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1. Proof Mirroring Equivariance
The proof for the mirroring transformation is practically

identical to the proof for rotation, given in Section 3.2 of
the paper.

We use the function index, introduced in the paper. The
index function returns the indices of the input values used
by a convolutional or pooling layer to calculate the value
located at index (x, y) in the output:

index
([

x
y

])
=

[[
sx
sy

]
,

[
sx+ k − 1
sy + k − 1

]]
. (1)

Here s is the stride used for subsampling and k repre-
sents the kernel size. The output of the function is a square
patch, denoted as [u⃗, v⃗], where u⃗ and v⃗ represent the indices
of the top left and bottom right corner, respectively. The
sampled indices include all integer tuples within this patch.

Similarly to the R function in the paper, we now intro-
duce a function M , which takes an index (x, y) as input and
returns the indices mirrored horizontally:

Mn

([
x
y

])
=

[
n− 1− x

y

]
, (2)

where n indicates the width and height of the feature map
in which the index (x, y) is located. We further generalise
Equation 2 to an input patch [u⃗, v⃗] rather than a single coor-
dinate, resulting in Equation 3:

Mn ([u⃗, v⃗]) = Mn
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]
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]
,
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]] (3)

In the resulting output coordinates x1 and x2 get inter-
changed due to the mirroring of the patch: the top left corner
becomes the top right corner, while the bottom right corner
becomes the bottom left corner.

Given that our layer takes a feature map with a width and
height of i as input, we can write the width and height of the
output feature map as

o = ⌊ i− k

s
⌋+ 1. (4)

For a layer to be exactly equivariant, determining the
sampled indices and then mirroring should return the same
result as mirroring first and then determining the sampled
indices, which we can formally denote as

index
(
Mo
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x
y

]))
= Mi

(
index

([
x
y

]))
. (5)

To solve the left-hand side, we substitute Equation 2 into
Equation 1, yielding

index
(
Mo
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x
y
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=

index
([

⌊ i−k
s ⌋ − x
y

])
=[[

s⌊ i−k
s ⌋ − sx
sy

]
,

[
s⌊ i−k

s ⌋ − sx+ k − 1
sy + k − 1

]]
.

(6)

The same can be done for the right-hand side, by substitut-
ing Equation 1 into Equation 3, resulting in

Mi

(
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=
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]
,

[
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i− 1− sx
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.

(7)

Substituting Equations 6 and 7 into Equation 5, we find two
equations

s⌊ i− k

s
⌋ − sx = i− k − sx, (8)

s⌊ i− k

s
⌋ − sx+ k − 1 = i− 1− sx. (9)

Removing duplicate terms yields a single equation

s⌊ i− k

s
⌋ = i− k. (10)

Equation 10 is actually identical to the one found for rota-
tion equivariance. Therefore, when making a network that
is exactly equivariant to mirroring, the same restriction on
stride, kernel size and input size should hold as for rotation
equivariance.



2. Statistical Analysis of Significance

To determine the statistical significance of our results,
we compare each pair of models using an independent t-
Test testing the null hypothesis H0 : µa = µb. We use a
significance level α = 1.0× 10−2. However, since we per-
form 12 comparisons in total, we use Bonferroni correction
and find a new significance level α = 8.33 × 10−4. The
p-values resulting the the t-Tests for MNIST can be found
in Table 1 and in Table 2 for RotMNIST. The values were
calculated using a 100 repeats for each condition to ensure
we had a representative normal distribution for the perfor-
mance. We then visually confirmed the performance distri-
bution to be a normal distribution. Due to unequal variances
between the performance of P4 and Z2 networks on RotM-
NIST, a Welch’s t-Test was used to calculate the p-value for
comparisons including the Z2 network.

P4 (27) P4 (28) P4 (29)

Z2 (28) 1.43× 10−1 7.92× 10−82 1.09× 10−1

P4 (27) - 1.19× 10−62 9.97× 10−2

P4 (28) - - 3.03× 10−57

Table 1: p-values for two sided t-Test for different networks
trained on the MNIST dataset. The input dimension of the
network is indicated using parentheses.

P4 (27) P4 (28) P4 (29)

Z2 (28) 2.95× 10−99 1.53× 10−99 2.95× 10−99

P4 (27) - 4.54× 10−1 1.70× 10−1

P4 (28) - - 4.44× 10−1

Table 2: p-values for two sided t-Test for different networks
trained on the RotMNIST dataset. For p-values of compar-
isons containing the Z2 network, a Welch’s t-Test is used
due to unequal variances. The input dimension of the net-
work is indicated using parentheses.

For MNIST, we find a significant difference between our
exactly equivariant network and the other networks. For
RotMNIST we find no significant differences between the
P4 equivariant networks, but we do find that the Z2 equiv-
ariant network performs significantly worse than the others.

To assert the effect size, we look at the 95%-confidence
intervals, given in Table 3. We find that on MNIST, the ex-
actly equivariant network has a performance drop between
0.65% and 0.91% compared to the other networks. On
RotMNIST, P4 equivariant networks offer a performance
increase between 4.97% and 5.62% compared to a standard
CNN.

Model Equivariance MNIST RotMNIST

Z2CNN - (28) [98.44; 98.51] [91.35; 91.85]
P4CNN Approx (27) [98.47; 98.57] [96.86; 96.97]
P4CNN Exact (28) [97.66; 97.72] [96.85; 96.93]
P4CNN Approx (29) [98.37; 98.47] [96.82; 96.92]

Table 3: Network accuracy confidence interval on MNIST
and RotMNIST test sets. The standard deviation is calcu-
lated using a 100 runs with different seeds. The equivari-
ance column contains whether the network is exactly or ap-
proximately equivariant and the input dimensions of the net-
work in parentheses.

To make the analysis more robust, one could also choose
to model the performance according to two independent
variables: (1) type of equivariance and (2) input size. This
would require the additional training of two Z2CNN net-
works, one with an input size of 27 and another with an
input size of 29. Due to the scope of our work, we deemed
our current statistical analysis to be sufficient.


