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Table A.1: Detailed statistics for the GQA dataset examined
in our study compared to other possible statistics and the
original paper dataset.

Answers Candidates

Ours 1878
Alternative [1, 10, 11] 1533
Original [3, 5] 1878

A. Datasets
We evaluate our SelfGraphVQA frameworks on the

GQA dataset [5]. GQA is another large-scale effort (22M
questions, each with one answer) that focuses on the com-
positionality of template-generated questions for real-world
images. We use the official train/validation split of GQA.

The GQA dataset was selected for evaluation because
it includes complex relational and spatial questions that
require multiple reasoning skills, spatial understanding,
and multi-step inference. These characteristics make it
more challenging compared to previous visual question-
answering datasets. Consequently, the GQA dataset is well-
suited for evaluating the performance of scene graph mod-
els.

In contrast to prior studies [1, 11], our approach takes a
simplistic approach by considering solely the ground truth
distribution as a potential answer in the training dataset as
a candidate for the answer distribution, without any filter
techniques. Table A.1 provides detailed statistics for each
dataset examined in our investigation.

Despite the substantial variations in the answering
classes, we emphasize that our method proves to be effec-
tive and comparable to other existing approaches. In addi-
tion to the aforementioned points, this further highlights the
fact that VQA is a complex and expansive challenge that
lends itself to various approaches and needs continued ex-
ploration and refinement.

*Work carried out as Guest Researcher at UiO.
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Figure B.1: The baseline architecture.

B. Baseline Architecture
Figure B.1 depicts the overall components of our base-

line architecture. The unbiased pre-trained scene graph gen-
erator model utilized in this study originates from the re-
search paper authored by Knyazev et al. [7]. Applying a
density-normalized edge loss to the model, the authors con-
tend that the model is aware of the graph density and, there-
fore, generalizes better even to rare compositions.

In our project, the frozen weights pre-trained Scene
Graph Generator takes the image information and gener-
ates a scene graph representation. The Question Encoder
receives the instructions and provides them to the GNN-
based encoder. Each layer of the module pays attention to
these instructions in order to update its hidden node states.
The Classifier then takes the graph representation and the
question vector concatenates them, and predicts the correct
answer.

We use the similar architecture of the state-of-the-art



graph-based GraphVQA model [8] and LRTA [9] over the
GQA dataset as a baseline for our experiments, with some
modifications in order to reduce the dependence on the an-
notated available data, as we aim to mitigate the limitations
imposed by data availability and enhance the model’s gen-
eralizability.

For practical purposes, the functional program instruc-
tions accompanying each question in the GQA dataset [5]
are not necessarily available for inference on real-world
data, so we train our decoder to decode the instructions from
the question itself. These additional labels are processed by
the reasoning module in the GraphVQA model which we
explicitly omit in our baseline, as we are more interested
in generalizability and real-world performance rather than
expressively solving the GQA dataset.

In addition, we omit the pre-processing using the scene
graph encoding module of the original GraphVQA, as the
scene graph generation model g was selected to extract high
quality SG-representations. Here, our fg module is a graph
attention network (e.g. GAT) [13].

In the GloVE embedding design, both the query encoder
fq and the graph encoder fg designs are shared between
the original baseline and our proposed modified model.
Whereas in the BERT design, we only take the similarity
of the graph encoder module fg design, as our query en-
coder fq and the language embedding is a BERT model. By
adapting the similar SoTA architecture strategy to the spe-
cific design choices of each model, we aim to evaluate the
performance and effectiveness of our proposed approach.

C. Architecture Details

Within this section, we aim to provide additional de-
tails regarding all components of our implementation ap-
proaches.

To ensure clarity and facilitate better comprehension, we
have divided this section into two subsections: one dis-
cussing the utilization of GloVE word embedding along
with a transformer-based model for the question encoder,
and the other focusing on the application of BERT for word
embedding and the question encoder.

Table C.1 provides a comprehensive overview of the two
approaches employed in this study.

It is worth mentioning that the scene graph generator
module has its weights frozen in all training approaches, ex-
cept when we employ the Distribution Link Representation
Regularization technique.

C.1. GloVE Word Embedding and Transformer-
based Question Encoder

The images are fed through a pre-trained scene graph
generator g from [7] work that generates scene graphs from
images on the fly.

Except for the pooled graph-level representation (i.e., the
module that feeds the classifier), which has a dimension size
of 512, all node and edge features have dimension size 300.

The word embedding for the transformed-based query
encoder module fq has its initial weights initialized by using
embeddings from GloVe [12]. Both hidden states and word
embedding vectors have a dimension size of 300. The ques-
tion representation is produced by the transformed-based
question encoder.

