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Abstract
Visual Grounding (VG) aims at localizing target ob-

jects from an image based on given expressions and has
made significant progress with the development of detec-
tion and vision transformer. However, existing VG meth-
ods tend to generate false-alarm objects when presented
with inaccurate or irrelevant descriptions, which commonly
occur in practical applications. Moreover, existing meth-
ods fail to capture fine-grained features, accurate localiza-
tion, and sufficient context comprehension from the whole
image and textual descriptions. To address both issues,
we propose an Iterative Robust Visual Grounding (IR-
VG) framework with Masked Reference based Centerpoint
Supervision (MRCS). The framework introduces iterative
multi-level vision-language fusion (IMVF) for better align-
ment. We use MRCS to ahieve more accurate localiza-
tion with point-wised feature supervision. Then, to improve
the robustness of VG, we also present a multi-stage false-
alarm sensitive decoder (MFSD) to prevent the generation
of false-alarm objects when presented with inaccurate ex-
pressions. Extensive experiments demonstrate that IR-VG
achieves new state-of-the-art (SOTA) results, with improve-
ments of 25% and 10% compared to existing SOTA ap-
proaches on the two newly proposed robust VG datasets.
Moreover, the proposed framework is also verified effective
on five regular VG datasets. Codes and models will be pub-
licly at https://github.com/cv516Buaa/IR-VG.

1. Introduction
Visual Grounding (VG) is a crucial computer vision task

gaining significant attention due to its potential for enabling

practical applications such as robot navigation [9] and vi-

sual dialog [30, 13]. VG aims to locate a target object within

an image based on the given language reference expres-
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Figure 1. Illustration of the weakness of existing VG approaches.

Green and blue boxes represent ground truths and predictions.

sions by incorporating information from both textual and

visual modalities. However, existing VG methods suffer

from false-alarm issues, where they assume that the referred

object always exists in the image, leading to inaccurate or

wrong targets being detected when irrelevant or inaccurate

textual expressions are provided, shown in Fig. 1 (a).

Previous works [15, 14, 24] have made significant

progress in VG through various techniques. However, the

task of cross-modal learning involved in the VG task re-

mains challenging, and current approaches can be broadly

divided into two main categories: two-stage methods [11,

19, 4, 32] and one-stage methods [38, 17, 35, 22, 27, 36].

Despite the significant achievements, the VG approaches

suffer from some limitations, such as failing to capture the

detailed feature representation accurately, resulting in a lack

of discrimination between fine-grained objects with refer-

ence expressions shown in Fig. 1 (b), and detecting irrel-

evant or incorrect targets without understanding the whole

context shown in Fig. 1 (c).

To address the above issues, this paper proposes a novel

iterative robust visual grounding (IR-VG) approach with

masked reference based centerpoint supervision. The ap-

proach first constructs two new robust VG datasets and pro-

poses a multi-stage false-alarm sensitive decoder (MFSD)

module to handle the case when there is no target ob-

ject from the textual expression, avoiding generating false

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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alarms. Secondly, a new masked reference based center-

point supervision (MRCS) module is proposed to capture

the fine-grained feature and enhance the localization capac-

ity from the given reference expressions. Finally, an iter-

ative multi-level vision-language fusion (IMVF) module is

leveraged to fuse multi-level visual and textual information

that is crucial for vision-language understanding.

The contributions of our works are summarized as fol-

lows: firstly, the proposed approach handles the false-alarm

issue in the VG task for the first time by constructing

two new robust VG benchmarks and introducing a multi-

stage false-alarm sensitive decoder (MFSD) module. Sec-

ondly, a new masked reference based centerpoint supervi-

sion (MRCS) module is proposed to achieve more accu-

rate fine-grained features and better localization capacity

from fully visual-textual comprehension. Lastly, the iter-

ative multi-level vision-language fusion (IMVF) module is

introduced to comprehensively fuse multi-level visual and

textual information for better vision-language understand-

ing and alignment. Extensive experiments on five regu-
lar VG benchmarks and two newly constructed robust VG

benchmarks demonstrate the effectiveness of the proposed

approach, achieving 10% improvement on robust datasets.

