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6Umeå University, Sweden

7Austrian Institute of Technology, Austria
8Boston College, USA

9ByteDance, China
10Carnegie Mellon University, USA

11City University of Hong Kong, Hong Kong, China
12Computer Vision Center, Spain

13Dalian University of Technology, China
14DAMO Academy, China

15Fraunhofer IOSB, Germany
16Georgia Institute of Technology, USA

17Guangxi Normal University, China
18Harbin Institute of Technology (Shenzhen), China

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

1796



19HuaQiao University, China
20Institute of Automation, China

21Institute of Computing Technology, Chinese Academy of Sciences, China
22International Digital Economy Academy, China

23Jiangnan University, China
24Karlsruhe Institute of Technology (KIT), Germany

25Lenovo Research, China
26Microsoft Research, China

27Microsoft Research Asia, China
28Multimedia Department Xiaomi Inc., China

29Nanjing University, China
30Nota AI, South Korea

31Peng Cheng Laboratory, China
32Shenyang Institute of Automation, Chinese Academia of Science, China

33The University of Hong Kong, Hong Kong, China
34Tianjin University, China

35University of Adelaide, Australia
36University of California at Merced, USA

37University of Chinese Academy of Sciences, China
38University of Missouri, USA

39University of Science and Technology of China, China
40University of South Carolina, USA

41University of Udine, Italy
42Zhejiang University, China

1797



Abstract

The Visual Object Tracking Segmentation VOTS2023
challenge is the eleventh annual tracker benchmarking ac-
tivity of the VOT initiative. This challenge is the first to
merge short-term and long-term as well as single-target
and multiple-target tracking with segmentation masks as the
only target location specification. A new dataset was cre-
ated; the ground truth has been withheld to prevent overfit-
ting. New performance measures and evaluation protocols
have been created along with a new toolkit and an evalu-
ation server. Results of the presented 47 trackers indicate
that modern tracking frameworks are well-suited to deal
with convergence of short-term and long-term tracking and
that multiple and single target tracking can be considered a
single problem. A leaderboard, with participating trackers
details, the source code, the datasets, and the evaluation kit
are publicly available at the challenge website1.

1. Introduction

Visual object tracking remains one of fundamental com-

puter vision problems. The significant progress witnessed

in the last two decades has been driven by the research ef-

forts of the community, as well as by the emergence of a

multitude of initiatives and challenges aimed at advancing

the state-of-the-art in this area. A decade ago, the VOT1

initiative was founded to address the lack of performance

evaluation consensus in visual object tracking. Since, VOT

challenges were held in conjuction with all subsequent IC-

CVs and ECCVs, culminating in the Tenth VOT Challenge,

organized last year at ECCV2022. In the last 10 years,

the initiative has successfully identified the major tracking

trends that got reflected in publications at later major com-

puter vision conferences, making the VOT events central in

the tracking community.

Considering the significant challenges in tracking, VOT

was restricted to single-target tracking and explored short-

term and long-term tracking challenges separately. This

approach has provided a suitable environment for explor-

ing novel discriminative frame-to-frame localization mech-

anisms for short-term tracking and target re-detection and

constrained adaptation mechanisms for long-term tracking.

Particular attention was given to development and revision

of performance measures, evaluation protocols and toolkits.

To keep raising the bar for ever-improving tracker method-

ologies, the target location specification has evolved from

reporting bounding boxes in the initial challenges [34, 35,

33, 31, 30, 29, 28] to per-pixel segmentation in the latest

challenges [27, 32, 26].

In parallel to VOT, a wealth of impactful activities

1https://www.votchallenge.net/vots2023/

emerged. Most closely related are UAVision2, VisDrone3

and Anti-UAV4 challenges addressing detection and track-

ing of pre-defined surveillance-related object types. An-

other strand of related work are segmentation-oriented

multi-target tracking challenges. MOTComplex5 addresses

multiple instance tracking with segmentation and considers

four challenges: YouTubeVIS (video instance segmenta-

tion); VIS (occluded video instance segmentation); Dance-

Track (multi-human tracking); UVO (detect and segment

all instances of unknown objects that appear in images or

videos). TAO-OW6 addresses open-world instance track-

ing, while STEP benchmark7 addresses tracking instances

such as humans and cars along with semantic scene seg-

mentation. LaGOT [42] introduced a validation dataset for

multiple-object generic tracking. Pioneered by the DAVIS

challenge [11], workshops featuring challenges focusing on

video object segmentation (VOS) have emerged as well.

Most prominent is the recent YouTube-VOS8 challenge,

which includes video instance and video object segmenta-

tion.

The aforementioned datasets and initiatives have opened

new exciting challenges and greatly contributed to the field.

Nevertheless, they are dedicated to tracking entire object

instances and thus tightly coupled with instance detectors.

The video segmentation workshops primarily focus on chal-

lenging video editing tasks, consider relatively large objects

undergoing short-term (partial) occlusions and merely mo-

mentary disappearance. As such, they do not directly ad-

dress the needs of the traditional tracking community inter-

ested in the general trackers.

The holy grail of tracking are algorithms for tracking

‘any’ region, not just known instances, and even individual

parts of objects, given a single training example in the first

frame. This requires development of efficient general ob-

ject representation, self-supervised adaptation mechanisms

to cope with appearance changes, discriminative models

that localize and distinguish the target from the neighbor-

hood and finally, efficient object image-wide re-detection

mechanisms to cope with long-term target absence.