Following [8, 9] work, we adopt a hierarchical sequence
generation design, i.e., a transformer decoder model first
parses the question into a sequence of M instruction vec-
tors, [i1, i2, . . . , iM ]. The i-th instruction vector will cor-
respond exactly to the i-th execution step processed by the
GNN encoder fg module. In our experiments, we force M
equals five. We note that SelfGraphVQA does not require
any explicit supervision on how to solve the instruction step
from the question, and we only supervise the final answer
prediction.

For the un-normalized contrastive approach, the MLP
prediction head h plays a crucial role in our model archi-
tecture. It comprises three fully connected layers, each fol-
lowed by batch normalization and ReLU activation, except
for the final layer. This setup ensures non-linearity and fa-
cilitates effective feature extraction. It is important to note
that the MLP prediction head is exclusively utilized during
the training phase and is subsequently discarded during in-
ference, which aligns with prevailing practices in contem-
porary self-supervised training methods [2, 4].

The classification module fc is another integral compo-
nent of our model. It is designed as a two-layer MLP with a
dropout rate of 0.2 and ELU activation.

As explained in Section 3, we independently apply the
three self-supervised losses (i.e., local similarity, global
similarity, and regularization for permutation equivariance)
and compared performances. Our experimental choices
were designed to minimize possible biases in the evaluation
of our proposed framework.

Both anchored and augmented scene graphs along with
the question ground on the scene feed our encoder model
to infer a predicted answer. For a fair comparison, we train
most of our model from scratch, except for the pre-trained
scene graph generator g, whose weights are frozen.

C.2. BERT Word Embedding and Question En-
coder

In this case, we employ the BERT model as our word
embedding approach and the question encoder, as being a
more expressive language model.

Once again, the images are fed through a pre-trained
scene graph generator g from [7] work that generates scene
graphs from images on the fly. In this particular case, all
graph-level and node-level representations possess a dimen-



Table C.1: Detailed dimensions used in our study when em-
ploying the GloVE and BERT approaches.

Methods Word dim. Question dim Node Dim Link Dim Graph dim

GloVE+Transf 300 300 300 300 512
BERT 756 512 512 512 512

sion size of 512, encompassing both node and edge fea-
tures. This configuration is deliberately chosen to ensure
that the dimensions of the representations closely align with
the dimension yielded by BERT word embedding, which
is 756. By maintaining consistency in the dimensionality
across different components, we aim to facilitate seamless
integration and compatibility with BERT-based models.

The word embedding for the BERT query encoder fq
has its initial weights initialized by using embeddings from
BERT [6]. Both hidden states and word embedding vectors
have a dimension size of 512. The final question representa-
tion is derived by taking the average of all word embedding
representations generated by BERT.

Following the same approach of [8, 9], we adopt a hi-
erarchical sequence generation design, i.e., a transformer
decoder module first parses the encoded question into a se-
quence of M instruction vectors, [i1, i2, . . . , iM ]. The i-th
instruction vector will correspond exactly to the i-th exe-
cution step processed by the GNN encoder fg module. In
our experiments, we force M equals five. We note that
SelfGraphVQA does not require any explicit supervision on
how to solve the instruction step from the question, and we
only supervise the final answer prediction.

In this scenario, we employ two self-supervised loss
techniques: global similarity and regularization for permu-
tation equivariance. Additionally, we incorporate the Distri-
bution Link Representation Regularization method overall
approaches performed in this case. It is important to note
that the Distribution Link Representation Regularization is
jointly executed with one of the self-supervised loss tech-
niques.

As mentioned earlier, in this case, except for the object
detector within the module, we have unfrozen the scene
graph generator g weights, allowing it to be trainable and to
learn the representation and classification during the train-
ing process, merely according to the prediction answers. We
have made deliberate experimental choices to mitigate po-
tential biases and ensure an unbiased evaluation of our pro-
posed framework.

For the un-normalized contrastive training step, we em-
ploy the MLP prediction head h. It comprises three fully
connected layers, each followed by batch normalization and
ReLU activation, except for the final layer. This setup en-
sures non-linearity and facilitates effective feature extrac-
tion. It is important to note that the MLP prediction head is
exclusively utilized during the training phase and is subse-

Table D.1: Training details for the GloVE and BERT ap-
proaches employed in our study.

Methods Batch Optimizer lr Epochs

GloVE+Transf 64 Adam 10−4 50
BERT 32 Adam Belief 10−4 50

quently discarded during inference, which aligns with pre-
vailing practices in contemporary self-supervised training
methods [2, 4].

