoom), weather (brightness, fog,

frost, snow, spatter), and digital transformation (contrast,

elastic, JPEG compression, pixelate, saturate). For each

corruption, there are five levels of severity. High severity

indicates a high impact of corruption on images.

4.2. Training setup

We train ResNets for 200 epochs on the CIFAR-10

dataset. The initial learning rate is 0.01, reduced by a

factor of 10 if the validation loss does not decrease for

10 epochs. We use batch size 64 and an SGD optimizer

with momentum 0.9 and weight decay 10−4. Note that,

low-capacity models are more prone to shortcut learning

than high-capacity models [6] and shortcuts in the data are

supposed to be architecture-agnostic. Thus, we compute

the DFMs of ResNet18, a relatively low-capacity model,

in DFM-X augmentation. To compare DFM-X with other

commonly used augmentation techniques, we train mod-
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Figure 3: An image of truck is augmented by AugMix (the

first row), AutoAugment (the second row), and DFM-X (the

third row). The fourth row demonstrates the corresponding

DFM used to obtain the images in the third row.

Model SA RA mCE (%) rCE (%)

ResNet18 92.15 77.49 100 100
+ DFM-30 92.11 80.43 87.94 75.92
+ DFM-50 92.10 81.4 86.61 78.73
+ DFM-70 92.27 81.2 85.36 76.74

+ AugMix 93.39 83.47 76.42 72.71
+ AugMix + DFM-30 91.44 83.65 80.68 58.18
+ AugMix + DFM-50 91.99 84.56 77.33 62.58
+ AugMix + DFM-70 91.08 84.2 80.3 57.19

+ AutoAugment 93.47 82.78 75.81 65.86
+ AutoAugment + DFM-30 92.43 83.29 78.28 64.72
+ AutoAugment + DFM-50 92.72 84.37 73.23 59.48
+ AutoAugment + DFM-70 91.39 83.65 79.97 59.45

ResNet34 93.02 79.84 90.16 93.34
+ DFM-30 93.75 82.32 78.65 80.76
+ DFM-50 93.51 81.57 80.59 79.07
+ DFM-70 92.7 81.93 81.7 72.26

+ AugMix 92.18 83.71 79.69 66.63
+ AugMix + DFM-30 93.49 86.42 65.81 54.1
+ AugMix + DFM-50 92.74 85.77 70.06 54.1
+ AugMix + DFM-70 93.28 85.45 69.27 58.14

+ AutoAugment 94.08 83.66 72.97 70.32
+ AutoAugment + DFM-30 93.71 85.72 66.38 57.58
+ AutoAugment + DFM-50 93.46 85.55 67.42 56.36
+ AutoAugment + DFM-70 93.35 85.96 67.53 57.06

Table 1: Performance of ResNets on CIFAR-10 and CIFAR-

C. The best values of each group of models are in bold and

the best values for ResNet18 and ResNet34 are underlined.

els with AugMix or AutoAugment. Example images aug-

mented by AugMix, AutoAugment and the proposed DFM-

X are shown in Figure 3.

4.3. Robustness against common corruption

We report the results of the models trained with different

augmentation strategies in Table 1. The best values of mod-

els with the same architecture trained with namely DFM-

X, AugMix + DFM-X and AutoAugment + DFM-X, are

highlighted in bold, and the best values for ResNet18 and

ResNet34 are underlined.

DFM-X benefits corruption robustness. ResNets

trained with DFM-X augmentation are more robust against

common corruptions than ResNets trained without DFM-X.

They have higher or comparable standard accuracy than

ResNets trained without DFM-X, as well as higher robust

accuracy. This indicates that DFM-X benefits the robust-

ness of models to common corruptions without impairing

their performance on the clean dataset. We conjecture that

DFM-X enforces models to learn from a wider range of

frequencies with the prior knowledge provided, and thus

more meaningful and task-related semantics is used by the

models, benefiting their corruption robustness.

Comparison with existing augmentations. We compare

DFM-X to existing and largely-used augmentation tech-

niques like AugMix [10] and AutoAugment [5]. The mod-

els trained with DFM-X, AugMix, and AutoAugment have

similar SA and RA, while the model trained with DFM-X

has higher mCE than the models trained with AugMix or

AutoAugment. The rCE of models trained with DFM-X is

also higher than that of models trained with AutoAugment

or AugMix. We attribute this to the fact that other aug-

mentation techniques focus on increasing data variety to re-

duce the distribution gap between training and testing data,

and may use augmentations that are visually similar to the

corruptions in CIFAR-C. Our approach, instead, focuses on

exploiting as much information as possible from the clean

training data without additionally overlaying corruption-

like variations, learning more meaningful and task-related

semantics. We thus investigate the effectiveness of com-

bining DFM-X with another augmentation technique, as

they augment images differently (DFM-X exploits data ef-

ficiently while the others increase data variety by adding

corruption-like variations).