2CV for UAVs, ECCV 2020, https://sites.google.com/
site/uavisionvisdrone2020/

3VisDrone challenge, ICCV 2021,http://aiskyeye.com/
challenge_2021/

4Anti-UAV Challenge, CVPR 2023, https://anti-uav.
github.io/dataset/

5Multiple Object Tracking and Segmentation in Complex Environ-

ments, ECCV 2022, https://motcomplex.github.io/
62nd Workshop on Tracking and Its Many Guises: Tracking Any

Object in Open-World, CVPR 2023, https://taodataset.org/
workshop/cvpr23/

7Segmenting and Tracking Every Point and Pixel: 6th Work-

shop on Benchmarking Multi-Target Tracking, ICCV 2021 https://
motchallenge.net/workshops/bmtt2021/

8YouTube-VOS, The 4th Large-scale Video Object Segmentation Chal-

lenge, CVPR2022, https://youtube-vos.org/challenge/
2022/
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In our opinion, the field has matured to a point where

the constraints enforced in the prior VOT challenges can be

relaxed and general object tracking should be considered

in a broader context. Thus we propose a challenge that no

longer distinguishes between single- and multi-target track-

ing nor between short- and long-term tracking. We pro-

pose a single challenge that requires tracking one or more

targets simultaneously by segmentation over long or short

sequences, while the targets may disappear during tracking

and reappear later in the video. The targets may be whole

instances or only their parts. To distinguish this new evo-

lutionary stage from the legacy VOT challenges, the new

series is called Visual Object Tracking and Segmentation

(VOTS) challenges.

This paper presents the first VOTS2023 challenge, or-

ganized in conjunction with the ICCV2023 Visual Object

Tracking and Segmentation Workshop, and the results ob-

tained. In the following, we overview the challenge and

participation requirements.

1.1. The VOTS2023 challenge

The evaluation toolkit and the datasets were provided by

the VOTS2023 organizers. The challenge opened on May

4th and closed on June 18th. The results, along with the

winners were disclosed in early July. The analysis of the

results were presented at ICCV2023 VOTS2023 workshop

on October 3rd. The VOTS2023 Benchmark opened9 with a

continually updated leaderboard to facilitate tracker devel-

opment in the post-challenge period.

For the VOTS2023 challenge, the participants integrated

their tracker into the VOTS2023 evaluation kit, the new ver-

sion of the VOT toolkit, which implements the most re-

cent evaluation protocols and the new dataset, and automat-

ically performed a standardized experiment. Each partic-

ipant then registered the trackers on the evaluation server

and submitted the tracker outputs produced in the experi-

ment. Note that only the initialization frames were publicly

available, while the ground truth of the remaining frames

was sequestered on the server side to prevent overfitting.

Furthermore, each registered participant was allowed only

10 attempts to run the evaluation.

Participants were encouraged to submit their own new or

previously published trackers as well as modified versions

of third-party trackers. In the latter case, modifications had

to be significant enough for acceptance. Each submission

was accompanied by a short abstract describing the tracker,

which was used for the short tracker descriptions in Ap-

pendix A, and a questionnaire to categorize their tracker

along various design properties.

Participants with sufficiently well performing submis-

sions (i.e., exceeding the VOTS2023 baseline tracker de-

scribed in Section 3) who contributed with the text for this

9https://eu.aihub.ml/competitions/201

paper and agreed to make their tracker code publicly avail-

able on the VOTS page were offered co-authorship of this

results paper. The committee reserved the right to disqualify

any tracker that, by their judgement, attempted to cheat the

evaluation protocols. The VOTS committee members could

participate in the challenge with their own submissions, but

could not compete for the winner title. All co-authors of

this paper, including the VOTS2023 committee members

and the tracker authors were required to specify divison of

work in Appendix A.

Validation and test splits of popular tracking datasets

are not allowed for training the trackers. These include

OTB [56], VOT, ALOV [1], UAV123 [44], NUS-

PRO [1], TempleColor [36], AVisT [46], LaSOT-val [17],

LaGOT [42] GOT10k-val/test [1], TrackingNet-val/test [1],

TOTB [1]. Training split of any dataset is allowed (includ-

ing LaSOT-train, TrackingNet-train, YouTubeVOS, COCO,

etc.). To include transparent objects, the Trans2k10 dataset

is suggested.

Beyond VOT challenges. The VOTS challenge merges

short-term and long-term, single-target and multiple-target

tracking, which were until now considered as separate tasks,

and considers segmentation as the only target location spec-

ification. A new larger dataset with the ground truth with-

held was created. New performance measures (that address

single, multitarget long- and short-term tracking) and evalu-

ation protocols were created along with the new toolkit and

the evaluation server, that features a public learboard.

The remainder of this report is structured as follows.

Section 2 describes the new performance evaluation proto-

col and performance measures, Section 2.2 presents the new

dataset, results are discussed in Section 3, conclusions are

drawn in Section 4. Short descriptions of the tested trackers

and divison of work are available in Appendix A.

2. The VOTS performance evaluation protocol
The tracker is initialized in the first frame on all speci-

fied targets. For each subsequent frame, the tracker is re-

quired to report the locations for all visible targets in that

frame. Specifically, a segmentation mask is required for

each visible target, ”not present” label is reported for the

absent targets. The tracker is then evaluated with the new

performance measures presented below.

2.1. VOTS performance measures

The goal of a multi-target tracker is to reliably track each

individual target selected in the first frame. Drifting off a

target to the background or another target is both consid-

ered failed tracking. This allows the definition of per-target

performance measures, which are averaged over all targets

10https://github.com/trojerz/Trans2k
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Figure 1. Five scenarios emerge from combinations of target presence and tracker outputs.

to obtain the final score. From the perspective of tracking a

single target, five scenarios visualized in Figure 1 are pos-

sible. Three scenarios cover cases with the target present:

target successfuly localized (sc1), tracker drift (sc2), target

incorrectly predicted as absent (sc3). Two scenarios cover

the cases with the target absent: target predicted as present

(sc4), and target predicted as absent (sc5). In the following

we introduce performance measures based on the notion of

tracking success that take all these scenarios into account.

