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Abstract
Video question answering is a challenging task that re-

quires understanding the video and question in the same
context. This becomes even harder when the questions in-
volve reasoning, such as predicting future events or explain-
ing counterfactual events, because they need knowledge not
explicitly shown. Existing methods use coarse-grained fu-
sion of video and language features, ignoring temporal in-
formation. To address this, we propose a novel vision-
text fusion module that learns the temporal context of the
video and question. Our module expands question tokens
along the video’s temporal axis and fuses them with video
features to generate new representations with local and
global context. We evaluated our method on four VideoQA
datasets, including MSVD-QA, NExT-QA, Causal-VidQA,
and AGQA-2.0.

1. Introduction
Dominant multi-modal methods for understanding text

and video are Multi-Head Attention (MHA) and Cross-

Modal Attention (CMA) [19, 1, 28, 26, 16, 37, 30]. These

techniques capture overall context but can overlook fine-

grained information. For example, answering a question re-

quiring strong temporal understanding can be challenging.

Surprisingly, there has been little study of multi-modality

at diverse granularity levels. Previous methods used mean-

pooling or 3D-CNNs[29, 32, 13, 11] for temporal aggre-

gations, but global representations do not provide fine-scale

granularity needed for temporal or counterfactual questions.

In this work, we emphasize on two points.

1) Capturing fine-grained temporal context within
two different modalities can enhance a model’s ability
to understand temporally specific information. Previous

studies [34, 33, 13] have aggregated pre-extracted features

to learn global representations of videos and fuse them with

question features. However, these pre-extracted features are

already highly encoded by strong backbone models. As a
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Figure 1. Illustration of overall architecture. Local contexts(fine-

grained temporal contexts) are calculated by fusing scene fea-

tures(frame or object-graph, or both) and temporally encoded

question tokens.

result, the model cannot learn fine-grained context using

these implied features. We explicitly compared local-global

context learning with only global-context learning methods.

(see 4.2.1).

2) Using a temporal fusion module at a fine-grained
level can enhance a model’s ability to capture local con-
text. Previous studies have proposed replicating language

features and concatenating them with video’s temporal fea-

tures to achieve performance gains through local interac-

tion between video and text [36]. However, this method

ignores the fact that videos have an explicit temporal di-

mension while text does not. To address this issue, we en-

code text representation along the temporal axis to facilitate

capturing fine-grained temporal context. As revealed in sec-

tion 4.2.2, temporally encoded texts can learn better-fused

representations. To encode text in a temporal manner, we
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Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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utilize simple linear layers. The Temporal Fusion Module

is responsible for fusing expanded text and local video fea-

tures (as described in section 3.2.2) to produce fine-grained

temporal contexts. In summary, our contributions are as fol-

lows:

• We inject temporal information into the language to

produce fine-grained temporal contexts.

• We propose multi-modal temporal fusion module that

captures both local and global context to understand

muti-level temporal granularity.

• Our method improves upon prior art and achieves

state-of-the-art results on several benchmark question-

answering datasets, including the newly introduced

commonsense reasoning dataset Causal-VidQA and

AGQA-2.0.

2. Related Work
Current methods can be categorized into 1) Canonical

[10, 38, 11, 15, 38], and 2) Graph-based methods [34, 33, 9].

Canonical methods leverage the sequential nature of video

frames and question words but fail to capture fine-grained

relations among objects. Object-oriented graph-based ap-

proaches use extracted object regions as nodes and learn

several atomic representations and later aggregate them

with text features.

Graph Representation for VideoQA. There has been

growing interest in graph representation of visual and text

data for VideoQA [9, 11, 22, 18, 33]. These graph methods

are either static or fail to disambiguate temporal and spa-

tial context. VGT [34] proposed dynamic graphs to capture

temporal and spatial dynamics based on object regions.

Cross-Modal Representation Learning. After the suc-

cess of transformer architecture [30], it has been widely

adapted to map individual modalities into a common latent

space [20, 27, 21]. Further transformer-based methods aim

to learn joint image-text or video-text representations by uti-

lizing cross-modal attention or co-attention between input

modalities [19, 1, 28, 26, 16, 37]. Attempts have been made

to learn video-text representation for VideoQA based on

pre-computed object features [39] or UNITER based cross-

modal fusion layer [3, 14]. We propose to fuse video and

text modalities by encoding question tokens over the tem-

poral axis of the video to obtain representative features for

each frame.

Commonsense VideoQA. To develop commonsense

reasoning ability, it is necessary to understand temporal

information. There have been efforts to separate related

scenes from non-related scenes using invariant learning-

based grounding approaches [31, 12, 2, 17]. However, they

neglect that multi-level temporal granularity resides inside

causal scenes. A more generic way to comprehend infor-
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Figure 2. Detailed structure of Temporal Fusion Layers and Tem-

poral Encoding Layers illustrating local context learning. As [24]

utilize N independent layers to produce the N tokens, we also use

N number of 1 × 1 convolution layers to make N temporal con-

text tokens. The importance score ci reveals the current frame’s

relationship with the expanded question. By dot product of vector

xi with matrix ci, we get temporally encoded frame feature ti.

mation within both global and local contexts is to process

the video and language in a local-global manner.

3. Methodology
Using fusion layers, we propose a method having 3 ma-

jor components: 1) question temporal encoding layers, 2)

local context learning layers and 3) global context learning

layers.

3.1. Overview

Given a video V ∈ R
N×Dframe and a question Q ∈

R
SQ×Dtext , the goal is to find the correct answer A ∈

R
SA×Dtext . SQ, and SA denote the sequence lengths of

question and answer tokens, respectively. Dframe and Dtext

are the dimensions of frame and text features, respectively.

Formally, the VideoQA task can be formulated as Equation

1, where Ψ(·) is the VideoQA model and l is the number of

provided answer choices.

A = Ψ(V,Q,A∗) : A∗ = {a1, a2, ..., al} (1)

Our VideoQA model is built upon an object encoder

EO(·), a language model EL(·) for interpreting {Q,A}
pairs, a node transformer NT(·) for graphs nodes, an edge

transformer ET(·) for edges of the graph. The constructed

graph is fed into object-question Fusion Layer ΩO(·) to

produce locally temporal context tokens with Q. Simul-

taneously, another Fusion Layer ΩF (·) whose inputs are F
and Q generates frame-question temporal context tokens.

At this moment, we generate fine-grained temporal tokens

which capture temporally local contexts. Finally, local con-

text tokens are fed into a global transformer GT(·) to learn
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the global contexts. We use the Multi-Head Self Attention

layer [30] for global context learning. The details are ex-

plained in the below sections.

3.2. Multi-level Granularity Context Learning

Inspired by TokenLearner [25], we have built a Temporal

Expansion Layer and Temporal Encoder followed by Multi-

modal Fusion Layers. Detailed illustration can be found in

Figure 2.

3.2.1 Temporal Expansion and Encoder
The goal of temporal expansion is to project language fea-

tures along the temporal axis of local video features to cap-

ture the temporally local context. This is important for com-

monsense and temporal reasoning-based questions. The

Temporal Expansion Layer is built using linear layers, as

shown in Figure 2. N mapping layers {Wi}Ni=1 are used

to expand question tokens Q along the temporal axis. The

expanded question for the ith frame is formed as shown in

Equation 2, where q represents a question token. The output

of the Temporal Expansion Layer will have the same length

as N , which is the length of the video.

Q̂i = {WiQ},where Q = {q1, q2, . . . , qSQ} (2)

The expanded questions Q̂ ∈ R
N×SQ×Dtext are forwarded

to the Temporal Encoder, which projects a set of expanded

question tokens into the local visual feature space for fine-

grained fusion. Through Temporal Encoding, Q̂ becomes

Q̄, which represents questions encoded with temporal in-

formation, where Q̄ ∈ R
N×Dframe .

3.2.2 Temporal Fusion
Encoded Q̄i are reshaped and added with the visual features

xi to get fused representation ri for the ith frame. The local

temporal context token ci for the ith context token can be

obtained by Equation 3:

ci = σ(h1×1
i ([ravgi ; rmax

i ])) (3)

where [; ], and σ represent the concatenation operation and

the sigmoid function, respectively. ri represents the fused

representation Q̄i + xi, and h1×1 represents the 1× 1 con-

volution. ravgi and rmax
i represent the channel-wise aver-

age and max pooling operations, respectively. The choice

of 1 × 1 convolution layers is motivated by their ability

to learn the channel-wise importance scores for the indi-

vidual frames in relevance with the text features while be-

ing lightweight. X = {xi}Ni=1 can be any visual features

such as an object graph G or appearance features F . At

this point, the text and visual features are inter-mixed, so

the produced context tokens have captured a unified context

from both modalities regarding local context. A dot product

is computed between the context tokens {ci(ri)}Ni=1 and the

visual features {xi}Ni=1 to obtain N number of vision-text

fused tokens TX,Q. In Equation 4, � denotes dot product.