Boosted robustness with a complementary technique.
We apply DFM-X together with either AugMix or Au-

toAugment during training, and observe that this con-

tributes to further improving corruption robustness (Ta-

ble 1). For example, ResNet18 trained with Aug-

Mix/AutoAugment and DFM-50 augmentations generally

achieve higher robust accuracy than the models trained

with only AugMix or AutoAugment. Moreover, they have

lower or comparable values of mCE and rCE, compared to
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those trained with AugMix or AutoAugment only. When

ResNet34 is trained with DFM-30 and AugMix or Au-

toAugment augmentations, the models demonstrate more

robustness than those trained with only one of the augmen-

tation techniques. This indicates that combining augmenta-

tion techniques that are complementary can further benefit

corruption robustness. For the future design of augmenta-

tion techniques, we should focus on inspecting data itself

and exploiting it more efficiently, rather than directly in-

creasing the variety of data by adding visual variations.

Intriguingly, when ResNet18 and ResNet34 are trained

with AugMix, both models show similar corruption robust-

ness, though ResNet34 has a larger model capacity than

ResNet18. ResNet34 + AugMix even has a slightly worse

mCE than ResNet18 + AugMix. However, when models

are trained with AugMix + DFM-X, ResNet18s have worse

mCEs than that trained solely with AugMix. ResNet34

trained with AugMix + DFM-30, instead, demonstrates sig-

nificantly improved corruption robustness (mCE equal to

65.81). As low-capacity models are more prone to shortcut

learning than high-capacity models, DFM-X together with

AugMix might not be enough to mitigate shortcut learning

in ResNet18 but benefits the robustness of ResNet34. We

conjecture that for low-capacity models, there needs ex-

tra regularization to overcome shortcuts. Moreover, Aug-

Mix results in displacement effects that are visually similar

to those in some DFM-augmented images (see Figure 3).

Thus, there is an partial overlap in the augmentation ef-

fects. When combining DFM-X with other augmentation

techniques, it is important to consider what kinds of opera-

tion are appropriate and complementary to DFM-X.

The choice of X. Our results show that the percentage

of training images subject to augmentation via DFM-X

does not influence significantly on the corruption robust-

ness when the models are trained with DFM-X solely (they

have close RA, mCE and rCE). However, when DFM-X is

incorporated with AugMix or AutoAugment, models with a

different capacity might perform better as a different value

of X is chosen. For instance, ResNet18 prefers DFM-50

while ResNet34 prefers DFM-30. We attribute this to model

capacity. As a relatively low-capacity model, ResNet18 suf-

fers more from shortcut learning than ResNet34, and thus it

needs more regularization during training. The more im-

ages are augmented, the more regularization is imposed on

the training process.

Robustness against different corruption types. In Ta-

ble 2, we present a detailed overview of the robustness of

ResNet18 trained with different augmentation techniques

against the four corruption categories in CIFAR-C, namely

noise, blur, weather conditions, and digital transformation.

The best results of ResNet18 trained with DFM-X, AugMix

Model Noise Blur Weather Digital

ResNet18 100 100 100 100
+ DFM-30 88.75 91.6 85.2 86.6
+ DFM-50 78 94.6 84.8 87.2
+ DFM-70 86.5 91 84 79.7

+ AugMix 62 86.2 75.2 79.8
+ AugMix + DFM-30 53.5 92.2 85.6 86.2
+ AugMix + DFM-50 50.75 91 79.6 82.6
+ AugMix + DFM-70 50.5 95.4 83.8 85.8

+ AutoAugment 72.75 85.4 63.8 80.8
+ AutoAugment + DFM-30 62 95.8 73.4 78.2
+ AutoAugment + DFM-50 61.75 89 68.6 71
+ AutoAugment + DFM-70 61.5 97.8 77.4 79.8

Table 2: The corruption error (CE) (%) of ResNet18s

trained with different augmentation techniques on each cor-

ruption type (Baseline: ResNet18). The best values in each

group are highlighted in bold.