Tracking of i-th target on n-th frame of sequence s is

considered successful if the predicted target location and the

ground truth (i.e., segmentation masks) match sufficiently

well. The success is measured by an intersection-over-

union (IoU), binarized by some threshold θ (i.e., 1 for values

greater than θ, and 0 otherwise). Note that the IoU gener-

alizes well to the case with target absent – if the tracker

reports the empty mask in this case (i.e., target absent flag),

it receives the IoU=1, since the reported mask is in total

agreement with the ground truth, otherwise the IoU=0. The

overall tracking success for the considered target at thresh-

old θ is thus defined as

S(θ) =
1

N

∑

s=1:N

1

TsNs

∑

i=1:Ts

∑

n=1:Ns

[osin > θ], (1)

where Ts and Ns are the number of targets and frames11 in

the sequence s, N is the number of sequences and [osin >
θ] is the operator that binarizes osin (i.e., the IoU) at a given

frame. The performance can be summarized by a track-

ing quality plot akin to [56] for all thresholds θ ∈ [0, 1) as

shown in Figure 2. Note that the threshold interval is open,

since IoU cannot exceed θ = 1.0, and the definition (1) uses

> rather than ≤. For visualization purposes, the right-most

point is thus evaluated with [· ≡ θ].
The tracking quality plot has similar interpretation prop-

erties as the standard success plot [56], with a difference

that the right-most point at θ = 1.0 can be typically higher.

The reason is that it accounts for long-term tracking prop-

erties in addition to short-term tracking properties. The val-

ues IoU=1 can only occur when the prediction completely

11Note that the initalization frames are excluded from evaluation, since

the tracker does not predict the target location at those frames.

Figure 2. Tracking quality plot with the dashed line indicating per-

centage of target-absent frames.

matches the ground truth (sc1 and sc5 in Figure1). In prac-

tice, this is very rare when the target is visible, thus the

value is dominated by cases of correctly predicting the tar-

get absence (sc5). The practically maximal achievable value

will thus be a percentage of the target absent frames in the

dataset. This value is indicated in the plot for better inter-

pretation.

The primary VOTS performance measure, called the

tracking quality Q summarizes the tracking quality plot by

the area under the curve. Following the success plot deriva-

tion in [51], it can be shown that the tracking quality is equal

to the sequence-normalized average overlap to avoid errors

in numerical area-under-the-curve computation, i.e.,

Q =
1

N

∑

s=1:N

1

TsNs

∑

i=1:Ts

∑

n=1:Ns

osin. (2)

2.1.1 Secondary performance measures

Additional secondary performance measures are proposed

for further tracking insights. The first two measures,

traditionally used in VOT [27], are localization accu-
racy and robustness. The accuracy (Acc) is defined as

the sequence-normalized average overlap over successfully
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tracked frames, i.e.,

Acc =
1

N

∑

s=1:N

1

Ts

∑

i=1:Ts

1

Nsi

∑

n=1:Nsi

osin, (3)

where Nsi is the number of successfully tracked frames

(i.e., with IoU> 0) with the target i visible in sequence s.

The tracking robustness (Rob) is defined as the percentage

of frames with IoU> 0 and target i visible (i.e., a recall),

Rob =
1

N

∑

s=1:N

1

Ts

∑

i=1:Ts

N sc1
si

N sc1+sc2+sc3
s

, (4)

where N sc1
si is the number of frames with scenario sc1 (Fig-

ure 1). Following our prior works [27], the tracker perfor-

mance on frames with visible target is summarized by the

AR plots [26], with the top-right position indicating the bet-

ter performance.

The next two secondary performance measures answer

the question ”Why did tracker fail while the target was visi-
ble?”. The first measure, called Not-Reported Error (NRE),

gives the percentage of frames where the tracker incorrectly

reported the target as absent, i.e.,

NRE =
1

N

∑

s=1:N

1

Ts

∑

i=1:Ts

N sc3
si

N sc1+sc2+sc3
s

, (5)

while the second, called Drift-Rate Error DRE, gives the

percentage of frames where the tracker drifted off the target,

and claimed target present, i.e.,

DRE =
1

N

∑

s=1:N

1

Ts

∑

i=1:Ts

N sc2
si

N sc1+sc2+sc3
s

. (6)

The final secondary measure answers the question ”How
well is the target absence determined?”. This measure,

called Absence-Detection Quality ADQ, gives the percent-

age of frames with target correctly predicted as absent, i.e.,

ADQ =
1

N

∑

s=1:N

1

Ts

∑

i=1:Ts

N sc5
si

N sc4+sc5
s

. (7)

Note that in practice, to ensure numerical stability, we

consider only those targets, that are absent for at least 10

frames in a sequence.

2.2. The VOTS2023 dataset

A new dataset was constructed for evaluation of the new

single/multi-target, short/long-term segmentation tracking

task considered in the new challenge. This dataset

was constructed by including sequences from the follow-

ing existing datasets: LaGOT [42], VOT-LT2021 [32],

VOT-LT2022 [26] UTB180 [2], VOT-ST2022 [26] and

TOTB [18]. Note that this does not mean that the same

targets were annotated in the final VOTS2023 dataset.

The main selection criterion was to create a dataset con-

taining situations which are in our experience challenging

for modern tracking architectures and that cover a wide

range of target appearances and object types. We included

scenes containing several visually-similar objects, and ob-

jects undergoing substantial appearance changes either due

to deformation or out-of-plane rotation (e.g., a fish flipping

front-to-side). Care was taken to include objects on clut-

tered backgrounds. Sequences containing objects exiting

the field of view and re-entering were considered in addi-

tion to sequence with partial occlusions to enable evaluation

of long-term tracking properties. We made sure that the se-

quences covered a diverse set of object types and scenes.

For example, in addition to classical air and ground se-

quences, underwater sequences were considered as well. In

addition to opaque objects, several challenging sequences

with transparent objects were included to further increase

the target diversity.