TX,Q = {xi � ci}Ni=1 (4)

Causal-VidQA (Test)

Method ACCD ACCE ACCP ACCC ACCA

HME [4] 63.36 61.44 28.91 30.92 46.16

CoMem [5] 64.08 62.79 31.40 32.54 47.70

HCRN [13] 65.35 61.61 32.56 32.65 48.04

HGA [11] 65.66 63.51 32.21 34.27 48.91

B2A [22] 66.21 62.92 31.14 35.16 48.86

Ours 72.02 71.59 39.63 42.78 56.51
Table 1. Results comparing to previous approaches on Causal-

VidQA. ACCD , ACCE , ACCP , and ACCC represent ac-

curacy on descriptive, explanatory, predictive, and counterfac-

tual question types, respectively. ACCA represents the over-

all accuracy. These results are obtained from the official

leader board at https://codalab.lisn.upsaclay.fr/
competitions/6269#results where detailed results can

be seen. NExT-QA MSVD-QA

Method Test-C Test-T Test-D Test-A Test

HME [4] 46.76 48.89 57.37 49.16 -

IGV [17] 48.56 51.67 59.64 51.34 40.8

MHN [23] - - - - 40.4

VGT [34] 51.62 51.94 63.65 53.68 40.3∗

HQGA [33] 49.04 52.28 59.43 51.75 41.2

Ours 51.78 52.05 63.63 53.81 41.35
Table 2. The Results of NExT-QA. Test-C represents causal ques-

tions while Test-T means Temporal questions. Test-D denotes De-

scriptive and Test-A shows overall accuracy. The best results are

highlighted in bold. *Reproduced with official code.

4. Experiments
Setup. We use BERT [19] model for the Transformer en-

coder, Faster-RCNN [6] for object features and ResNet-101

[8] for frame features. We evaluate our approach on four

VideoQA datasets i.e., Causal-VidQA [31], NExT-QA [32],

MSVD-QA [35] and AGQA-2.0 [7]. Further details about

experimental setup and data are provided in the Appendix

sec. 1.

4.1. Results

4.1.1 Comparison with SoTA Methods
Causal and Commonsense Reasoning. Our method out-

performs the state-of-the-art on Causal-VidQA, especially

on predictive and counterfactual question types as shown in

Table 1. To investigate the reasoning capability of the pro-

posed method, further experiments were conducted by iso-

NExT-QA

Method Test-C Test-T Test-D Test-A

Ours w/ O 49.76 51.04 61.07 52.01

Ours w/ A 50.49 51.34 62.56 52.73

Ours w/ O + A 51.78 52.05 63.63 53.81
Ours w/ O + A + M 51.13 52.31 63.91 53.60

Table 3. Study of different features with the proposed multi-modal

fusion module on NExT-QA. O, A, and M represents Object graph,

Appearance, and Motion features.
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AGQA v2.0

Q Types ML PSAC[15] HME[4] HCRN[13] Ours

R
ea

so
n
in

g

obj-rel 9.39 37.84 37.45 40.33 43.1
rel-act 50 49.95 49.9 49.86 49.78

obj-act 50 50 49.97 49.85 50.05
superlative 21.01 33.2 33.21 33.55 35.4
sequencing 49.78 49.78 49.77 49.7 49.77

exists 50 49.94 49.96 50.01 50.42
dur comp 24.27 45.21 47.03 43.84 47.54
act recog 5.52 4.14 5.43 5.52 11.5

S
em

an
ti

c object 9.17 37.97 37.55 40.4 43.04
relation 50 49.95 49.99 49.96 50.37
action 30.11 46.85 47.58 46.41 47.83

S
tr

u
ct

u
re

query 13.05 31.63 31.01 36.34 39.69
compare 50 49.49 49.71 49.22 49.74
choose 50 46.56 46.42 43.42 46.53

logic 50 49.96 49.87 50.02 50.06
verify 50 49.9 49.96 50.01 51.11
overall 10.99 40.18 39.89 42.11 44.36

Table 4. Comparison of the proposed method on the AGQA v2.0

dataset. The results are separated based on the question types.

obj: object, rel: relationship, act: action, comp: comparison, seq:

sequence

Causal-VidQA (Test)

Method I ACCD ACCE ACCP ACCC ACCA

G + Attn. glob 72.24 70.95 37.77 42.49 55.86

G + Attn. loc-glob 71.61 71.09 39.12 42.45 56.07

G + Ours glob 70.16 68.98 34.81 40.83 53.69

G + Ours loc-glob 72.02 71.59 39.63 42.78 56.51
Table 5. Study of different cross-modal fusion methods using the

same graph representation G which is based on VGT. Attn. stands

for Attention module. loc. and glob. stand for local and global,

respectively. Column I represents the cross-modal fusion granu-

larity level i.e., local or global.

Causal-VidQA (Test)

Method F ACCD ACCE ACCP ACCC ACCA

Replication A 67.01 62.37 33.32 30.91 48.40

Expansion A 71.91 69.35 35.92 43.38 55.14
Table 6. Results comparing Temporal Expansion with Token

Replication without using object graphs, (i.e., ResNet-101 based

frame encoding) on Causal-VidQA.

lating several modules as shown Table in 5. To our under-

standing, causality and commonsense reasoning is highly

dependent on how scenes adapt as the time passes. Hence,

if a method can leverage the temporal understanding it can

have a better commonsense reasoning ability. This suggests

the effectiveness of our temporal fusion module. Signifi-

cant improvements are seen in predictive question accuracy

(ACCPP ). A similar trend is observed in NExT-QA on

causal questions in Table 2.

Temporal Understanding. The proposed method has

strong reasoning, semantic and structural understanding on

AGQA-2.0, outperforming with a significant margin on ac-

tivity recognition-type questions as shown in Table 4. Some

categories perform worse than random selection, such as

relationship action. Except for 3 categories, our model

shows the best performance with low variance between

models, hinting at the challenging nature of these questions.

Question-type examples with qualitative results as shown in

the Appendix sec. 2.

Conventional VideoQA. We further demonstrate the

performance of our model in the open-ended QA setting

using MSVD-QA. As can be seen in Table 2, our model

outperforms other baselines with a reasonable margin.

4.2. Ablation Studies

In this section, we present the analysis of our proposed

fusion module with a wide range of configurations on the

Causal-VidQA dataset and the NExT-QA dataset.

4.2.1 Multi-Level Temporal Granularity
As can be seen in Table 5, we perform a study to com-

pare the effect of local and global temporal context learn-

ing. We used two different fusion methods i.e., the pro-

posed MMTF, and attention-based fusion. Then we per-

formed two different experiments for each of these mod-

ules to demonstrate the effectiveness of learning both fined-

grained (local) and coarse-grained (global) representations

over coarse-only representation. It is observed that in both

types of fusion methods, the performance improves when

local and global temporal contexts are learned for both

modalities as compared to global-only fusion. Specifically,

the ACCP which is the predictive question accuracy gains

significant improvement over the global-only variant with

an absolute improvement of 4.82 for MMTF and 1.35 for

attention-based fusion.

4.2.2 Temporal Expansion and Fusion Module
We experiment using only frame features from ResNet-101

backbone with our temporal expansion and question token

replication along the temporal axis of the video to demon-

strate the effectiveness of the Temporal Fusion module. As

shown in Table 6, there is significant gap between the over-

all accuracy (ACCA). It is to be noted that the major contri-

bution to this performance difference comes from the coun-

terfactual questions (ACCC) which hints towards the strong

reasoning capabilities of MMTF.

5. Conclusion and Limitations
A novel vision-text fusion module is proposed, which

jointly learns the multi-level granularity of the contexts.

Moreover, we present a novel technique to expand text

tokens along the video’s temporal axis to learn the fine-

grained fused contexts which can represent local events. We

demonstrate that the proposed multi-level granularity con-

text learning improves over the current state-of-the-art on

four VideoQA datasets, especially on commonsense reason-

ing tasks. The temporal expansion of text tokens is a new

concept, that aims to better align the temporal contexts of

both videos and questions.
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