+ DFM-X and AutoAugment + DFM-X are highlighted in

bold respectively. Observed from values in bold, models

trained with DFM-X demonstrate better robustness against

all types of corruption than the models trained without

DFM-X. Among the four corruption types, the improve-

ment in the robustness toward blur corruption is relatively

lower than that of the other three types. As demonstrated

in [27], blur corruptions, such as defocus blur and Gaus-

sian blur, have energy highly concentrating on middle-high

frequencies. Our augmentation technique enforces models

to look into a wider range of frequencies for classification,

and thus, the models are relatively less robust to corrup-

tions having a specific energy concentration in the Fourier

spectrum than those having a rather even energy distribution

over the spectrum, e.g. Gaussian and shot noise.

4.4. Robustness against adversarial attacks

We evaluate the adversarial robustness of the models

trained with different augmentations under FGSM and PGD

attacks. We select ResNet18 + AugMix/AutoAugment +

DFM-50 and ResNet34 + AugMix/AutoAugment + DFM-

30, as models with a different capacity prefer a different

percentage of images to be augmented. We report the clas-

sification accuracy of the models under the FGSM and PGD

attacks in Tables 3 and 4, respectively.

Learning from more frequencies improves robustness.
We observe that ResNets trained with DFM-X show im-

proved adversarial robustness to the FGSM and PGD at-

tacks. Unlike PGD and FGSM adversarial training which

sacrifices performance on natural images [13], DFM-X

maintains high model performance on the original test set

while improving the robustness of models to both FGSM

and PGD attacks. We attribute this to the wider learning

range of frequencies, when compared to models trained

with standard setups. DFM-X augments images based on
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Model L∞-norm bounded perturbation of size ε
1/255 2/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

ResNet18 86.47 75.66 64.03 54.3 46.46 40.05 35.04 31.83 28.92 26.47
+ DFM-50 87.71 78.97 69.43 60.7 53.05 46.55 41.04 37.18 34.09 31.61

+ AugMix 88.02 79.27 69.28 60.38 52.52 46.03 41.17 36.93 33.57 30.69
+ AugMix + DFM-50 88.29 79.97 71.07 62.41 55.23 48.75 43.38 38.92 35.03 31.67

+ AutoAugment 87.72 76.13 65.26 55.7 48.99 43.85 39.91 36.64 33.97 32.15
+ AutoAug + DFM-50 87.7 78.51 69.03 60.68 54.03 48.33 43.94 40.66 37.8 35.43

ResNet34 87.7 77.53 67.61 58.12 50.71 45.21 40.32 36.69 33.52 30.91
+ DFM-30 88.45 79.17 70.48 63.14 57.32 52.96 48.88 46.03 43.72 41.81

+ AugMix 88.71 79.56 70.14 60.99 52.62 45.78 40.12 35.58 31.85 28.72
+ AugMix + DFM-30 88.8 81.16 72.23 63.34 55.37 48.41 42.17 37.45 33.55 30.35

+ AutoAugment 87.39 76.76 65.98 57.06 50.48 45.3 41.04 38.05 35.55 33.68
+AutoAugment + DFM-30 89.23 81.96 74.92 68.34 63.01 58.81 54.93 51.64 49.13 46.94

Table 3: Accuracy (%) of models under FGSM attack. The best values of ResNet18 and ResNet34 are highlighted in bold.

Model L∞-norm bounded perturbation of size ε
1/255 2/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

ResNet18 85.39 70.79 53.5 38.43 26.09 18.13 12.98 9.95 7.98 6.96
+ DFM-50 86.93 75.4 60.63 45.88 33.61 24.8 18.51 14.15 11.16 9.09

+ AugMix 87.36 74.91 58.75 43.35 30.54 21.49 15.52 11.57 9.07 7.41
+ AugMix +DFM-50 87.71 76.86 63.81 51.01 38.22 29.99 22.95 17.3 13.63 11.14

+ AutoAugment 86.08 67.37 46.96 32.17 21.48 15.03 11.29 8.63 7.01 6.1
+ AutoAugment + DFM-50 86.45 71.45 54.86 40.13 28.75 20.79 15.79 12.27 9.89 8.15

ResNet34 86.85 73.35 57.26 42.31 30.72 21.72 15.42 11.55 8.74 7.38
+ DFM-30 87.94 75.03 58.78 44.29 33.2 25.45 20.16 16.35 13.87 11.72

+ AugMix 88.18 76.39 62.5 48.74 36.88 27.59 20.52 15.6 12.17 9.8
+ AugMix + DFM-30 88.25 78.38 65.2 51.62 39.6 29.55 22.58 17.35 13.69 10.93

+ AutoAugment 86.05 68.98 49.95 34.35 24.14 17.62 13.11 10.42 8.69 7.39
+ AutoAugment + DFM-30 89.41 76.97 61.64 46.6 35.1 26.33 20.89 16.94 14.32 12.35

Table 4: Accuracy (%) of models under PGD attack. The best values of ResNet18 and ResNet34 are highlighted in bold.

the prior knowledge of the reliance of models on specific

frequencies, with the aim of reducing it during training.