In most existing tracking benchmarks, the targets are ex-

clusively entire objects. To emphasize the importance of ca-

pability to track general appearances, we included also ob-

jects, which are a part of other objects (i.e., foot, hat, hand,

etc.). In each sequence, potentially several targets was se-

lected in the first frame. The annotation then proceeded in

several stages. In the first stage, each of the selected tar-

gets was annotated manually by a bounding box (not neces-

sarily in all frames). Then a state-of-the-art bounding box

tracker was run to interpolate the missing bounding boxes.

All boxes were manually verified and corrected. In the sec-

ond stage, the bounding boxes were used to guide state-

of-the-art segmentation algorithms which gave initial seg-

mentation masks [22, 23]. Finally, the segmentations were

manually edited by professional annotators. All annotations

were verified by a supervisor and the insufficiently precise

annotations were sent back for correction. Figure 3 show-

cases examples of target diversity and annotation quality.

The final VOTS2023 dataset is composed of 144 se-

quences, and contains 341 targets in total. The average

length of a sequence is ≈2000 frames (min = 63, max =

10700, median = 1810). Number of targets in a sequence

ranges from 1 to 8 (median = 2, mean = 2.37). Of the 144

sequences, 93 contain a target which at least once leaves the

field of view and then returns. Of the 341 targets, this hap-

pens with 168 of them. In cases when the target leaves and

returns to the field of view, the median number of absences

is 3, with maximum being 23. The median absence length

in terms of frame number is 18. For reference, Figure 4

shows the first frames for all 144 sequences.
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(a) (b) (c) (d)
Figure 3. VOTS2023 dataset content - examples. (a) Sequences contain multiple targets. (b) Targets may be parts of objects (as opposed

to entire objects), e.g. a hat (hat-1 sequence) or hands (hand-9 sequence.) (c) Many sequences are shot underwater, with possibly highly

articulated objects (seastar) or multiple distractors (whitefish). (d) Some sequences contain transparent objects (beaker, transparent fish).

3. Results

A total of 77 trackers was submitted to the evaluation

server, including the baselines contributed by the VOTS

committee. After removing the duplicate, near-duplicate

and incomplete submissions, 47 valid entries remained in

the VOTS2023 challenge: DMAOT (A.9), HQTrack (A.42),

M-VOSTracker (A.20), Dynamic DEAOT (A.8), seq-

track (A.38), DMNet (A.12), aot (A.25), MCMOT (A.27),

rts rts50 002 (A.34), VAPT (A.46), MiOTS-ST (A.22),

DropTrackSamb (A.11), vttrack (A.47), mmtrack (A.3),

MTCTrack (A.29), MixItUp-3 (A.15), MixItUp-2 (A.14),

MixFormer (A.23), MixItUp (A.2), PriMem (A.31),

UNINEXT Huge (A.45), SAM-MixFormer, Co-

CoLoT, MixFormerSAMHDeAOT, T-S-AM, AOTsup,

vil net2, stark st50 ar (A.40), MixFormerV2 (A.24),

UniTD (A.43), alpha refine tomp101 seg 000 (A.5),

MiOTS (A.21), SAM Tracker (A.35), al-

pha refine super dimp seg 000 (A.4),

UNINEXT R50 (A.44), READMem MiVOS (A.32),

d3sv2 (A.10), LOVD (A.18), starkmulti (A.17), stark-

plusplus (A.39), Mstark (A.26), MixSAMB (A.36),

SRZLT HSE IPPM ClipSegmentAnything (A.37),

pytest800 convnext (A.30), ReptileFPN (A.33),

TCLCF (A.13), TrackerPRO (A.28).

Each submission included the link to the source code

to allow verification of the results if required. The source

codes are publicly accessible. In the following we summa-

rize the statistics of the submissions and refer the reader to

the Appendix A for the trackers short descriptions.

Of the participating trackers, 13 (28%) were categorized

as ST0, 16 (34%) were categorized as ST1, 6 (13%) were

categorized as LT0, and 12 (26%) were categorized as LT1.

Most trackers (42; 89%) applied a uniform dynamic model,

while (5; 11%) applied a nearly-constant velocity model.

The dominant tracking methodology was transformers. In

fact, 40 (85%) of the submissions utilized transformers,

while 7 (15%) applied deep or classical discriminative fil-

ters (in some cases in combination with transformers). Most

of the trackers localized the targets in multiple stages (27;

57%), while 20 (43%) performed a single-stage localiza-

tion. Over a third of the submissions utilized the general

object segmentation network SAM [25] (17; 36%), nearly a

quarter applied object-specific network AlphaRef [61] for

target segmentation or for refining the segmentation (11;

23%), while one quarter directly segmented the target (12;

26%). 14 (30%) trackers applied a fixed template updating

mechanism, 19 (40%) updated the template only when con-

fident, 7 (15%) always updated the template and 7 (15%)

never updated the template. Majority of the submissions

(45; 96%) applied the same network for frame-to-frame

localization and target re-detection, while (2; 4%) applied

separate methods.

The results are summarized in the tracking quality

plots (Figure 2), AR plots (Figure 5) and Table 2. The

top 10 trackers according to the primary tracking qual-

ity score (Q) are: DMAOT A.9, HQTrack A.42, M-

VOSTracker A.20, Dynamic DEAOT A.8, seqtrack A.38,

DMNet A.12, aot A.25, MCMOT A.27, rts rts50 002 A.34

and VAPT A.46. Of these, 8 are categorized as ST1 or LT0,

9 are based on transformers, while rts rts50 002 is based

on deep DCFs, most (7) apply single-stage localization, 6

update their templates at fixed intervals (only 4 when con-

fident), and all apply the same network for frame-to-frame

localization and target re-detection.