The classification module fc is another integral compo-
nent of our model. It is designed as a two-layer MLP with a
dropout rate of 0.2 and ELU activation.

D. Training Details
In this section, we provide further elaboration on our

training approaches. Likewise, we have divided this sec-
tion into two subsections: one with the utilization of GloVE
word embedding along with a transformer-based model for
the question encoder, and the other focusing on the applica-
tion of BERT for word embedding and the question encoder.

D.1. GloVe Word Embedding and Transformer-
based Question Encoder

We train the models using the Adam optimizer with a
learning rate of 10−4 and weight decay 10−4. We apply a
batch size of 64, and a a linear learning rate schedule us-
ing a factor of 10−1 for every 20 epochs. All models are
trained for 50 epochs. We emphasize that during training
the weights of the scene graph generator g are frozen, and
do not receive weight updates.

D.2. BERT for Word Embedding and Question En-
coder

We train the models using the Belief Adam optimizer
with a learning rate of 10−4 and weight decay 10−4. We
apply a batch size of 32, and a linear learning rate schedule
using a factor of 10−1 for every 10 epochs. All models are
trained for 50 epochs. It is worth noting that in these cases,
the weights of the scene graph generator g are not frozen
during training. This deliberate choice allows for continual
updates and improvements, particularly in the edge repre-
sentation, through the utilization of the Distribution Link
Representation Regularization strategy.

E. Self-Supervised implementation details
Table E.1 provides a comprehensive overview of the ap-

proach adopted in our study. It is worth noting that our
training process was conducted sequentially and iteratively,
allowing us to evaluate the performance of each approach
before deciding on the subsequent implementation choice.



Table E.1: Detailed self-supervised implementation in our
study by approaches.

SGG Methods Baseline Local Sim Global Sim. Self Sim

GloVE+Transf Frozen SGG ✓ ✓ ✓ ✓
Link Regularizer

BERT Frozen SGG ✓ ✓
Link Regularizer ✓ ✓

For instance, upon observing that the Local Similarity
approach exhibited comparatively lower performance, al-
beit surpassing the baseline, we made the decision to dis-
continue its implementation on further research (i.e. with
the BERT module and link distribution regularization ap-
proach). This strategy narrowed down the training possibil-
ities, enabling us to focus solely on the most promising ex-
periments. Another noteworthy example pertains to the uti-
lization of BERT as our word embedding and query encoder
module. Upon observing its positive impact on results, we
exclusively applied the link distribution regularization tech-
nique with this architecture.

F. Further Ablations
F.1. Further Discussion on Language Bias

We elaborate on additional experiments aimed at evalu-
ating the model’s robustness when trained with the BERT
module. In this case, the experiments investigate the impact
of using a more expressive language model, such as BERT,
on language biases in the VQA task and whether it harms
the enhancement of visual information. We evaluate both
how the biases convey not ideal information when using a
more expressive language model such as BERT, and how
the self-supervised approaches perform for robustness.

In this particular experiment, we augmented the images
using various semantically-preserving techniques including
Gaussian blur, Gaussian noise, color jitter with adjustments
to brightness, contrast, and hue, as well as random rotation
of up to 45 degrees. As for the questions, a similar ap-
proach was employed by randomly replacing up to 50% of
the words with other words.ù

In this context, we emphasize that our approach main-
tains the semantic integrity of the image content. Conse-
quently, the underlying model retains its fundamental ob-
jective of accurately predicting the correct response, despite
the heightened complexity introduced.

Table F.1 demonstrated that even when employing a
more expressive language model in the GQA dataset, the
self-supervised learning still enhances the visual infor-
mation for the predicted answer. Precisely, the results
presented indicate that our approaches exhibit greater re-
silience to noise while maintaining the importance of visual
information for the task.

We emphasize that the findings of this study demonstrate

Table F.1: Sensitivity of accuracy (%) for bias analyzes of
BERT module.

Setup Methods

Question + Scene Graph BERT Baseline BERTGlobal+link BERTSelfSim+link

Noise + SG 21.0 23.2 24.5
Question + Noise 42.4 41.8 42.8
Noise + Noise 19.8 21.7 21.3

that despite the integration of a more expressive language
model, such as BERT, the self-supervised learning method
remains effective in leveraging visual data to classifier the
predicted answers. Nevertheless, it is crucial to highlight
that in this particular scenario, the results indicate a possi-
ble influence of language biases inherent in the dataset when
utilizing a more advanced language model. See the results
when the perturbation is employed solely on the scene graph
compared to the non-perturbed one, in Table F.1. Addition-
ally, when analyzing the results with full perturbation, the
findings indicate an enhanced level of robustness when the
self-supervision technique is combined with the model.