2. Related Work
Visual Grounding. The Visual Grounding task is an im-

portant problem in computer vision that aims to localize an

object within an image based on a given language reference

expression. The existing approaches typically extend the

object detection framework, such as YOLOV3 [25], Faster-

RCNN [26], RetinaNet [18], CenterNet [8], and DETR [3],

by incorporating a visual-linguistic fusion module. These

approaches can be categorized into two main categories:

two-stage methods [11, 19, 4, 32, 39] and one-stage meth-

ods [38, 17, 35, 22, 27, 36]. Two-stage approaches, in-

cluding CMN [11], NMTree [19] and RefNMS [4], Two-

branch Network [32] and MAttNet [39], due to the large

number of proposals and matching process may slow down

the inference speed. On the other hand, one-stage ap-

proaches [38, 17, 35, 22, 27, 36] directly incorporate the

linguistic context into visual features to predict the object’s

location. However, it may not be flexible enough to achieve

a global context understanding due to the pointwise fea-

ture representations. Recently, transformer-based Visual

Grounding approaches have gained popularity due to their

attention capacity and efficiency. For instance, TransVG [6]

captures intra- and inter-modal contexts using transformers

in a uniform manner, while VLTVG [34] builds discrimi-

native feature maps and detects the target object through a

multi-stage decoder.

Robustness in Visual Grounding. In terms of robustness

in Visual Grounding, recent studies have explored CNN ro-

bustness in various benchmarks [10] [23], and some works

have evaluated and improved CNN robustness for practical

applications [29] [28] [1] [33]. RefSegformer [33] incorpo-

rates negative sentence inputs to handle false-alarm issues

in referring segmentation tasks. However, to the best of our

knowledge, no existing benchmarks or approaches have ex-

plored the robustness of the Visual Grounding task. This

paper takes a further step by proposing a new iterative ro-
bust VG framework and building two robust VG datasets to

address this research problem. It is important to note that,

within the context of this paper, the term “robust” refers to

the ability of the proposed method to produce accurate re-

sults and avoid false-alarm predictions even when provided

with irrelevant and incorrect expressions.
3. Method

In this section, we present the architecture of the pro-

posed robust VG pipeline and its components. Fig. 2 illus-

trates the pipeline.

3.1. Masked Reference
Masked reference augmentation. As illustrated in the

down-left part of Fig. 2, we propose a text augmentation

approach to generate diversified textual information given

an input language expression. We employ the NLTK [2]

tokenization strategy to extract lexical properties for each

word, followed by masking one word in the text according

to the well-designed rules (shown in the supplementary ma-

terials). This masking process is repeated thrice, achieving

one full text and three masked texts in total. BERT [7] is

then utilized to generate different textual embeddings for

these sentences.

Visual-linguistic alignment. The proposed model, il-

lustrated in Fig. 3, incorporates a visual-linguistic align-

ment module with two consecutive multi-head attention

(MHA) [31] layers. The visual feature map Fv is input as

the Query, and the textual embeddings are input as Key and

Value to the first MHA. This process produces an enhanced

feature map that gathers relevant semantic information from

the corresponding linguistic representation. Subsequently,

the enhanced feature map undergoes another MHA oper-

ation that performs self-attention on the visual features to

encode the involved visual contexts. The features from the

two MHAs are element-wisely summed in a residual man-

ner for the centerpoint supervision component.

Centerpoint supervision. To obtain the final centerpoint

heatmaps, the summed feature map obtained from each

language expression is processed through two consecutive

convolutional layers. Multiple centerpoint heatmaps (one

from the full text and three from the masked text) are then

fused by performing a maxpooling process, with the cen-

terpoint coordinates determined by performing a max op-

eration on the resulting heatmap. The cross entropy loss is

then utilized as the supervision loss between the centerpoint

heatmap and the corresponding ground truth.
3.2. Iterative Multi-level Vision-language Fusion
Multi-level textual feature enhancement. The multi-level

textual feature enhancement (MTFE) module improves tex-
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Figure 2. An overview of our proposed IR-VG framework, which comprises

Masked Reference based Centerpoint Supervision, Iterative Multi-Level Vision-

Language Fusion, and Multi-Stage False-Alarm Sensitive Decoder.
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Figure 3. The architecture of visual-linguistic alignment module.

Visual-Linguistic

Feature Mapt

Texture EmbeddingtTexture Embeddingt

Multi-Head

Attention
Q

K V

Multi-Head

Attention

Q, K

V

Visual-Linguistic

Feature Mapt+1

t/N

Visual-Linguistic

Feature Map1

Visual-Linguistic

Feature Map2
Visual-Linguistic

Feature MapN
Visual-Linguistic

Feature Map

Pixel-Wise

Max

Output

Figure 4. The architecture of IMVF.

Queryt

R
a
n
d
o

m
 E

m
b
ed

d
in

g
R

a
n
d
o

m
 E

m
b
ed

d
in

g

T
e
x
tu

al
 E

m
b
ed

d
in

g
t

T
e
x
tu

al
 E

m
b
ed

d
in

g
t

Multi-Head

Attention
FFN

 t/N stageMulti-stage False-alarm Sensitive Decoder Module

Multi-Head

Attention

Output

Queryt+1

FFNLinear

Exist

Q

K,V Q

K            V

Figure 5. The architecture of MFSD.

tual embedding representation by performing two consec-

utive fully-connected layers with 768 nodes in each stage.