The top three trackers were all ST1 single-stage trans-

former trackers with fixed template updating and a com-

mon architecture for frame-to-frame target localization
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Figure 4. The first frames of the 144 sequences in the VOTS2023 dataset indicating high diversity in targets, scenes and annotated targets.
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Figure 5. The VOTS2023 accuracy/robustness AR-plots (left), tracking quality Q-plots (center) and all trackers ranked according to Q

score (right).

and target re-detection. In particular, the top performer

DMAOT (A.9) is built upon the VOT2022 [26] winner

AOT [63]. This tracker separates the target-wise long-

term memories and updates them only when sufficiently

certain, applies a hierarchical gated propagation module

(GPM) [64] for better visual embedding propagation and

a nearly-constant velocity motion model. The tracker ap-

plies a SwinTransformer pretrained on ImageNet [12] and

is trained on COCO [37], YouTube-VOS [57], Davis [11],

MOSE [13], GOT10k [21], LASOT [17], VIPSeg [43]

and OVIS [49]. The next three best-performing track-

ers HQTRACK A.42, M-VOSTracker A.20 and Dy-

namic DEAOT A.8 are similarly designed as DMAOT, i.e.,

extensions of DeAOT [64].

DMAOT obtains the highest tracking quality

(Q=0.6360), which is a 3% improvement over the

second-best entry. The AR plot indicates that DMAOT

strikes a good balance between accurate target segmenta-

tion (Acc=0.751) and very good robustness (Rob=0.795)

– the latter indicates that this tracker successfully tracked

nearly 80% of an average test sequence length. The tracker

drifted off the target in only 7% of cases (DRE=0.07),

and falsely predicted the target as absent in 14% of cases

(NRE=0.14). This also means that when the target was

present, approximately 66% of failures were due to falsely

reporting the target absent, and 33% were cases when the

tracker drifted off the target while reporting it present.

Overall, the target absence was correctly predicted in 73%

of cases (ADQ=0.73).

The best robustness was achieved by DMNet

(Rob=0.86), which well exceeds the robustness of

DMAOT (Rob=0.795). This might be due to application

of optimal transport in local correspondence optimiza-

tion in DMNet, which could be responsible for robust

segmentation. However, we note that DMNet also more

liberally reports target as present than DMAOT (0.56 ADQ

vs 0.73 ADQ). The NRE, which for DMNet is half that of

DMAOT, suggests this might be the case, but only under

assumption that at least half of the DMAOT false target

absent predictions occur when the tracker is actually on the

target. The best segmentation accuracy was obtained by

Seqtrack, which is a bounding box tracker with SAM [25]

segmentation. This might imply very good exploitation and

bounding-box-based initialization of SAM.

Considering the above discussed results in terms of the

performance scores, additional insights can be made by in-

cluding the analysis of the Q-plots shapes (Figure 5). Note

that the height of the Q-plot at low thresholds indicates the

tracker robustness, while the amount by which the graph’s

”bump” extends to the right (i.e., higher thresholds) indi-

cates the tracker’s accuracy. Looking at the trackers that

form clusters of Q-plot shapes, it appears that a common

property of the trackers that obtain high Q-values at low

thresholds is the use of transformer feature extraction back-

bones, which might lead to high robustness. Similar anal-

ysis for medium-to-high thresholds on Q-plot indicates that

a common property of many trackers achieving good accu-

racy is the (careful) use of SAM for segmenting the targets,

either initialized by the predicted masks or by predicted

bounding boxes.

The VOTS2023 committee provided a baseline tracker

for validating the general quality of the submissions. The

tracker was created as set of independent STARK [60]

trackers which predict the target position by bounding

boxes. The tracker called starkmulti A.17 achieved

Q=0.297, which is approximately 47% of the Q-score

achieved by the top performer. Approximately 80% of

submissions outperform the baseline tracker. In addition,

the VOTS2023 committee provided a strong state-of-the-

art baseline created from the VOT-STs2022 [26] winning

tracker AOT [63], which was already designed for multi-

object segmentation. 6 trackers (13% of submissions)

outperform it, indicating very strong top VOTS2023

submissions.
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The VOTS2023 challenge winner. The top tracker accord-

ing to the tracking quality score Q is DMAOT (A.9) and

thus the VOTS2023 challenge winner. A brief analysis indi-

cates that while DMAOT strikes a good balance between the

accuracy and robustness, there might be opportunity to fur-

ther improve performance by reducing the target-absence
threshold in case substantial percentage of the incorrect tar-

get absent predictions occur when the tracker is correctly

on the target. The additionally recovered target locations

might not be as accurate, which could open an opportunity

for improving the performance in those cases by following

Seqtrack’s strategy with bounding-box conditioned SAM.

4. Conclusion

The first VOTS2023 challenge and results were pre-

sented. The challenge merges short-term and long-term,

single-target and multiple-target tracking with segmentation

as the only target location specification. A new challenging

dataset, with the ground truth withheld, was created. New

performance measures and evaluation protocols were cre-

ated along with the new toolkit and an evaluation server,

that will hold a public leaderboard.

The paper presents results of 47 trackers. We observe

a major increase in the application of transformers. While

in VOT2022 [26], 47% of the submissions were from this

class, the ratio has increased to 85% in VOTS2023. In-

terestingly, while the tracking task in VOTS2023 includes

both short-term and long-term tracking, only a third of

the trackers was categorized as LT. Nearly all trackers ap-

ply the same methodological framework for target frame-

to-frame localization and long-term re-detection, suggest-

ing that the two tracking classes are indeed methodologi-

cally converging. We also observe an increase of single-

stage trackers that primarily localize the target by segmen-

tation (close to 43% of submissions). The winner of the

VOTS2023 challenge is DMAOT (A.9), which builds upon

the VOT2022 [26] winner AOT [63]. After the challenge

closure, the VOTS2023 Benchmark was opened12 to facili-

tate continual evaluation of new general object trackers, pri-

marily segmentation-based.