F.2. Does SelfGraphVQA have a few-shot learning
capability?

We trained SelfGraphVQA with varying percentages of
labeled data and found comparable performance to the
GQA dataset, suggesting that adding self-supervised con-
trastive loss improves model generalization. We wanted to
evaluate the different models on subsets of the full dataset.
We tested reducing the ground truth labeling requirements
and compared the performance when using SelfGraphVQA
as opposed to directly training a fully supervised classifica-
tion network.

In this case, we trained our SelfGraphVQA varying the
percentage of labeled data, (i.e., 20%, 50%, and 100% of
data) and evaluated it on the test dataset. As demonstrated in
Fig. F.1, our proposal performs comparably with half of the
GQA dataset evaluated on standard metrics. This insinuates
that adding self-supervised un-normalized contrastive loss
improves the generalization of the model.

Table F.2 shows how our proposal performs with the
standard metrics when trained with 50% of training data,
and we see that the three approaches perform on par with
the baseline trained on the full dataset. In particular, the va-
lidity and plausibility metrics are consistent when compared
to models trained on the full dataset.

Our intuition is that these metrics relate to linguistic bias
and do not necessarily require large amounts of samples to
converge, indicating that the model learns with little data
what type of answer it should guess based on the type of
question.
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Figure F.1: Evaluation curve by percentage of data used
in training on GQA dataset. The models obtain compara-
ble results to baseline with 50% of the data. Note that we
only illustrate the accuracy of the baseline trained on the
full dataset for reference purposes.

Table F.2: Results (in %) evaluating by the standard metrics
when training with 50% of GQA dataset.

Method Binary Open Consistency Validity Plausibility Accuracy

Global 63.5 27.6 54.1 94.8 90.1 48.2
Local 63.5 25.6 51.6 94.6 89.3 47.1
SelfSim 64.3 27.3 54.7 94.8 90.1 48.1

F.3. More Examples

We present additional examples to illustrate how scene
graphs can contribute to the explainability of AI in the con-
text of VQA, Figure F.2. These examples highlight that
VQA remains an open area of research and that the per-
formance of a model should be evaluated beyond standard
metrics. These examples serve as a reminder that there is
room for further exploration and improvement in the field of
VQA, extending beyond conventional evaluation metrics.

All examples were predicted by the SelfSim frame-
work. In the following discussion, the additional examples
demonstrate both the problem of low agreement of VQA
question answers due to ambiguity and the usefulness of
scene graphs in providing more explainable AI for this task.

For instance in example 1, the model accurately predicts
the answer, and the detection of the airplane in the scene
graph is easily visualized. Conversely, in example 2, the
model correctly do not detect the object mentioned in the
question, leading to a correct answer of ’No’.

The benefits of using scene graphs for visual question
answering become more evident in examples 3 and 4. In
example 3, the model provides an objectively correct an-
swer despite a different ground truth answer in the dataset.
This discrepancy is explained by the scene graph, which
highlights that the extracted object related to the question is

’flowers’ rather than ’flowers’. In example 4, the model cor-
rectly classifies the link that relates the chair located to the
right of the curtains in the scene graph, enabling the model
to predict the correct answer.

In example 5, the acceptance of the model’s answer ’liq-
uid’ as opposed to the ground truth ’beverage’ is subjective
and depends on the evaluator’s opinion. This demonstrates
that the model’s response may fail to precisely evaluate the
question, emphasizing the inherent challenges in VQA.

Overall, these examples highlight the potential benefits
of incorporating scene graphs in visual question answering,
offering insights into the model’s reasoning and contribut-
ing to more interpretable AI systems.

References
[1] Aishwarya Agrawal, Ivana Kajic, Emanuele Bugliarello, El-

naz Davoodi, Anita Gergely, Phil Blunsom, and Aida Ne-
matzadeh. Reassessing evaluation practices in visual ques-
tion answering: A case study on out-of-distribution gen-
eralization. In Conf. European Ch. Assoc. Comput. Ling.
(EACL), pages 1171–1196, 2023. 1

[2] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In IEEE/CVF Inter. Conf. Comput. Vis.
Pattern Recog. (CVPR), pages 15750–15758, 2021. 2, 3

[3] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the V in VQA matter: El-
evating the role of image understanding in visual question
answering. In IEEE/CVF Inter. Conf. Comput. Vis. Pattern
Recog. (CVPR), pages 6904–6913, 2017. 1

[4] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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