Specifically, as highlighted with yellow color in Fig. 2, the

IMVF comprises four stages, and each stage contains an

MTFE module. The MTFE module consists of two fully

connected layers and a corresponding dropout layer with

a 0.1 ratio, aimed at obtaining multi-level textual features

that match the multi-level visual features. This enables the

model to focus on different key descriptions in the referring

expressions and obtain more complete and reliable features

for the referred object.

Iterative multi-level vision-language fusion. Fig. 4 illus-

trates the IMVF module, which is based on MHA and con-

sists of four iterative stages. Each stage includes two MHA

layers. The first layer uses the visual feature map Fv ∈
RC×H×W as the Query and the textual embeddings Fl ∈
RC×L from the multi-level textual feature enhancement

module as the Key and Value. Multi-head cross-attention

enables the comprehensive incorporation of textual infor-

mation into the visual feature map Fg ∈ RC×H×W . In the

second layer, Fg serves as both the Query and Key, while

Fv serves as the Value. This self-attention operator allows

the model to gather crucial context features for the referred

object based on the textual descriptions provided, and the fi-

nal feature is Fc ∈ RC×H×W . We sum the Fv , Fg , and Fc

element-wisely to obtain the final visual feature map Fm. In

each iteration, the i-th visual feature map F i
m becomes the

initial feature map (i.e., F i+1
v ). Our experiments include

four iterations, and we use element-wise max strategy to

obtain the final fusion feature F = max(F 1
m, F 2

m, F 3
m, F 4

m).

3.3. Multi-stage False-alarm Sensitive Decoder
Multi-stage false-alarm sensitive decoder. As shown

in Fig. 5, the MFSD module consists of several iterative

stages, each containing two consecutive MHA layers. In

the first stage, we randomly initialize a series of learnable

queries. We introduce a random embedding with the same

size as textual embedding from the IMVF module to han-

dle the false-alarm case. We concatenate the textual and

random embedding in the batch dimension, termed mixture
embedding. For the first MHA layer, the learnable queries

serve as Query, and the mixture embedding acts as Key
and Value. With this layer, the textual embedding can be

more easily attended to the target tokens, thus achieving

enhanced textual embedding. For the second MHA layer,

the enhanced textual embedding is treated as Query, and

the visual-linguistic feature map from the IMVF module as

well as the visual feature map Fv are employed as Key and

Value. Through the second MHA layer, the textual infor-

mation can be comprehensively fused with the visual fea-

ture map to achieve an enhanced vision-language feature,

which is then taken into a feed-forward network (FFN).

We fuse the enhanced vision-language feature and the fea-

ture from the second MHA in a residual manner, termed as

R feature, which serves as the Query in the next iteration.

Then, R feature is taken into two decoupled heads: one for

classification to indicate whether there exist false-alarm re-

sults and another for regression to generate the predicted

bounding boxes (bbox).

4. Experiment
4.1. Experimental Settings
Datasets. To validate the efficacy of the proposed approach,

we assess its performance on two distinct types of datasets,

namely the regular VG datasets and the robust VG datasets.

The experimental settings of regular VG datasets are identi-

cal to [34]. Given the absence of existing robust VG datasets

for evaluating the robustness of existing approaches, we cre-

ate two new robust VG datasets, RefCOCOg F and Refer-

ItGame F, by leveraging existing benchmarks [21, 16]. Our
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Method
RefCOCO RefCOCO+ RefCOCOg ReferItGame Flickr30k

val testA testB val testA testB val-u test-u test test

CMN [11] - 71.03 65.77 - 54.32 47.76 - - 28.33 -
VC [40] - 73.33 67.44 - 58.40 53.18 - - 31.13 -

NMTree [19] 76.41 81.21 70.09 66.46 72.02 57.52 65.87 66.44 - -
Ref-NMS [4] 80.70 84.00 76.04 68.25 73.68 59.42 70.55 70.62 - -
FAOA [38] 72.54 74.35 68.50 56.81 60.23 49.60 61.33 60.36 60.67 68.71

LBYLNet [12] 79.67 82.91 74.15 68.64 73.38 59.49 - - 67.47 -
TransVG [6] 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73 70.73 79.10
VLTVG [34] 84.77 87.24 80.49 74.19 78.93 65.17 76.04 74.98 71.98 79.84

IR-VG (Ours) 86.82 88.75 82.60 76.22 80.75 67.33 77.86 76.24 74.03 81.45

Table 1. Comparisons with SOTA visual grounding methods.

Methods
RefCOCOg F ReferItGame F
Rfad Rmix Rfad Rmix

CMN [11] 27.10 65.10 24.75 21.41
VC [40] 42.45 68.85 31.03 25.69
SSG [5] 34.15 61.25 32.44 46.43

Ref-NMS [4] 43.90 62.40 41.39 48.15
ReSC-Large [35] 37.35 60.55 32.54 59.89
LBYLNet [12] 45.40 63.32 45.40 60.57

IR-VG (Ours) 67.32 73.61 69.44 72.03
Table 2. Comparisons with SOTA

approaches on robust VG datasets.

Methods RefCOCO RefCOCO+ RefCOCOg

I M val testA testB val testA testB val-u test-u
- - 84.7787.2480.4974.1978.9365.1776.04 74.98
� - 85.9288.4181.7775.2780.0666.3377.10 76.06
- � 85.5388.0981.2375.3479.9766.1877.21 75.75
� � 86.8288.7582.6076.2280.7567.3377.86 76.24
Table 3. Ablation studies on three bench-

marks, ”I” and ”M” denote IMVF and the

MRCS.

train set is composed of two parts: the first being the orig-

inal train set of the respective dataset and the second being

a random matching dataset that disrupts the correspondence

between image information and language descriptions.

Evaluation Metrics. For the regular VG dataset, following

previous works [6] [37], we adopt the commonly used top1

accuracy (acc-1) as the evaluation metric. For the robust
VG dataset, we propose two novel evaluation metrics, i.e.,

false alarm discovery rate Rfad with only false-alarm data,

and correct rate among the mixed data Rmix with both false-

alarm and regular data, which are defined as,

Rfad =
FAacc

FAall
, Rmix =

FAacc + Regularacc

FAall + Regularall
, (1)

where FA denotes the false-alarm data with irrelevant or in-

accurate descriptions, and Regular means the regular data

with accurate descriptions. The superscript acc and all rep-

resent the number of accurate predictions and the total num-

ber of data. The detailed dataset descriptions, training loss,

and other experiment implementation details will be shown

in the supplementary materials.
4.2. Comparisons with Existing SOTA Methods
Results on VG benchmarks. As presented in Tab. 1, we

evaluate the proposed approach against other SOTA VG

methods. We improve over the best SOTA approaches by

about 2% in all five benchmarks, indicating the effective-

ness of our proposed method.

Results on robust VG benchmarks. Tab. 2 demonstrates

the numerical comparisons on the robust VG datasets.

In particular, we improve over the SOTA approaches by

a nontrivial margin in competitive benchmarks of Re-

fCOCOg F and ReferItGame F. Specifically, on Refer-

ItGame F dataset, we achieve about 25% and 10% improve-

ment in Rfad and Rmix metrics, respectively.
4.3. Ablation Study

Numerical Component Analysis. Tab. 3 shows the ef-

fectiveness of each component on the regular VG datasets.

Figure 6. Visualization Results. (a) Feature map with/without

MRCS module. (b) Feature map with/without IMVF module, es-

pecially for the red rectangle areas.

The proposed approach outperforms the baseline by 2.1%

top1 accuracy in the RefCOCO testB dataset. Specifically,

IMVF improves by 1.3%, and MRCS improves by 0.7%.

Similar conclusions can be drawn from other regular VG

datasets. Tab. 2 illustrates the effectiveness and robust-

ness of the proposed MFSD module, which significantly

improves two robust VG benchmarks.

Qualitative Component Analysis. Qualitative analysis of
MRCS. Fig. 6(a) presents the visual-linguistic feature map

with or without MRCS module. We intuitively observe that

the MRCS enables the feature map to attend more accu-

rately to the target object’s location and generates a more

precise foreground map. To avoid interactions with IMVF

module, we conduct this experiment only with MRCS mod-

ule and MFSD module. Qualitative analysis of IMVF.
Fig. 6(b) illustrates the visual-linguistic feature map with or

without IMVF module. The figure indicates that the IMVF

module reduces interference and allows the model to con-

centrate more on the target by better understanding visual

and textual information. To ensure fairness, we performed

this experiment only with IMVF and MFSD modules.

5. Conclusions
Our work introduces the IR-VG framework, which com-

prises IMVF, MRCS, and MFSD. It outperforms existing

approaches in terms of context features, fine-grained fea-

tures, and localization accuracy while addressing robustness

issues when faced with irrelevant or inaccurate reference ex-

pressions. Our experiments demonstrate the effectiveness

of each module, achieving new SOTA performance.

Limitation and future work. Notably, IR-VG builds a new

research direction for robust VG. Future work includes de-

veloping a more elegant framework to handle false alarms.

In addition, we will explore the false-alarm problems with

irrelevant expressions for some foundation models (e.g.

Grounding DINO [20]).
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