As bounding-box trackers still dominate the publica-

tions at major computer vision conferences and jour-

nals, we point out an opportunity for a popular paradigm

shift. The workshop results presentation of the last-

year’s VOT2022 [26] challenge revealed that the best

segmentation-based tracker outperformed all bounding-box

trackers on the bounding-box tracking task, indicating that

bounding-box trackers are rivaled by segmentation track-

ers not only in accuracy, but also in robustness. This was

particularly interesting, since bounding box trackers have

12https://eu.aihub.ml/competitions/201

been traditionally thought of as more robust than the seg-

mentation trackers, as they estimate a smaller number of

output parameters (i.e., bounding box vs per-pixel mask).

The VOTS2023 results further support the VOT2022 obser-

vations and challenge the traditional belief.

Stronger evidence could be established by the tracking

community investing efforts in evaluating their bounding

box trackers also on the VOTS2023 challenge in addition

to other standard datasets. A bounding box tracker can

easily be converted into a segmentation tracker by apply-

ing AlphaRef- or SAM-like post-processing on the pre-

dicted bounding box. The focus of this experiment should

be placed on the robustness measure, which will reveal

how well these trackers handle the challenging conditions

present in VOTS2023 dataset, and how well they rival the

best segmentation trackers. We believe such an effort has

a potential to drive development of modern general object

trackers towards substantial advancements of the field.

The primary objective of VOT for over a decade has

been to establish a platform for discussion of tracking per-

formance evaluation and supporting the tracking commu-

nity by challenging datasets and toolkits. The VOTS2023

challenge has pushed towards convergence of the tracking

tasks, which was a risk, since such trackers are not widely-

explored in the community. The remarkable response from

the tracking community, which delivered highly competi-

tive trackers in a short time span, encourages us to continue

with the efforts in future VOTS editions, and with a hope to

witness exciting developments leading to substantial track-

ing improvements.

Statement of the co-authors contributions
The following abbreviations are used for the VOTS2023

organizers: Matej Kristan (MK), Alan Lukežič (AL), Gus-

tavo Fernandez (GF), Michael Felsberg (MF), Khanh-Tung

Tran (TT), Martin Danelljan (MD), Xuan-Son Vu (SV), Jo-

hanna Björklund (JB), Jie Zhao (JZ), Yushan Zhang (YZ),

Christoph Mayer (CM), Lei Ke (LK), Ondrej Drbohlav

(OD), Jiri Matas (JM), Hyung Jin Chang (HJC), Zhongqun

Zhang (ZZ), Luka Čehovin Zajc (LCZ).

Dataset construction: MK, AL, MD, CM, LK, OD, JM;

Dataset annotation and annotation supervision: OD; Re-

sults interpretation: MK, AL; Toolkit development: LCZ,

AL; Toolkit team supervision: LCZ; Performance measures

design: MK, AL, MF, MD, JM; Paper drafting: MK, GF;

Paper proofing: MK, GF, MF, AL; Coordination of pub-

lic review: GF; Camera ready submission: GF; Evaluation

server implementation: TT, SV; Evaluation team supervi-

sion: MF, LCZ; VOTS teams coordination:MK; Evaluation

server test: JZ, YZ; Evaluation of baselines: CM; Tuto-

rial development: AL, ZZ, LCZ; Tutorial team supervision:

AL, HJC, LCZ

The authors of sufficiently well performing trackers con-
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Quality AR Auxiliary measures

Tracker Q ↑ A ↑ R ↑ NRE ↓ DRE ↓ ADQ ↑
DMAOT 0.636 1 0.751 0.795 0.139 0.066 0.731

