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Abstract

The intersection of vision and language is of major in-
terest due to the increased focus on seamless integration
between recognition and reasoning. Scene graphs (SGs)
have emerged as a useful tool for multimodal image anal-
ysis, showing impressive performance in tasks such as Vi-
sual Question Answering (VQA). In this work, we demon-
strate that despite the effectiveness of scene graphs in VQA
tasks, current methods that utilize idealized annotated scene
graphs struggle to generalize when using predicted scene
graphs extracted from images. To address this issue, we
introduce the SelfGraphVQA framework. Our approach
extracts a scene graph from an input image using a pre-
trained scene graph generator and employs semantically-
preserving augmentation with self-supervised techniques.
This method improves the utilization of graph representa-
tions in VQA tasks by circumventing the need for costly
and potentially biased annotated data. By creating alter-
native views of the extracted graphs through image aug-
mentations, we can learn joint embeddings by optimizing
the informational content in their representations using an
un-normalized contrastive approach. As we work with SGs,
we experiment with three distinct maximization strategies:
node-wise, graph-wise, and permutation-equivariant regu-
larization. We empirically showcase the effectiveness of the
extracted scene graph for VQA and demonstrate that these
approaches enhance overall performance by highlighting
the significance of visual information. This offers a more
practical solution for VQA tasks that rely on SGs for com-
plex reasoning questions.

1. Introduction
The successful execution of Visual Question Answer-

ing (VQA) relies on a comprehensive understanding of the

scene, including spatial interrelationships and reasoning in-

ference capabilities [1,13]. Incorporating scene graph (SG)

*Work carried out as Guest Researcher at UiO.

representations in SG-VQA tasks has shown promising out-

comes [12,15,17,23,28], providing concise representations

of complex spatial and relational information.

Earlier investigations into SG-VQA demonstrated that

successful models primarily rely on the utilization of man-

ually annotated scene graphs for training [19, 20, 23], re-

sulting in remarkably high levels of accuracy on the GQA

dataset [13], surpassing human performance by a significant

margin (see Table 1).

Despite the promising results, we argue that utilizing

pre-annotated SGs in VQA is impractical in the real world

due to its labor-intensive nature. Also, it permits a wide

range of semantically corresponding SG [11] and when an-

notated it could potentially introduce questions-related bi-

ases, giving rise to concerns about its generalizability [2].

These issues may limit the model’s ability to solve real-

world problems beyond the dataset [21]. This is evident in

a significant decline in accuracy, approximately 60% when

models are confronted with automatically generated SGs.

Additionally, studies assert that the main limitation in gen-

eralizing stems largely from linguistic correlations. [2, 16].

In this study, we address these challenges by extracting

an SG from a given image using an unbiased, off-the-shelf

scene graph generator [15], with the aim of removing any

potential information leakage, as illustrated in Fig. 1’s struc-

ture. Furthermore, our method employs semantically pre-

serving augmentation, integrated with un-normalized con-

trastive framework, to further mitigate potential linguistic

biases to enhance the visual cues translated as SG for VQA.

We refer to it as the SelfGraphVQA framework, cf. Fig. 1.

Given its simplicity [7], our approach is trained us-

ing joint embeddings and a Siamese network architecture,

inspired by the SimSiam model, which does not require

negative samples [5, 9]. In this work, we explore three

un-normalized contrastive approaches (node-wise, graph-

wise, and regularization for permutation equivariance) and

demonstrate its effectiveness by enhancing the visual infor-

mation for the VQA task. A graph neural network (GNN)

with a self-attention strategy (GAT) is employed to distill

an SG representation relevant to the question by capturing

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: (Left) The statistical dependence of the task and

the ideal graph, G. (Right) Our proposed framework re-

moves data leakage by using the extracted SG G′. Our ar-

chitecture comprises a question encoder fq , a graph encoder

fg , and a classifier fc. Two distinct views of one image are

processed by the same pipeline. We use a frozen pre-trained

SG generator g, and a prediction head h is applied through

the top view with gradient backpropagation, while gradients

are not propagated back from the lower view. We maximize

the representation of the views using the similarity loss L′.

visual interaction content among objects in the scene [7].

Our work differs from existing VQA models in three

main aspects: (i) we generate as SG using a pre-trained,

unbiased scene graph generator [15] in a more practical ap-

proach; (ii) we utilize un-normalized contrastive learning on

the SG representation, along with augmentation, to elimi-

nate any potential spurious correlations from annotated data

and to heighten the visual information; and (iii) the use of

a GAT encoder to enhance high-level semantic and spatial

reasoning on the SG. We further investigate the behav-

ior of visual enhancement when employing a more expres-

sive language encoder, specifically BERT [14]. Importantly,

our SelfGraphVQA framework does not require the costly

pre-training strategy common to transformer-based models

commonly used in vision-language tasks [8, 25, 28].

2. Related Work
Scene Graph and Visual Question Answering. Accu-

rately assessment of VQA tasks, requiring a comprehen-

sive understanding of visual perception and semantic rea-

soning, has gained substantial attention in the academic

community, as these tasks holds significant practical value,

particularly in enhancing accessibility for the visually im-

paired [4, 14, 18, 29, 30].

Several works have explored the information that SG

representations may bring to VQA [19, 27], as opposed

to the more data-hungry transformer-based visual language

models [8, 18, 25]. However, existing SG-VQA approaches

typically rely on idealized scene graphs and inherent dataset

reasoning [19,20]. Obtaining such annotations can be costly

without an end-to-end pipeline. Moreover, even SoTA

methods in SG-VQA exhibit limited generalization capa-

bilities, potentially due to spurious correlations [2].

Table 1: Our experiments revealed a notable accuracy re-

duction in top-notch methods on the GQA dataset when

transitioning from well-annotated to extracted scene graphs.

We categorize methods by data type (e.g., annotated data

or purely image-question extraction) and SGG usage. All

methods are trained and validated uniformly, except for the

test extracted configuration, trained on ideal data and vali-

dated on extracted SGG data.

Method Eval. Data Acc (%)

Human [13] – 89.3

GraphVQA [19] Annotated/SGG 94.8

LRTA [20] Annotated/SGG 93.1

Lightweight [23] Annotated/SGG 77.9

CRF [22] Annotated 72.1

LXMERT [25] Extracted 59.8

GraphVQA (original pre-trained on ideal) Test Extracted/SGG 29.7

SelfGraphVQA (Local) Extracted/SGG 51.5

SelfGraphVQA (Global) Extracted/SGG 52.3

SelfGraphVQA (SelfSim) Extracted/SGG 54.0

Self-Supervised Learning. Broadly speaking, recent ad-

vancements in self-supervised learning can be categorized

into normalized [3, 6] and maximization representation

learning [7, 10, 26]. Contrastive methods aim to bring

embeddings of identically labelled images closer together

while separating embeddings generated from different ver-

sions. In visual-language data, the prevailing approach for

self-supervised learning involves pretraining a transformer-

based model on a large dataset to solve pretext tasks before

fine-tuning for downstream tasks [8, 24, 25, 28]. However,

these methods can be computationally expensive and com-

plex due to the use of negative samples and masking tech-

niques. Modern un-normalized contrastive learning meth-

ods, e.g., BYOL [10] and SimSiam [7], use architectures

inspired by reinforcement learning to maximize the infor-

mational content of the representations. In our proposal, we

adopt a similarity maximization approach using a Siamese

architecture for visual scene graph representation.

3. Methodology

We refer the reader to the appendix for the implementa-

tion details. We experiment with the maximization strategy

with three independent and distinct similarity losses over

either a localized node representation (i.e., object-wise), a

global pooled graph representation (i.e., scene-wise), or a

regularization node representation term to induce permu-

tation equivariance. We denote the graph representations

zi = fg
(
g(xi), fq(q)

)
, and the predictor’s output vectors

pi = h(zi). Generally, the representations are maximized

by minimizing the generic cosine distance D loss.

Local Similarity. To account for permutation invariance in

the node representations, we compute cosine distances over

all object pairs from the two views and use the maximally

4641



similar node embedding pairs to compute the local loss by

L∗
� (p1, z2) =

1

O

O∑

i

argmin
z2,j

D(p1,i, z2,j), (1)

where O is the number of objects in the scene. Symmet-

rically, we compute L∗
� (p2, z1), to obtain the overall local

loss

L�(z1, z2) =
1

2

(
L∗
� (p1, z2) + L∗

� (p2, z1)
)
. (2)

Global Similarity. After obtaining a graph representation,

we follow an approach similar to cosine similarity maxi-

mization for image classification [7,10]. Along with the in-

tuition that contrasting between global representations may

enhance the visual cues, we assume that the global represen-

tation contains the full information about the scene. Similar

to the local representation, we minimize the cosine distance,

yielding a loss on the form

Lg(z1, z2) =
1

2

(
D(p1, z2) +D(p2, z1)

)
. (3)

Regularization for Permutation Equivariance. We em-

ploy an anchor, where the SG of an unmodified image

guides the SG of the augmented image, allowing us to ob-

tain a more accurate representation of the original scene.

Our assumption is that the local similarity loss decreases the

global performance, while global similarity provides a con-

textual representation but loses local details. This technique

aligns similar nodes and encourages regularization, making

augmented scene representations closer to the original, thus

mitigating permutation invariance in graph representations.

Denote the anchored representation by z1, and the

augmented representation by z2. We determine intra-

similarities of the anchors s1,i = argminz1,j D(z1,i, z1,j)
and similarities of augmented views s2,ij = D(z2,i, z2,j).
We then compute cross-entropy (CE) between anchors and

augmentations

J(z1, z2) = CE(s1, s2), (4)

which acts as a regularizer to constrain permutation equiv-

ariance for the augmentations in addition to the local loss.

We combine these losses using

Ls(z1, z2) = L�(z1, z2) + J(z1, z2), (5)

which we refer to as a local self-similarity loss (SelfSim).

Distribution Link Representation Regularization. Sim-

ilarly to the regularization for permutation equivariance,

we apply link regularization in conjunction with one of the
other three similarity strategies. The edges of the anchor
SG guide the edges of the augmented SG. Denote the an-

chored edge score representation by r1, and the augmented

edge score representation by r2. These scores characterize

the relationship between the objects in the scene, and we

aim to make the link distribution more robust to perturba-

tion. In this case, the scene graph generator [15] is train-
able. We compute the cross-entropy between the anchored

edge scores and the augmented edge scores Je(r1, r2) =
CE(r1, r2), which acts as a regularizer to constrain the link

prediction distribution, yielding

Le(z1, z2) = L�(z1, z2) + Je(r1, r2). (6)

All models utilizing this added link distribution regularizer

are characterized by the inclusion of the term “link.”

Overall Optimization Objective. Lastly, we outline the

overall loss for optimizing the VQA objective. To identify

the correct answer a ∈ A given an example (x, q, A), where

x represents the input image, and q is the associated ques-

tion, we extract a point estimate of probabilities

p(a | x, q) = σ
(
logit(x)

)
, (7)

where σ is the softmax function, and logit(x) = f(x, q) are

the logits for all possible answers produced by our encoder.

We calculate the cross-entropy loss for each instance,

Lsup(x) = CE
(
p(a | x, q), a) . (8)

Our combined training loss is then given by

L(x) = αLsup(x) + βL′(z1, z2), (9)

where L′ can be any of the aforementioned similarity loss

strategies: L�, Lg, or Ls, with or without Le. The α and

β are controlled hyperparameters that balance the contribu-

tion of the various components in the total loss.

4. Experiments and Ablations
We evaluate our framework on the GQA dataset [13].

Our study aims to establish a practical foundation for

demonstrating the potential of SG along with an un-

normalized contrasting approach to improve visual cues

for VQA. Despite the noise data in the extracted SG, we

demonstrate its effectiveness, Fig. 2, by highlighting the

importance of further exploration. The utilization of non-

idealized SG-VQA methods with un-normalized contrastive

learning leads to improvements across all metrics, Table 2.

Furthermore, our framework demonstrates faster conver-

gence during training, approximately 20% faster in epochs

compared to baselines. However, further investigation is re-

quired to validate them.

The un-normalized contrastive approach universally en-

hances results across question categories (Fig. 2), with spe-

cific types of approaches further improving the model’s per-

formance based on the query type.
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Table 2: Results (%) on GQA by standard metrics.
Method Binary (↑) Open (↑) Consist. (↑) Validity (↑) Plausab. (↑) Distr. (↓) Acc (↑)

Baseline 65.8 29.7 58.2 94.9 90.5 11.7 50.1
Baseline+BERT 68.0 32.2 62.6 95.0 90.9 7.7 53.8

Local 66.8 30.2 59.4 94.9 90.6 8.8 51.5
Global 67.7 30.8 62.5 94.9 90.6 6.7 52.3
SelfSim 68.4 31.3 65.9 94.9 90.7 2.1 54.0

Global+BERT+link 68.0 33.0 63.9 95.0 91.2 8.9 54.5
SelfSim+BERT+link 68.2 32.8 64.3 95.0 91.0 8.0 54.5

RelationshipAttribute Object Global Category Average

0.40
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0.60

0.70

0.80

A
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u
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(%

)

Baseline Baseline+BERT

Global SelfSim

Figure 2: Accuracy on different question types.

Table 3: Change in accuracy under potentially disruptive

augmentations and perturbations.

Question Type Augmentation Baseline Global Local SelfSim

Relation Flip −1.6 −3.4 −3.2 −3.9

Attribute Strong Color Jitter +1.14 −3.7 −0.8 −1.2

Global Gaussian Noise + Crop −5.6 −7.7 −5.5 −8.1

Table 4: Results(%) of the Aug. Baseline and SelfSim.

Method Binary Open Validity Plausibility Acc

Baseline Aug 65.1 28.7 94.6 90.1 50.1

SelfSim 68.4 31.3 94.9 90.7 54.0

We conducted ablations to demonstrate the functionality

of our approach and carried out detailed observations that

go beyond mere reliance on metrics using the GQA dataset.

Does the Scene Graph Really Matter? Through a pertur-

bation study where images were augmented based on ques-

tion types, we introduced disruptive noise such as image

flipping to challenge the model’s ability to answer spatial

relational questions. The goal was to observe mistakes in

the model’s answers. The results, compared to the base-

line (Table 3), showed greater variation in our model’s per-

formance, indicating that it pays more attention to visual

information, whereas the baseline appears to rely on other

sources of information.

Are Performance Gains Mainly Due to Augmentations?
We compared our approach with the baseline architecture,

training solely with data augmentation techniques to evalu-

ate their influence on overall performance. Table 4 provides

evidence that data augmentation techniques actually impair

the performance of the architecture.

Are Our Models Less Biased? Our initial hypothesis was

that current top-performing models might incorporate bi-

ases present in the questions into their weights. We con-

ducted experiments to analyze this issue, introducing ran-

dom noise to features in the scene graph while preserving

its topology, and perturbing the language in up to 50% of

the words in the questions. The results in Table 5 demon-

strate that our approach relies less on linguistic features, pri-

oritizing overall information and reducing linguistic bias.

Additionally, we explored visual enhancement, even when

Table 5: Sensitivity of accuracy (%) for bias question ana-

lyzes of SelfGraphVQA and SelfGraphVQABERT.
Setup Methods

Scene Graph + Question Baseline Local Global SelfSim

Noise + SG 16.2 16.6 28.6 26.6

Question + Noise 39.9 38.3 37.4 39.8

Noise + Noise 12.7 14.6 18.9 21.0

Question + Scene Graph BERT Baseline BERTGlobal+link BERTSelfSim+link

Noise + SG 21.0 23.2 24.5

Question + Noise 42.4 41.8 42.8

Noise + Noise 19.8 21.7 21.3

Relative Synonym Ambiguous

Q: Is there an airplane in the Q: Where are the weeds? Q: Is the man to the right
picture that is not small? or to the left of the cup?
Answer: Yes Answer: Plain Answer: Right
Prediction: No Prediction: Field Prediction: Left

Figure 3: Examples to demonstrate the complexity of VQA.

trained with a more expressive language module such as

BERT. The experiments in Table 5 examine the impact of

using BERT and its effect on enhancing visual information.

Examples. Given the wide range of acceptable answers, we

argue that solely relying on standard evaluation metrics may

not provide a fair comparison, thus presenting additional

challenges to the field. Fig. 3 demonstrates the utility of

SG for interpretability, as they enable a graphical analysis

of objects and the overall composition of the scene.

5. Conclusions
Despite promising results in VQA tasks with idealized

SG, our study revealed that models relying on manually an-

notated and expensive SG struggle with real-world data. To

address this, we proposed SelfGraphVQA, a more practi-

cal SG-VQA framework that breaks the spurious correla-

tion of annotated SG and learns to answer questions us-

ing extracted SG from a pre-trained SG generator. We

employed un-normalized contrastive learning to maximize

similar graph representations in different views. All ap-

proaches utilizing self-supervision showed improvement

over their baselines. Overall, we demonstrated the effec-

tiveness of extracted SG in VQA, underscoring the signif-

icance of continued exploration of the potential of SG for

complex tasks. We also showed that self-supervision over

the SG representation improved the results by enhancing the

visual information within the task. We hope that this work

raises awareness of the challenges of accentuating the role

of the scene in answering questions from images.
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