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Abstract

Natural Language Explanations (NLE) aim at supple-
menting the prediction of a model with human-friendly nat-
ural text. Existing NLE approaches involve training sep-
arate models for each downstream task. In this work, we
propose Uni-NLX, a unified framework that consolidates all
NLE tasks into a single and compact multi-task model us-
ing a unified training objective of text generation. Addition-
ally, we introduce two new NLE datasets: 1) ImageNetX,
a dataset of 144K samples for explaining ImageNet cate-
gories, and 2) VQA-ParaX, a dataset of 123K samples for
explaining the task of Visual Question Answering (VQA).
Both datasets are derived leveraging large language mod-
els (LLMs). By training on the 1M combined NLE samples,
our single unified framework is capable of simultaneously
performing seven NLE tasks including VQA, visual recog-
nition and visual reasoning tasks with 7× fewer parameters,
demonstrating comparable performance to the independent
task-specific models in previous approaches, and in certain
tasks even outperforming them.1

1. Introduction
Moving away from general and high-level explanations

such as heatmaps [29, 31, 3, 30], Natural Language Ex-

planations (NLE)2 [6, 19] offer a detailed, human-friendly

textual format explanation. Recently, NLE has been ex-

tended to encompass vision and vision-language (VL) tasks

[22, 36, 17, 11]. The general pipeline comprises a vision

model to encode the image, a task model MT to generate a

prediction for the task at hand (e.g., answer for VQA, class

for image classification) and an explainer model ME which

takes the form of a language model to produce an explana-

tion for the prediction via natural text. A subsequent study

1https://github.com/fawazsammani/uni-nlx
2it is worth noting that ”explanations” in this context do not refer to ex-

planations of the underlying decision-making process of a model as typical

in post-hoc explainability methods, but rather to supplementary informa-

tion concerning the predicted outcome, incorporated through training
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Figure 1. The current SoTA model (a) [26] unifies the answering

and explainer models into a single compact model, training sep-

arate models for each of the N tasks. Our proposed approach

(b) takes a further step by unifying all tasks into a single com-

pact model, resulting in N× fewer parameters. Our single unified

model is capable of simultaneously handling diverse tasks ranging

from Visual Question Answering, Visual Recognition and Visual

Reasoning.

[26] unifies MT and ME into a single compact model that

performs both tasks simultaneously by converting all tasks

into generative tasks with a single casual language model-

ing training objective (Figure 1a). This greatly reduces the

number of parameters and inference time and associates the

reasoning process of ME to the same answer prediction pro-

cess in MT . It also attributes to the fact that explainability

techniques are applied on the same model responsible for

generating the prediction. However, both these approaches

require separate finetuning on each NLE task. This results

in N separately-parameterized models for N tasks of NLE.

Moreover, it requires a separate specialized model to per-

form each task. In this work, we build upon the work of [26]

and consolidate all NLE tasks into a single compact model,

dubbed as Uni-NLX (Figure 1b). This unification offers

several advantages that previous approaches lack: Firstly, it

offers a single model to simultaneously perform all N NLE

tasks, thereby requiring N× less parameters. Secondly, the

integration enables mutual learning among all NLE tasks,

as they possess similar reasoning capabilities. Lastly, the

shared information across diverse tasks enables greater flex-

ibility in answers and explanations (e.g., free-form text gen-

eration).

Furthermore, we propose to leverage knowledge from

Large Language Models (LLMs) to obtain two additional

NLE datasets: VQA-ParaX and ImageNetX. VQA-ParaX is

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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a re-formulation of long-text captioning datasets (e.g., Im-

age Paragraph Captioning [13] or Local Narratives [23])

into question-answer-explanation formats using LLMs in

a scalable manner. Moreover, LLMs posses vast knowl-

edge about the world, and can be leveraged to obtain fine-

grained, distinctive features and descriptions about different

objects. ImageNetX is a dataset encompassing such textual

data, which are regarded as explanations for ImageNet [14]

categories.

The integration of these two additional datasets with the

existing NLE datasets results in a total of 7 NLE datasets,

containing approximately 1M (image, text) pairs. The tex-

tual component of these pairs comprises the question, an-

swer, and explanation. By training on these pairs, Uni-NLX

achieves performance levels comparable to state-of-the-art

task-specific NLE models on 4 tasks, while surpassing them

on 3 tasks.

2. Related Work

Early works in NLE for vision and vision-language tasks

include [10, 22, 15, 36, 17, 11]. They rely on a task

model (e.g., UNITER [7]) for multimodal feature extraction

and answer prediction, and an explainer model (e.g., GPT-

2 [25]) to generate an explanation for the prediction. Most

recently, NLX-GPT [26] proposed to unify both these mod-

els into a single, compact-sized model (e.g., Distilled-GPT-

2) that simultaneously generates and explains an answer

using a single casual language modelling objective, while

also eliminating the computationally-expensive object-level

feature extraction stage [2]. This generative formulation

has also proven to be effective in vision-language pretrain-

ing methods such as VL-T5 [8], OFA [34] and GIT [33].

Multimodal-CoT [38] builds upon the Chain of Thought

Prompting [35] technique and instead generates a rationale

(explanation) prior to generating an answer, which serves

as a reasoning step for inferring the answer. However,

the aforementioned methods require training or finetun-

ing for each task individually, which consequently leads to

separately-parameterized models specialized to each task.

Different from these methods, our work unifies all tasks into

a single compact-sized model, greatly reducing parameters

and computational cost.

The authors of [18] perform zero-shot visual classifica-

tion by measuring the similarity between an image and vari-

ous distinctive textual features that describe the object in the

image. These descriptors are obtained from LLMs. How-

ever, this approach relies on a strong retrieval model (e.g.,
CLIP [24]) and does not have the ability to generate text.

Additionally, it is primarily aimed to vision-only tasks. In

contrast, our method generates flexible free-form answers

and explanations for both vision and vision-language tasks.

3. Method

Following NLX-GPT [26], we formulate the discrimina-

tive answer prediction task as a generative text prediction

task, along with the explanation. Both the answer and ex-

planation tasks are unified into the model which outputs a

single sequence containing the answer and explanation in a

textual form. We first describe how we construct additional

NLE datasets, and then elaborate on our multi-task unified

model.

3.1. Data Synthesis Strategies

We propose to harness the powerful reasoning capabil-

ities of LLMs to formulate two additional NLE datasets:

VQA-ParaX and ImageNetX, in a scalable manner. We uti-

lize GPT-3 [5] with instructional finetuning [20] (ChatGPT)

as our LLM.

VQA-ParaX: LLMs posses remarkable ability in reading

and re-formulating passages such as summarization and

information extraction. The image paragraph captioning

dataset [13] contains 19,561 samples and provides detailed

descriptions of images which allows the LLM to gain a

complete understanding of the image solely through the

textual description. Using a LLM, we re-formulate the

image paragraph captioning dataset into question-answer-

explanation formats. We prompt the LLM with <I, Si>,

where Si represents the paragraph sample, and I represents

the instruction given to the LLM. For each sample i, we

formulate 6 question-answer-explanation triplets, resulting

in approximately 123K triplet samples. The instruction I
we use is provided in the supplementary material.

ImageNetX: ImageNet-1K [14] is a dataset used for im-

age classification containing 1K categories. LLMs posses

wealth knowledge about the world, which can be harnessed

to obtain distinctive features and descriptions of various ob-

jects at a granular level. We propose to obtain such textual

descriptions from LLM for the ImageNet-1K categories,

which are then regarded as explanations for the class cat-

egory (answer). We prompt the LLM with <I,c>, where

I represents the instruction and c ∈ C represents the class

category for each of the 1K categories C. We generate 50

descriptions for each class c. In order to account for varia-

tions in visual representations of the same textual descrip-

tion within a given class, we assign three distinct training

images per description for each class. Consequently, this

approach yields a dataset of approximately 141K training

samples. The remaining 3K textual descriptions are asso-

ciated to a single image from the ImageNet validation set,

and are divided into validation and test set. The instruction

I we use is provided in the supplementary material.

We provide further analysis, quality assessment and

qualitative samples of these two new datasets in the sup-

plementary material.
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3.2. Unifying Explanations

To achieve a unified NLE framework across diverse

tasks, it is necessary to establish a standardized format of

question-answer-explanation. However, certain tasks (e.g.,
visual recognition) lack inherent questions. To address this,

we introduce a consistent question relevant to each task,

such as ”What category is this?” for image recognition,

”What action is this?” for action recognition, or ”is the fol-
lowing hypothesis true or false?” for visual entailment. By

employing this unified format, all tasks can be formulated

using the sequence S: <question> the answer is
<answer> because <explanation>. The compi-

lation of all available datasets yields a collective corpus of

approximately 1M samples. During training, we provide S
as input to the model and predict the answer and explana-

tion component of S in an autoregressive manner, utilizing

a single causal language modeling training objective with

cross-entropy loss. During inference, only the question is

fed into the model, which subsequently predicts the answer

and explanation using greedy decoding. It is worth noting

that the answer can also be provided during inference, in

which case the model solely generates the explanation. To

allow the model to distinguish between the question, answer

and explanation components of S, we utilize three different

segment embeddings for each.

4. Experiments
Our unified dataset comprises seven NLE datasets

encompassing visual question answering (VQA), vision

recognition and visual reasoning tasks. VQA tasks con-

sists of VQA-X [22] (33K samples), A-OKVQA [28] (25K

samples) and VQA-ParaX (123K samples). Visual recog-

nition tasks include ACT-X [22] (18K samples) for ac-

tion recognition and ImageNetX (144K samples) for image

classification. Visual reasoning tasks comprises e-SNLI-

VE [11] (430K samples) for visual entailment and Visual

Commensense Reasoning (VCR) [37] of 192K samples. To

establish a fair comparison, our model follows NLX-GPT

[26], which uses a distilled version [27] of the GPT-2 trans-

former language model [5] as the answering and explana-

tion model, and a CLIP visual encoder part [24] as the vi-

sual backbone. Our model is trained for a maximum of 20

epochs with a batch size of 64 and a learning rate of 2e-5

which decays linearly to 0.

4.1. Quantitative Results

We evaluate our model quantitatively using au-

tomatic natural language generation (NLG) metrics

(BLEU [21], METEOR [4], ROUGE-L [16], CIDER [32]

and SPICE [1]); all scores are computed with the publicly

available code3. Following previous works, the evaluation

3https://github.com/tylin/coco-caption

Table 1. Unfiltered Scores for Uni-NLX compared to NLX-GPT

[26] on the 7 downstream tasks. Both models are w/o pretraining.

B-N, M R, C, S are short for: BLEU-N, METEOR, ROUGE-L,

CIDER and SPICE.
VQA-X

B-1 B-2 B-3 B-4 M R C S

NLX-GPT 59.1 43.8 32.2 23.8 20.3 47.2 89.2 18.3
Uni-NLX 57.9 42.1 30.2 21.7 19.3 45.9 81.1 17.8

ACT-X

NLX-GPT 64.4 47.5 34.7 25.6 21.4 48.0 63.5 15.4

Uni-NLX 65.4 49.1 36.0 26.5 22.0 48.5 67.7 16.7
e-SNLI-VE

NLX-GPT 34.3 22.7 15.6 10.9 17.5 31.7 106.6 31.5
Uni-NLX 35.3 23.6 16.5 11.8 17.8 32.2 106.5 31.3

VQA-ParaX

NLX-GPT 37.1 27.0 20.4 15.5 18.5 40.9 142.6 31.4

Uni-NLX 35.1 25.7 19.4 14.8 18.2 40.8 139.9 31.6
A-OKVQA

NLX-GPT 55.0 39.9 29.3 20.2 16.4 46.2 64.4 15.2

Uni-NLX 58.2 39.6 27.6 18.5 17.1 44.0 58.1 16.0
ImageNetX

NLX-GPT 64.5 48.1 36.9 28.9 22.0 39.4 87.5 22.4
Uni-NLX 62.9 46.3 35.2 27.4 21.4 38.7 82.8 21.3

VCR

NLX-GPT 18.5 9.7 5.4 3.3 9.0 19.9 24.2 12.4

Uni-NLX 18.7 9.9 5.7 3.5 9.0 19.9 24.7 12.5

Table 2. Filtered Scores for Uni-NLX compared to NLX-GPT [26]

on the 7 downstream tasks. Both models are w/ pretraining.
VQA-X

B-1 B-2 B-3 B-4 M R C S

NLX-GPT 64.2 49.5 37.6 28.5 23.1 51.5 110.6 22.1
Uni-NLX 62.1 46.8 34.9 26.0 21.8 48.8 97.8 20.8

ACT-X

B1 B2 B3 B4 M R C S

NLX-GPT 71.6 56.2 43.2 33.5 25.7 53.7 111.8 23.3
Uni-NLX 71.5 56.7 43.6 33.5 25.7 53.5 109.4 22.8

e-SNLI-VE

B1 B2 B3 B4 M R C S

NLX-GPT 35.7 24.0 16.8 11.9 18.1 33.4 114.7 32.1
Uni-NLX 35.3 24.1 17.0 12.3 18.2 33.7 115.4 32.1

VQA-ParaX

B1 B2 B3 B4 M R C S

NLX-GPT 41.9 31.5 24.7 19.9 22.3 47.2 203.7 41.9

Uni-NLX 41.3 31.2 24.5 19.7 22.0 47.2 203.6 42.1
A-OKVQA

B1 B2 B3 B4 M R C S

NLX-GPT 62.3 46.8 36.1 27.7 20.5 51.5 93.0 19.3

Uni-NLX 62.1 43.3 30.8 20.8 19.6 48.1 78.1 19.7
ImageNetX

B1 B2 B3 B4 M R C S

NLX-GPT 69.7 54.1 42.5 33.8 24.7 43.1 107.4 26.1

Uni-NLX 71.9 56.5 45.0 36.1 25.8 44.8 117.2 27.3
VCR

B1 B2 B3 B4 M R C S

NLX-GPT - - - - - - - -

Uni-NLX 29.7 23.4 19.9 17.4 17.1 33.6 85.7 23.5

is carried on in two settings: filtered and unfiltered. In the

filtered setting, we only consider the explanations for which

the predicted answer is correct. In the unfiltered setting,

all explanations are considered, irrespective of whether the
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What action is this?
felling trees because he is wearing a 
safety helmet and is using a chainsaw to 
cut down a tree 

ACT-X

What are the ski poles used for?
stability because the poles are used to 
keep the skiers from falling off

A-OKVQA

Is the following hypothesis entailment, 
contradiction or neutral to the image? The 
basketball player is going to throw the ball
contradiction because baseball and basketball 
are different sports

e-SNLI-VE

How did person0 and person1 get there?
they rode in a wagon because they are 
standing next to a wagon

VCR

What kind of animals are standing together?
zerbras because the animals are black and 
white striped

VQA-ParaX

Is it raining?
no because the sky is clear and the ground is 
dry

VQA-X ImageNetX

What category is this?
robin because the american robin has a distinctive red breast, grayish-brown back and 
white belly. It has a black head, white eye-ring and a white belly. It measures about 9-11 
inches in length. Its legs and feet are black with white spots

Figure 2. Qualitative Examples of Uni-NLX on the 7 NLE tasks. We show the question, answer and explanation under each image.

predicted answer associated with each explanation is true or

false. We utilize the recent state-of-the-art NLX-GPT [26]

model as our baseline for evaluating our approach. NLX-

GPT also presents results of NLE tasks by fine-tuning a

pretrained model on image captioning. In our study, we

consider this setting and utilize the pretrained model pro-

vided by the official code4. Table 1 presents the unfil-

tered results of Uni-NLX without finetuning the pretrained

model, while Table 2 reports the filtered results obtained af-

ter finetuning the pretrained model. Additional results on

unfiltered results with pretraining and filtered results with-

out pretraining can be found in the supplementary mate-

rial. In Table 1, Uni-NLX demonstrates superior perfor-

mance compared to NLX-GPT on ACT-X, e-SNLI-VE, and

VCR. Additionally, Uni-NLX achieves performance that is

comparable to NLX-GPT across all VQA tasks (VQA-X,

VQA-ParaX, and A-OKVQA) and ImageNetX, and sur-

passes NLX-GPT on certain metrics. Table 2 shows that

Uni-NLX outperforms NLX-GPT on e-SNLI-VE and Ima-

geNetX and demonstrates comparable performance to other

tasks, and in certain metrics even outperforms them. It is

worth noting that NLX-GPT does not present unfiltered re-

sults on VCR.

4.2. Qualitative Results

Figure 2 shows qualitative results for each of the seven

NLE tasks. As observed, our model generates an answer to

4https://github.com/fawazsammani/nlxgpt

the given question and image, supported by a detailed expla-

nation. We discuss limitations such as collapse cases in the

supplementary material. For ImageNetX, we additionally

show a heatmap visualization obtained from ResNet-18 [9]

using Grad-CAM [29]. Compared to heatmap-based visu-

alization techniques which only display high-level, general

and entangled features influencing the prediction, Uni-NLX

provides detailed and fine-grained explanations describing

distinctive and disentangled features influencing the predic-

tion (e.g., red breast, grayish-brown back, black with white

spots) in the form of human-friendly text. Furthermore, the

attribution maps associated with these distinctive textual at-

tributes have the potential to represent concept activation

vectors [12], with the exception that in our case, these con-

cepts are derived automatically from the image rather than

obtained manually through annotators. We intend to inves-

tigate this avenue in future research.

5. Conclusion
We proposed Uni-NLX, a unified model which simul-

taneously performs seven NLE tasks. Leveraging a LLM,

we also introduced two additional NLE datasets: VQA-

Parax for the VQA task, and ImageNetX for the ImageNet

recognition task. Experiments demonstrate that Uni-NLX

achieves comparable performance to task-specific models

in certain tasks, while surpassing them on others. In the

future, we plan to investigate adapter models and prompt

learning techniques to perform zero-shot NLE.
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Frederick Klauschen, Klaus-Robert Müller, and Wojciech

Samek. On pixel-wise explanations for non-linear classifier

decisions by layer-wise relevance propagation. PLoS ONE,

10, 2015. 1

[4] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic

metric for mt evaluation with improved correlation with hu-

man judgments. In IEEvaluation@ACL, 2005. 3

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-

hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J.

Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,

Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen,

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-

ford, Ilya Sutskever, and Dario Amodei. Language models

are few-shot learners. ArXiv, abs/2005.14165, 2020. 2, 3

[6] Oana-Maria Camburu, Tim Rocktäschel, Thomas
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