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Figure 1: Overview of Le-RNR-Map. (a) shows Le-RNR-Map map construction in which we embed visual and visual-

language-aligned features, (b) shows the query search, at inference time, with natural language, and (c) shows the reconstruc-

tion of the images on the path, from starting position (orange circle) to the goal (red star) using NeRF.

Abstract

We present Le-RNR-Map, a Language-enhanced Ren-
derable Neural Radiance map for Visual Navigation with
natural language query prompts. The recently proposed
RNR-Map employs a grid structure comprising latent codes
positioned at each pixel. These latent codes, which are
derived from image observation, enable: i) image render-
ing given a camera pose, since they are converted to Neu-
ral Radiance Field; ii) image navigation and localization
with astonishing accuracy. On top of this, we enhance
RNR-Map with CLIP-based embedding latent codes, al-
lowing natural language search without additional label
data. We evaluate the effectiveness of this map in single
and multi-object searches. We also investigate its com-
patibility with a Large Language Model as an “affordance
query resolver”. Code and videos are available at the link
https://intelligolabs.github.io/Le-RNR-Map/.

1. Introduction
Embodied AI is receiving a lot of attention in recent

years, with interesting yet very challenging tasks such as

*The authors contributed equally to this paper

Embodied Question Answering [27], Image-Goal Naviga-

tion [13], Visual-Language Navigation [14] and zero-shot

Object-Goal navigation [18, 8]. Currently, some areas of re-

search are focusing on creating explicit map representations

that could improve the performances on those tasks, such as

semantic segmentation maps [2, 19], occupancy maps and

top-down semantic map prediction [9]. More recently, some

works attempted to embed latent vectors in the explicit map

to perform navigation [11]. However, very few tried to com-

bine Visual-Language-aligned and NeRF [20] latent codes

into the map itself to solve different tasks simultaneously.

For this reason, in this preliminary work, we expand

RNR-Map [15] by enhancing it with visual-language-

aligned features. The result is a Language enhanced, Ren-
derable Neural Radiance Map (Le-RNR-Map) for visual

navigation that is visually descriptive, thanks to the Neu-

ral Radiance Field embeddings, generalizable, since it uses

off-the-shelf models requiring no training, and queryable

with both text and images thanks to the addition of visual-

language-aligned features. To the best of our knowledge,

this is the first work in the literature to create a map rep-

resentation that allows to solve three distinct tasks at the
same time: i) Localization of objects given a query im-

age, by using the RNR-Map [15] embeddings; ii) Open Vo-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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cabulary localization of objects through natural language,

using Visual-Language-aligned embeddings; iii) rendering

of the path to the target, highlighting the searched object

with Visual-Language-aligned features, without the need to

physically move the agent.

2. Related Literature
2.1. Maps For Navigation

There is an extensive research area that focuses on how

to build maps to aid navigation in indoor environments

[1, 4, 19, 11, 15, 26]. An occupancy grid map is a m ∈
R

M×M×C matrix, where M ×M is the spatial size and C
is the number of channels storing information about a cor-

responding region. Recently, the authors of RNR-Map [15]

introduced a novel type of map, in which the latent codes are

embedded from visual observations and can be converted

to a neural radiance field, which enables image rendering

given a camera pose, thus being visually descriptive. More-

over, the author showed that this novel type of map can be

useful for visual localization and navigation.

In AutoNeRF [19], the authors introduce a method to

collect data required to train NeRFs using autonomous em-

bodied agents, and use the experience to build an implicit

map representation of the environment. Moreover, they

augment the NeRF rendering procedure with a segmenta-

tion head over S predefined classes. In VLMaps [11], the

authors ground language information to visual observation

fusing pre-trained visual language features [16] into a 2D

spatial representation. A similar approach is presented in

[3]. In contrast to [11], Le-RNR-Map also allows us to per-

form Image-Goal Navigation, and NeRF rendering given

a camera pose. Additionally, Le-RNR-Map can be built

faster, in around 60 seconds, for ∼1000 RGB-D images

(128× 128).

2.2. Nerf

Neural Radiance Fields, introduced in [20], address the

problem of view synthesis, that is generating scene views

from unseen novel viewpoints. NeRF scenes are modelled

by a multilayer perceptron network which outputs the radi-

ance emitted by a 3D point, given a spatial location (x, y, z)
and a viewing direction (θ, φ). The original NeRF formu-

lation [20] can only represent small scenes, and does not

generalize to new scenes/objects. To solve these limita-

tions, other works take the challenge of learning a distri-

bution over complex scenes. Generative Scene Networks

(GSNs) [6] can be used to learn a rich scene prior in or-

der to generate new scenes or fill the given one, decompos-

ing the scene in local radiance fields that can be rendered

from a moving camera. Moreover, they can be used to ren-

der images from latent codes, which in our case are stored

in Le-RNR-Map, like the original RNR-Map formulation

[15]. Some recent works have extended the principle goal of

NeRF with some other tasks. LERF [12] proposed a method

for grounding CLIP representations in a dense, multi-scale

3D field, which can render dense relevancy maps given tex-

tual queries. However, LERF is still limited to small scenes

and requires 45 minutes for a capture.

2.3. Language and Vision

Mapping text and images is the problem of estimating a

function that maps images to the desired text (e.g. caption-

ing [17]) and vice versa (e.g image generation with text-

conditioning [23, 24]). Introduced in [22], CLIP is a model

composed of an image-encoder and text-encoder trained to

map embeddings from images and their description close to

each other in the feature space, with a contrastive loss that

enforces non-related pairs to be mapped further from each

other. The authors showed with extensive experiments that

CLIP achieves competitive zero-shot performance and thus

can be used as a foundational model in a variety of task,

such as scene segmentation [21, 16], Open-Vocabulary ob-

ject detection [10] and Image-Generation [23]. Moreover,

[7] introduces MaskCLIP, a framework for obtaining scene

segmentation with indirect supervision from language.

3. Method
3.1. Map creation

We create a Le-RNR-Map by first extracting visual and

Visual-Language-aligned features from RGB frames, while

a subsequent feature registration process projects them in

the map (Fig. 1a).

Visual embeddings. Inspired by [15] we consider a

robot agent exploring the scene with a random walk, using

RGB-D data and its on-board sensors, i.e. odometry infor-

mation, to build Le-RNR-Map. An encoder-decoder archi-

tecture performs the creation of the RNR-Map. To allow

an effective encoding of the 3D environment, the authors of

[15] perform training of the encoder-decoder as follows: i)
the encoder takes in input the RGB-D image and extracts

the pixel features; ii) the decoder uses pixel features, along

with the current pose (i.e. position of the agent), to sam-

ple latent information along each camera ray corresponding

to each pixel, and tries to render the corresponding images.

The latent codes extracted from the encoder, then, represent

the pixel-level visual information from the current view. In

our experiments, the encoding features are Frnr ∈ R
32.

These features allow image rendering using Neural Radi-

ance Field, and image localization in the map. For a more

in-depth description, we refer the reader to [15].

Natural language. To include language features, we use

a pre-trained CLIP [22] image-encoder to get Fclip ∈ R
512

from the current RGB-D frame.

Le-RNR-Map. The final embedding space for the
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current observation RGB-D frame is then composed as

Fle−rnr = Fclip ⊕ Frnr. Fle−rnr ∈ R
544 with the first

32 channels generated from RNR-Map and the 512 remain-

ing from CLIP. Both the features from RNR and CLIP are

then projected to the 2D map using the depth information,

as in [15]. This allows us to keep the exact performances of

RNR-Map for the Image-Goal navigation task, with the ad-

dition of being able to query the navigation through natural

language thanks to the CLIP features.

3.2. Language-vision object search

The vision-language object search is performed by pro-

viding a natural language query (Fig. 1b). This query

should indicate the objects required to find (either big fur-

niture or small objects) that the navigation module has to

handle as goal objects. Once the query is provided, the

text embeddings are extracted with a pre-trained CLIP [22]

text-encoder, and the cosine similarity with each cell of

the Le-RNR-Map is computed. We select the location of

maximal similarity as the goal location. The 3D end-goal

predicted location, given the (x, y) indices expressed in

Le-RNR-Map coordinate system, is obtained through in-

verse projection as in [15]. Exact procedure is presented

in the supplementary material. To ensure the correct max-

imal similarity is found, prompt engineering is performed

with negative prompting following [12, 22]. Together with

the query prompt, this empirically shows a more fine-

grained similarity on the maps and gives better localiza-

tion as shown in Fig. 3. An extension of GSN [6] is then

used to synthesize novel views and render a possible path-

way that leads from any point starting point of the map to

the required goal. Once the navigation reaches the prox-

imity of the goal (i.e. the location of maximal similarity in

the Le-RNR-Map), we estimate the camera orientation to-

wards the goal by rotating the camera by 360◦, computing

the CLIP features for each degree and choosing the one with

maximal cosine similarity with the target query. Finally, the

visual saliency of the goal (Fig. 2c) is extracted from the

RGB reconstructed by GSN [6] using pixel-wise CLIP fea-

tures [7]. When multiple target objects are requested, the

navigation is performed sequentially for each object follow-

ing the same procedure, using as starting location the previ-

ous target location.

4. Experiments
To highlight the benefits that Le-RNR-Map brings to

the Object-Goal Navigation task, we designed a set of tar-

geted experiments. In Sec. 4.1 we evaluate the ability of

Le-RNR-Map to correctly locate items using only Natural

Language prompts. In Sec. 4.2 we show that the Render-

able Neural Radiance map allows the user to properly select

the correct item of interest in case of ambiguity. Finally, in

Sec. 4.3, we explore the possible collaboration between a

Figure 2: (a) Observation from Habitat-sim [25]. (b) Recon-

struction using latent code from Le-RNR-Map using Neural

Radiance Field (c) Feature visualization of the text query

using MaskCLIP [7]. (d) Top-down view of Le-RNR-Map.

Large Language Model and Le-RNR-Map to find items and

locations based on contextual prompts, called Affordance
queries (e.g. the query “Find me a drink to wake me up”
results in the agent looking for a cup of coffee). All of our

experiments were conducted inside the Habitat-Sim [25] us-

ing the Gibson [28] dataset.

4.1. Searching items by Language prompts

The goal of Le-RNR-Map is to provide the user with a

Natural Language interface with the agent. Such an inter-

face would allow the user to prompt the agent with low ef-

fort, even in a constrained environment where traditional in-

teractions may be unavailable (e.g. the user is holding some-

thing and can’t physically interact with the agent) or im-

probable (e.g. asking an agent to look for a particular object

by showing it a picture of the object itself). With this goal in

mind, we test the ability of Le-RNR-Map to locate different

common items and/or locations in the environment, using

only the CLIP features embedded in the navigation map.

In Tab. 1 we report the Success Rate and Distance To

Success (DTS), as defined in [2], on some scenes of the val-

idation split of the Gibson tiny dataset [28]. The dataset

provides a textual label for the target object and its loca-

tion in the scene as ground truth. We use the label as text

prompt and compute the metrics comparing our predicted

location with the ground truth. Additionally, as explained

in Sec. 3.2, we define a series of unwanted objects or gen-

eral/background elements (e.g. stuff, wall, floor)

as negative prompts. These prompts may be specific for

each scene. Together with the target prompt, we compare

their similarity results with the map embeddings (as seen in

[22]) resulting in similarity maps with more consistent ar-

eas of interest as shown in Fig. 3. In general, Le-RNR-Map

enables us to obtain a decent success rate and DTS without

additional training required. Moreover, we investigate the

low Success Rate for the Darden scene. We found that the

observations, given to the agent during the map creation,

contain several artefacts, such as mirror reflections, missing

walls and mesh holes, leading to incorrect embeddings into

the map. Further study will analyze this problem.
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Figure 3: Similarity heatmap between the prompt Couch
and Le-RNR-Map. (a) is without negative prompts. (b)

shows that negative prompts result in cleaner maps with

more concentrated similarity zones. The stars indicate the

maximum similarity locations.

Table 1: Results on the val split of Gibson tiny dataset.

Note that our setup is known since we generate the map

beforehand. Each scene has a different negative prompt.

Scene name Negative
Prompts Success ↑ DTS (m) ↓

Corozal
� 0.69 1.19

� 0.69 0.65

Darden
� 0.37 4.12

� 0.59 2.59

Markleeville
� 0.81 1.38
� 0.83 1.50

Wiconisco
� 0.76 0.50

� 0.76 0.50

Average
� 0.66 1.79

� 0.72 1.31

4.2. Solving prompt ambiguities

One of the advantages of having a Renderable Neural

Map is the possibility for the agent to explore the scene
without actually moving in the real world. This is partic-

ularly useful in scenarios where the user prompt may be

ambiguous and refer to multiple objects or locations in the

scene (e.g. windowmay refer to different windows). When

this happens, the RNR-Map can be used to provide the user

with visual previews of the paths it would take to get to all

the possible solutions. In this section, we explore this case

and provide a solution using Le-RNR-Map.

First, as in Sec. 4.1, we compute similarities between

the CLIP features extracted from the prompt and the ones

embedded in Le-RNR-Map by also using negative prompts.

After finding the maximum similarity location, we suppress

all the similarities in the adjacent cells of the map. We

then look for the new maximum similarity above a thresh-

old th = 0.6. For each target found, we render the path that

the agent would follow to reach the target using a shortest

path algorithm. The process ends when there is no longer

a similarity score greater than th. We consider it a suc-

cess when this process finds the target item in at least one

of the N predicted paths, simulating the user “selecting”

the desired item. While this evaluation is heavily reliant on

hyper-parameters, such as the number N of predicted paths

allowed and the value T of the threshold, we still believe it

to be an interesting use case, and propose our work as a first

informal approach to this problem. For video examples, we

refer the user to the supplementary material.

4.3. Affordance search

We argue that Natural Language alone is not enough to

achieve natural interaction with the user and the agent, es-

pecially if we restrict the user to a limited set of words

(classes) or a rigid sentence structure. The idea comes from

the following observation: what if we want to search for

some specific location of an indoor environment, but we are

unable to express the query in a direct way? As an exam-

ple, consider the scenario where we want to search for a

location “that can be relaxing after a long day at work”.

We define this use case as “affordance search”, and propose

to take advantage of the current state-of-the-art Large lan-

guage model to translate the query and output a set of pos-

sible target descriptions, using the available GPT-3.5 chat-

completions API. After retrieving the descriptions, we se-

quentially search for each target with the procedure pre-

sented in Sec. 3.2. Visualizations and details about prompts

are available in the supplementary material.

5. Conclusions & Future works
In this preliminary study, we have enhanced the novel

RNR-Map [15] to allow natural language search using an

off-the-shelf model. We qualitatively show the result us-

ing single and multi-object search, generating videos of the

shortest path to reach the object using the neural Radiance

Field from latent code inside RNR-Map. Moreover, we

show how LLMs can be used as an “affordance query re-

solver”. Several interesting future works could follow this

preliminary study. We plan to improve the rendering qual-

ity of the reconstructed observation by adding a Language-

driven grounding head to the NeRF procedure, similar to

[12] but in an open-scene case. Research could also focus

on training an end-to-end agent to solve the zero-shot ob-

ject goal navigation, and studying if the online generation

of Le-RNR-Map serves as an auxiliary task to improve the

generalization capabilities of the agent. Furthermore, we

plan to evaluate the impact of different negative prompts in

the standard zero-shot object goal navigation benchmark.

Also, we plan to study how to deal with dynamic envi-

ronments, thus providing a way to update the map, both

in NeRF and language embedding space. Finally, we are

outlining a real-world implementation in an industrial envi-

ronment, leveraging Human-Robot-Interaction methods [5]

for better integration of human-guided robot navigation and

enhanced task efficiency.

4672



References
[1] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,

Abhinav Gupta, and Ruslan Salakhutdinov. Learning to ex-

plore using active neural slam. In International Conference
on Learning Representations (ICLR), 2020.

[2] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Ab-

hinav Gupta, and Russ R Salakhutdinov. Object goal navi-

gation using goal-oriented semantic exploration. Advances
in Neural Information Processing Systems, 33:4247–4258,

2020.

[3] Boyuan Chen, Fei Xia, Brian Ichter, Kanishka Rao,

Keerthana Gopalakrishnan, Michael S. Ryoo, Austin Stone,

and Daniel Kappler. Open-vocabulary queryable scene rep-

resentations for real world planning. In arXiv preprint
arXiv:2209.09874, 2022.

[4] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning ex-

ploration policies for navigation. In 7th International Con-
ference on Learning Representations, ICLR 2019, 2019.

[5] Federico Cunico, Marco Emporio, Federico Girella, Andrea

Giachetti, Andrea Avogaro, and Marco Cristani. Oo-dmvmt:

A deep multi-view multi-task classification framework for

real-time 3d hand gesture classification and segmentation. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2744–2753, 2023.

[6] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,

Graham W. Taylor, and Joshua M. Susskind. Unconstrained

scene generation with locally conditioned radiance fields. In

Proceedings of the IEEE International Conference on Com-
puter Vision, page 14284 – 14293, 2021.

[7] Xiaoyi Dong, Jianmin Bao, Yinglin Zheng, Ting Zhang,

Dongdong Chen, Hao Yang, Ming Zeng, Weiming Zhang,

Lu Yuan, Dong Chen, et al. Maskclip: Masked self-

distillation advances contrastive language-image pretraining.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10995–11005, 2023.

[8] Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco,

Ludwig Schmidt, and Shuran Song. Cows on pasture: Base-

lines and benchmarks for language-driven zero-shot object

navigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 23171–

23181, 2023.

[9] Georgakis Georgios, Schmeckpeper Karl, Wanchoo Karan,

Dan Soham, Miltsakaki Eleni, Roth Dan, and Daniilidis

Kostas. Cross-modal map learning for vision and language

navigation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

[10] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.

Open-vocabulary object detection via vision and language

knowledge distillation. In ICLR 2022 - 10th International
Conference on Learning Representations, 2022.

[11] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram

Burgard. Visual language maps for robot navigation. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA), London, UK, 2023.

[12] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo

Kanazawa, and Matthew Tancik. Lerf: Language embedded

radiance fields. arXiv preprint arXiv:2303.09553, 2023.

[13] Jacob Krantz, Stefan Lee, Jitendra Malik, Dhruv Batra, and

Devendra Singh Chaplot. Instance-specific image goal nav-

igation: Training embodied agents to find object instances.

arXiv preprint arXiv:2211.15876, 2022.

[14] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra,

and Stefan Lee. Beyond the nav-graph: Vision-and-language

navigation in continuous environments. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part XXVIII 16, pages 104–

120. Springer, 2020.

[15] Obin Kwon, Jeongho Park, and Songhwai Oh. Renderable

neural radiance map for visual navigation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9099–9108, 2023.

[16] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen

Koltun, and Rene Ranftl. Language-driven semantic seg-

mentation. In International Conference on Learning Rep-
resentations, 2022.

[17] Jianjie Luo, Yehao Li, Yingwei Pan, Ting Yao, Jianlin Feng,

Hongyang Chao, and Tao Mei. Semantic-conditional dif-

fusion networks for image captioning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 23359–23368, 2023.

[18] Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy

Hoffman, and Dhruv Batra. Zson: Zero-shot object-goal

navigation using multimodal goal embeddings. In Neural
Information Processing Systems (NeurIPS), 2022.

[19] Pierre Marza, Laetitia Matignon, Olivier Simonin, Dhruv

Batra, Christian Wolf, and Devendra Singh Chaplot. Auton-

erf: Training implicit scene representations with autonomous

agents. arXiv preprint arXiv:2304.11241, 2023.

[20] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. Communications of the ACM, 65(1):99–106, 2021.

[21] Songyou Peng, Kyle Genova, Chiyu ”Max” Jiang, An-

drea Tagliasacchi, Marc Pollefeys, and Thomas Funkhouser.

Openscene: 3d scene understanding with open vocabularies.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. Learning transferable visual

models from natural language supervision. In Marina Meila

and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 8748–8763.

PMLR, 18–24 Jul 2021.

[23] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022.

[24] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,

Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,

4673



et al. Photorealistic text-to-image diffusion models with deep

language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022.

[25] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia

Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv

Batra. Habitat: A Platform for Embodied AI Research. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019.

[26] Francesco Taioli, Francesco Giuliari, Yiming Wang, Ric-

cardo Berra, Alberto Castellini, Alessio Del Bue, Alessandro

Farinelli, Marco Cristani, and Francesco Setti. Unsupervised

active visual search with monte carlo planning under uncer-

tain detections. arXiv preprint arXiv:2303.03155, 2023.

[27] Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Ab-

hishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi

Parikh, and Dhruv Batra. Embodied Question Answering

in Photorealistic Environments with Point Cloud Perception.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[28] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra

Malik, and Silvio Savarese. Gibson env: Real-world percep-

tion for embodied agents. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

9068–9079, 2018.

4674