HQTrack 0.615 2 0.752 0.766 0.155 0.079 0.694

M-VOSTracker 0.610 3 0.751 0.757 0.159 0.084 0.706

Dynamic DEAOT 0.594 0.691 0.837 2 0.069 0.095 0.568

seqtrack 0.587 0.801 1 0.731 0.099 0.171 0.441

DMNet 0.578 0.651 0.861 1 0.068 0.071 0.560

aot 0.550 0.698 0.767 0.096 0.137 0.470

MCMOT 0.545 0.769 2 0.676 0.156 0.168 0.497

rts rts50 002 0.539 0.699 0.759 0.068 0.173 0.346

VAPT 0.532 0.753 0.730 0.025 0.245 0.112

MiOTS-ST 0.529 0.698 0.758 0.032 0.211 0.205

DropTrackSamb 0.524 0.734 0.756 0.013 0.231 0.000

vttrack 0.523 0.756 3 0.727 0.013 0.261 0.000

mmtrack 0.517 0.707 0.760 0.013 0.227 0.009

MTCTrack 0.505 0.712 0.734 0.013 0.253 0.004

MixItUp-3 0.503 0.717 0.692 0.038 0.271 0.147

MixItUp-2 0.500 0.743 0.680 0.022 0.298 0.046

MixFormer 0.499 0.713 0.736 0.013 0.250 0.013

MixItUp 0.499 0.753 0.675 0.013 0.312 0.000

PriMem 0.493 0.581 0.754 0.158 0.088 0.689

UNINEXT Huge 0.491 0.750 0.658 0.075 0.266 0.226

SAM-MixFormer 0.481 0.724 0.678 0.022 0.300 0.046

CoCoLoT 0.478 0.687 0.728 0.017 0.255 0.015

MixFormerSAMHDeAOT 0.476 0.635 0.714 0.093 0.193 0.389

T-S-AM 0.465 0.629 0.637 0.166 0.197 0.538

AOTsup 0.464 0.596 0.790 0.027 0.184 0.179

vil net2 0.462 0.624 0.632 0.178 0.189 0.557

stark st50 ar 0.462 0.695 0.685 0.016 0.299 0.010

MixFormerV2 0.458 0.678 0.693 0.026 0.281 0.050

UniTD 0.451 0.680 0.620 0.197 0.183 0.473

alpha refine tomp101 seg 000 0.442 0.681 0.671 0.022 0.307 0.040

MiOTS 0.442 0.550 0.821 3 0.134 0.152 0.442

SAM Tracker 0.435 0.564 0.561 0.388 0.050 0.868

alpha refine super dimp seg 000 0.433 0.661 0.666 0.029 0.305 0.056

UNINEXT R50 0.426 0.729 0.564 0.184 0.252 0.376

READMem MiVOS 0.425 0.574 0.603 0.332 0.065 0.667

d3sv2 0.372 0.632 0.592 0.042 0.365 0.084

LOVD 0.355 0.616 0.580 0.013 0.407 0.000

starkmulti 0.297 0.441 0.594 0.220 0.186 0.486

starkplusplus 0.295 0.466 0.526 0.337 0.137 0.681

Mstark 0.289 0.469 0.503 0.352 0.145 0.709

MixSAMB 0.279 0.457 0.459 0.013 0.528 0.000

SRZLT HSE IPPM ClipSegmentAnything 0.251 0.656 0.370 0.013 0.617 0.000

pytest800 convnext 0.180 0.275 0.195 0.602 0.203 0.870

ReptileFPN 0.157 0.327 0.485 0.013 0.502 0.000

TCLCF 0.134 0.310 0.429 0.013 0.559 0.000

TrackerPRO 0.112 0.315 0.129 0.669 0.202 0.729

Table 2. Numerical results for VOTS2023 challenge. Tracking quality (Q), accuracy (Acc), robustness (Rob), not-reported error (NRE),

drift-rate error (DRE) and absence-detection quality (ADQ).
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tributed in the public paper review and tracker descriptions

editing. Their contributions to individual trackers are spec-

ified in the Appendix A.
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A. Submitted tracker details

This appendix summarizes the VOTS2023 challenge

trackers and authors’ contributions.

A.1. A Hybrid Approach for Multi-Object Track-
ing Using DeAOT, Stark, and SAM (SAM-
MixFormer)

Authors: E. Soltani Kazemi (esdft@umsystem.edu), I.
Toubal, G. Rahmon, K. Palaniappan
Contributions: Conceptualization, ESK, IET, GR, KP; Im-
plementation: ESK, IET, GR; Supervision, KP

This approach proposes a novel hybrid method for multi-

object tracking, integrating three leading models: Decou-

pling Features in Hierarchical Propagation (DeAOT) [64]

for video object segmentation, Learning Spatio-Temporal

Transformer for Visual Tracking (Stark) [60], and Seg-

ment Anything Model (SAM) [25] for image segmentation.

The method adapts to the quantity of objects to be tracked.

When there are more than five objects, the DeAOT model is

used for real-time tracking. For fewer objects, the Stark

model tracks objects as bounding boxes, which are then

used as prompts to the SAM model to generate high-quality

masks. This approach effectively leverages each model’s

strengths, resulting in a versatile and high-performing solu-

tion for multi-object tracking across various scenarios.

A.2. A hybrid method of Mixformer, Stark and Sam
for object tracking (MixItUp)

Authors: I. Eddine Toubal (itoubal@mail.missouri.edu), E.
Soltani kazemi, G. Rahmon, Kannappan Palaniappan
Contributions: Conceptualization, ESK, IET, GR, KP; Im-
plementation: ESK, IET, GR; Supervision, KP

The tracker employed in this study is a hybrid method

that utilizes various algorithms based on the number of ob-

jects of interest in the video sequences. When dealing with

a small number of objects, the MixFormer tracker [9] is

employed, as it excels in accurately estimating bounding

boxes. However, in scenarios where a large number of ob-

jects are present, the ensemble tracker switches to the Stark

tracker [60]. Additionally, the Segment Anything Model

(SAM) [25] is utilized to generate masks using the predicted

bounding boxes.

A.3. A Simple yet Powerful video-stream
Tracker (mmtrack)

Authors: Y. Zheng (20014083057@stu.hqu.edu.cn), B.
Zhong, J. Gao, X. Hu, N. Li, C. Xu, J. Xie
Contributions: Conceptualisation, YZ, JG; Implementation,
YZ, JG; Validation, YZ, JG, XH, NL, LC, JX; Project leader,
BZ

We propose a simple yet powerful video-stream tracker.

We adopt ViT [14] as our visual encoder, which 1) models

the spatio-temporal trajectory information of the target ob-

ject by an auto-regressive approach, and 2) propagates rich

temporal information about the target by a long short term

video-stream manner. Finally, AlphaRefine [61] is used as

a segmentation network to predict the target mask.

A.4. alpha refine super dimp seg 000
(alpha refine super dimp seg 000)

Authors: G. Bhat (goutam.bhat@vision.ee.ethz.ch), M.
Danelljan, C. Mayer, L. Van Gool
Contributions: Conceptualization, GB, MD; Design: GB,
MD; Implementation: GB, MD; Validation and Integration,
CM; Paper writing: GB; Supervision, LVG

This tracker consists of Super DiMP [3] and uses Al-

phaRefine [61] to generate segmentation mask using the

predicted bounding boxes.

A.5. alpha refine tomp101 seg 000
(alpha refine tomp101 seg 000)

Authors: C. Mayer (chmayer@vision.ee.ethz.ch), M.
Danelljan, G. Bhat, M. Paul, F. Yu, L. Van Gool
Contributions: Idea, CM, MD; Conceptualization, GB,
MD, FY; Design, CM, MD; Implementation, CM; Paper
writing, CM, MD, GB, MP; Validation and Integration, CM,
MP; Supervision: LVG

This tracker consists of ToMP [40] and it uses AlphaRe-

fine [61] to generate segmentation mask using the predicted
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bounding boxes. Please see the original paper [40] for more

details.

A.6. AOTsup (AOTsup)

Authors: C. Wan (cwan38@gatech.edu), H. Yu, W. Yu
Contributions: Conceptualisation, HY; Implementation,
CW; Validation, WY; Project leader, CW

Our multi-target, long-short time tracker, AOTsup, au-

tomatically optimizes the tracking model used based on the

mask size. It intelligently employs two different models, the

MixformerV2 [10] and AOT [63], each activated depend-

ing on the specific size ratio. For larger ratios, the Mix-

formerV2 model is utilized due to its superior accuracy. On

the other hand, for smaller ratios, AOTsup opts for the AOT

model which is renowned for its excellent recall capacity.

By doing so, AOTsup capitalizes on the unique strengths of

both models, ensuring a combination of accuracy and ro-

bustness in our short-term tracking and segmentation capa-

bilities.

A.7. Combining Complementary Trackers in Long-
Term Visual Tracking (CoCoLoT)

Authors: M. Dunnhofer (matteo.dunnhofer@uniud.it), C.
Micheloni
Contributions: Conceptualisation MD, CM; Implementa-
tion MD; Validation MD; Project leader and supervision
CM

The single-object CoCoLoT tracker [15, 16] generalizes

mlpLT [32]. It implements a strategy that combines the

complementary behaviors of Stark [60] and KeepTrack [41]

trackers. The combination of these trackers is managed by

a decision strategy based on an online learned target veri-

fier akin to MDNet [45]. At every frame, the trackers are

run in parallel to predict their target localizations. Based

on the evaluation of the target localization, the decision

strategy selects the output for the current frame and to cor-

rect the tracker that performed worse. Additional strategies

such as the computation of adaptive search areas and the

avoidance of wrong target size estimations, have been im-

plemented to the baseline trackers in order to make their lo-

calizations more consistent. After the bounding-box given

by CoCoLoT, AlphaRefine [61] is run to obtain the segmen-

tation mask of each target.

A.8. Decouple Association objects with Dynamic
Memory (Dynamic DEAOT)

Authors: D. Miao (22B951002@stu.hit.edu.cn), X. Li, Y.
Huang, Z. He, Y. Wang, M. Yang
Contributions: Conceptualisation and initial idea, DM, XL,
M-HY; Implementation and update, DM, XL; Validation,
YH; Improvement of the Memory module, ZH, YW; Discus-
sion and idea improvement, M-HY; Project leader, XL, ZH

Dynamic-DEAOT is constructed based on a video

object segmentation (VOS) framework borrowed from

DEAOT [64] which provides accurate mask predictions and

achieves global search. To better handle long-term se-

quences, we develop a dynamic memory bank to lever-

age the modeling of long-term and short-term target ap-

pearances. In addition, we apply a SOT method (Mix-

Former) [9] with local search to handle tiny objects by

providing a coarse position of the target and then use the

segmentation part to generate finer mask predictions. We

train our approach on the VOS datasets including YouTube

VOS, COCO, and DAVIS using the AdamW optimization

method.

A.9. Decoupled Memory AOT (DMAOT)

Authors: Y. Cheng (chengyangming@zju.edu.cn), Z. Yang,
Y. Xu, X. Li, J. Li, Y. Yang, Y. Zhuang
Contributions: Conceptualisation, YC, ZY, YX; Implemen-
tation, YC; Validation, YC; Information gathering, XL, JL;
Project leader, YY, YZ

We propose an adjusted version of DeAOT [64] &

AOT [63] called DMAOT that stores object-wise long-term

memories instead of frame-wise long-term memories used

by AOT. With this object-wise long-term memory, DMAOT

ensures that the masks of all objects to be tracked are stored

in the memory with a high degree of similarity to the cur-

rent mask. DMAOT then uses these memories to predict the

current object mask, achieving better results.

A.10. Discriminative Single-Shot Segmentation
Tracker v2 (d3sv2)

Authors: A. Lukezic (alan.lukezic@fri.uni-lj.si), J. Matas,
M. Kristan
Contributions: Conceptualization: AL, MK, JM; Imple-
mentation: AL

D3Sv2 [39] is an extended version of the D3S [38]. The

original method is extended in the following aspects: (i) a

better backbone, (ii) channel attention mechanism in the up-

scaling modules in GIM, (iii) trainable MLP-based similar-

ity computation in GIM, which replaces the ’handcrafted’

top-K average operation and (iv) the new scale estimation

module used for robust target size estimation.

A.11. DropTrackSamb: DropTrack with Drop-
MAE pre-training and SAM-base model for
mask prediction (DropTrackSamb)

Authors: Q. Wu (qiangqwu2-c@my.cityu.edu.hk), T. Yang,
J. Wan, A. Chan
Contributions: Conceptualisation: TY; Implementation
QW; validation: JW; Project leader, AC

DropTrackSamb consists of two main modules includ-

ing a ViT-based DropTrack motion module and a SAM-

base segmentation module. The DropTrack employs a pre-
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trained DropMAE [55] initialization and uses the standard

fine-tuning in OSTrack for downstream tracking represen-

tation learning. There is no additional online updating or

memory used in DropTrack, and no tracking failure detec-

tion is applied since our tracker is a short-term tracker. After

obtaining the bounding box predicted by DropTrack, we use

it as the box prompt input to the SAM-base model for mask

prediction.

A.12. dynamic matching network (DMNet)

Authors: Y. Ma (imyc@mail.ustc.edu.cn), W. Li, D. Yang, R.
Sun, Q. Yu, F. Wang, T. Zhang
Contributions: Conceptualization, Method investigation,
YM, RS, QY; Implementation and optimization, YM, WL,
RS; Test and analysis, DY, FW; Project leader, TZ

We propose a dynamic matching network (DMNet) for

pixel-level and part-level matching, which includes a dy-

namic pixel-aware correspondence module (Pixel-CM) and

a dynamic part-aware alignment module (Part-AM). These

two modules are trained in an adversarial way, where Pixel-

CM generate more accurate mask approaching the ground

truth to fool Part-AM. Moreover, Pixel-CM optimizes the

correspondences within the local window to reduce false

matches and Part-AM divides objects into diverse parts and

discriminates detailed local differences between the pre-

dicted mask and the ground truth. