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Methods RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-u test-u

Baseline 85.92 88.41 81.77 75.27 80.06 66.33 77.10 76.06
Wo masked 86.57 88.52 82.26 75.84 80.41 67.02 77.57 75.93

Ours 86.82 88.75 82.60 76.22 80.75 67.33 77.86 76.24
Table 1. Ablation study on multiple masked strategies. “Base-
line” denotes the experiment with one full text without centerpoint
supervision, “Wo masked” denotes the result with one full text
and centerpoint supervision, and “Ours” represents the experiment
with MRCS.

1. Detailed rules for masking words in MRCS
module.

When we mask lexical words, we prioritize them differ-
ently. We first mask prepositions, conjunctions, and qual-
ifiers because they usually do not significantly impact the
sentence’s meaning. If these types of words are not present,
the module then masks auxiliaries, pronouns, and numbers,
which can partly affect the sentence’s semantics. Finally,
the module masks adjectives and verbs, which are critical
for the sentence’s meaning. If there is only one non-noun
word remaining or only nouns remain in the sentence, no
further masking is performed. However, even with this pri-
ority order, some important words may still get masked,
introducing noise into the training. Nevertheless, we em-
pirically demonstrate that the language comprehension im-
provement from masking operations outweighs the nega-
tive effects of introducing noise (shown in Table 1). In all
datasets, the number of words exceeds 3, and through three
masking operations, we find that the majority of the masked
words are prepositions, conjunctions, and qualifiers. There-
fore, in most cases, this operation will not affect the mean-
ing of the sentence.

*Contribute Equally.

2. Details of Dataset

To comprehensively verify the effectiveness of the pro-
posed robust VG approach, we evaluate it on two types
of datasets: the regular VG datasets and the robust VG
datasets.

2.1. Regular VG Datasets

We evaluate our proposed approach on five regular VG
datasets, including the RefCOCO [6], RefCOCO+ [6], Re-
fCOCOg [2], ReferItGame [1], and Flickr30k [3]. The Re-
fCOCO datasets series, including RefCOCO, RefCOCO+,
and RefCOCOg, are three commonly used benchmarks for
visual grounding, the images used in these datasets are col-
lected from the train2014 set of MSCOCO dataset. Specifi-
cally, the RefCOCO dataset contains 19,994 images, 50,000
reference objects, and a total of 142,210 reference expres-
sions. Among them, 120,624 reference expressions are used
as the training set, 10,834 as the validation set, 5657 and
5095 expressions for test A and test B, respectively. The
RefCOCO+ dataset provides 19,992 images with 49,856
reference objects and 141,564 reference expressions. Sim-
ilar to RefCOCO, RefCOCO+ is also divided into training,
validation, test A, and test B sets, with 120,191, 10,758,
5,726, and 4,889 reference expressions in these datasets.
RefCOCOg contains a total of 25,799 images, 49,822 ob-
jects, and 95,010 reference expressions. Compared to the
first two datasets, most of the expressions in RefCOCOg
have longer sentences and more complex statement struc-
tures. RefCOCOg contains two sub-datasets, RefCOCOg-
google and RefCOCOg-umd. Since the former dataset does
not provide a test set, we mainly use the RefCOCOg-umd
dataset. ReferItGame contains 20,000 images, which are
collected from the SAIAPR-12 dataset. This dataset has a
total of 120,072 reference expressions and is divided into



a training set with 54,127 reference expressions, a valida-
tion set with 5,842 reference expressions, and a test set with
60,103 reference expressions. Flickr30k contains 31,783
images and 427,000 reference expressions. We divide the
training, validation, and test sets using the same ratio as the
previous work.

2.2. Robust VG Datasets

We construct two robust VG datasets based on the exist-
ing benchmarks RefCOCOg and ReferItGame, termed Re-
fCOCOg F and ReferItGame F. The train set of our robust
VG datasets contains two parts of data, the first part is the
train set of the original dataset, while the second part is
a random matching dataset, which destroys the correspon-
dence between the image information and the language de-
scriptions. Specifically, for each target on the image, we
select one description that is different from its original one
among all the text descriptions in the dataset, thus building
a dataset where the image is with irrelevant or inaccurate
descriptions. During training, the ratio of these two parts
of data is 1:1. The test set of our robust VG datasets also
consists of two parts of data, the first part is the test set of
the original dataset while the second part is the manually
modified robust VG dataset, which requires manual inter-
vention to modify some keywords in the descriptions, thus
modifying the semantics of the descriptions and building a
more difficult dataset. For instance, we manually modify
the expression “The man in white T-shirt is riding a bike”
to “The man in blue T-shirt is riding a bike”. Specifically,
the test set of the RefCOCOg F dataset contains 2000 pairs
of false-alarm data and 9602 pairs of regular data that are
from the original RefCOCOg test set. The test set of the
ReferItGame F dataset contains 1000 pairs of false-alarm
data and 9000 pairs of regular data that are randomly sam-
pled from the test set of the original ReferItGame dataset.

Specifically, the data combination method of the random
matching dataset is to randomly replace the description in
each group of data in the training set with a random other
description in the dataset to construct false-alarm data. Of
course, the description of the same image will not be se-
lected to avoid the existence of the target corresponding
to the ran71 dom description on the image. It can be ob-
served that the probability of the existence of the target cor-
responding to the description on the image is very low for
the false alarm data formed by this random selection de-
scription method.

We build the manually modified robust VG dataset by
manually modifying some keywords in the description. In
general, we mainly modify words from the following per-
spectives. First, modifying key nouns can greatly change
the semantics of words, thus generating false alarm data.
For example, modify ”Two men on a horse” to ”Two men
on a car” (as shown in the first row of Fig.1). Second, modi-
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Figure 1. Example of manually modified false-alarm data.

fying key adjectives can also change the description seman-
tics. For example, modify ”A man with a bat wearing a red
helmet” to ”A man with a bat wearing a yellow helmet” (as
shown in the second row of Fig.1). Third, modify words in
the text that relate to spatial location can mismatch the origi-
nal target with the newly generated text. For example, mod-
ify ”An elephant trainer standing beside an elephant walk-
ing down the street” to ”An elephant trainer standing far
away from an elephant walking down the street” (as shown
in the third row of Fig.1). Fourth, changing the words corre-
sponding to some fine-grained features can generate false-
alarm data. For example, modify ”A man wearing glasses”
to ”A man without glasses” (as shown in the fourth row of
Fig.1). Experiments show that our pro95 posed IR-VG is
effective for all four types of false alarm data.

2.3. Training Loss

In the training stage, the proposed VG framework is
trained end-to-end using the aforementioned losses. The
overall loss function for the proposed framework is L =
Lcls + λregLreg + λkeyLkey as follows, where Lcls, Lreg, and
Lkey denote the classification loss, regression loss and cen-
terpoint loss, respectively. λreg and λkey are introduced to
balance the above losses.We empirically set λreg and λkey as
2 and 5 by default.

L = Lcls + λregLreg + λkeyLkey, (1)

Specifically the classification loss Lcls and the regression
loss Lreg are defined as,

Lcls =

N∑
t=1

K∑
i=1

CELoss(yt, ŷti), (2)
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Figure 2. Visualization of the MFSD module.

Lreg =

N∑
t=1

K∑
i=1

λGIOULGIOU(b
t, b̂ti) + λL1LL1(b

t, b̂ti), (3)

where CELoss(·, ·), LGIOU(·, ·) and LL1(·, ·) are the cross
entropy loss, GIOU loss [4] and L1 loss, respectively. yt

and ŷti denote the ground truth label and predicted result in
t-th iteration. Similarly, bt and b̂ti denote the ground truth
bbox and predicted bbox. t denotes the t-th iteration, and
i represents the i-th bbox. λGIOU and λL1 are empirically
adjusted, here we set them as 3 and 7 by default for all the
following experiments.

3. Qualitative Analysis of MFSD
Fig. 2 illustrates the visualization of prediction re-

sults with or without the MFSD module on the robust VG
datasets. It shows that the MFSD module enables the model
to efficiently identify the presence or absence of targets de-
scribed in the text on the image. The first row of the figure
shows the false alarm data generated by the key nouns in the
description being changed, the second row shows the false
alarm data generated by the modification of key adjectives
(e.g., color). The third line of the figure shows the spatial
location relations in the description being modified and the
fourth row of the figure shows the fine-grained features in
the description being modified. Our MFSD module can ef-
fectively identify the false alarm data generated by all the
above modification methods.

4. Details of determining false-alarm detection
of the previous method

In the previous methods, we follow the same rules as
ours to obtain the false alarm. Firstly, we achieve the top1

scoring box as the final prediction box. Then, we calcu-
late the IOU value with the ground truth box. If the IOU
value is greater than 0.5, we consider it a true positive, oth-
erwise, we treat it as a false positive. However, the proposed
method differs in that it combines the top1 scoring box and
its existing result (exist or non-exist) to achieve the final
prediction box. During our experiments, we attempted to
add an irrelevant text reference head to some previous net-
works, such as VLTVG [5] but the results were inferior to
their baselines. It may not be fair to compare these results
in the paper, thus we do not show these results.
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