Thus, the frequency bias of models associated with their

vulnerability to adversarial noise is reduced, benefiting ad-

versarial robustness.

DFM-X vs. AugMix. In Figure 4 we compare the results

of ResNet34 trained without augmentation or with DFM-

30, AugMix, and AugMix + DFM-30. We observe that the

model trained with AugMix (see the purple line) demon-

strates less robustness to FGSM attack, compared to the

model trained with DFM-30 (see the blue line). Regard-

ing the PGD attack, both models show comparable robust-

ness. Combining AugMix with DFM-30 does not obtain

more robustness to the FGSM attack when ε becomes large,

but the model is robust to the PGD attack. From Table 3,

ResNet18 trained with AugMix shows similar robustness to

the FGSM attack to the one trained with DFM-50, but it

is less robust to the PGD attack. We conjecture that Aug-

Mix, resulting in images with similar displacement effects

to those augmented by DFM-X (see Figure 3), might in-

directly augment the frequency information of images like

DFM-X. But it is less effective than DFM-X, which em-

ploys model-distilled prior knowledge from the data in aug-

mentation, rather than randomly adding augmentations to

images. Combining DFM-X with AugMix avoids unwanted

learning behavior and increases data variety, thus obtaining

more adversarial robustness.

Reduced negative impact of AutoAugment. We demon-

strate in Figure 5 that ResNet34 trained with DFM-30

(see the blue line) has better adversarial robustness than

ResNet34 and ResNet34+AutoAugment. Interestingly,

training solely with AutoAugment impairs adversarial ro-

bustness slightly to FGSM attack and significantly to PGD

attack (see green lines in Figure 5). When combining DFM-

30 and AutoAugment (see the orange line), the model gains

more robustness to the FGSM attack, compared with the

one trained only with DFM-30. We observe from Tables 3

and 4 that AutoAugment also impairs the adversarial robust-

ness of ResNet18 to the FGSM and PGD attacks. Train-

ing the model with AutoAugment and DFM-X augmen-

tations benefits the adversarial robustness of the models.

Although AutoAugment alone harms the robustness, using
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(a)

(b)

Figure 4: ResNet34 trained without augmentation or with

DFM-30, AugMix, or AugMix + DFM-30 under (a) FGSM

attack and (b) PGD attack.

DFM-X avoids much performance degradation under the at-

tacks. From the augmented images in Figure 3, DFM-X

results in different variations from those augmented by Au-

toAugment. We attribute the models having better adver-

sarial robustness than those trained with only one of them

to the complementarity between DFM-X and AutoAugment

in terms of augmentation effects.

5. Conclusions
We propose DFM-X, an augmentation approach that

leverages prior knowledge about frequency shortcuts. Mo-

tivated by shortcut mitigation, our method aims at avoiding

unwanted shortcut solutions by enforcing models to learn

from a wider range of frequencies and thus more seman-

tics. DFM-X exploits data efficiently, as it targets implicit

problems in the data that might impair the generalization

and robustness of models, unlike other commonly used aug-

mentation techniques focusing on increasing data variety by

adding visual variations. Our experimental results show that

DFM-X enhances model robustness against common cor-

(a)

(b)

Figure 5: ResNet34 trained without augmentation or with

DFM-30, AutoAugment, or AutoAugment + DFM-30 un-

der (a) FGSM attack and (b) PGD attack.

ruptions and adversarial attacks without sacrificing the stan-

dard performance on the original test set. Combining DFM-

X with other commonly used augmentation techniques, e.g.

AugMix and AutoAugment, gains more robustness than us-

ing only one of them. DFM-X compensates for the weak-

ness of AutoAugment in impairing adversarial robustness.

We observe that the complementarity between augmenta-

tion techniques is important to model performance. Dis-

tilling prior knowledge about destructive learning behavior

from data helps exploit data more efficiently. We suggest

future research on designing augmentation strategies that

consider data characteristics instead of directly increasing

the visual variations of images to bridge the distribution gap

between training and testing data.
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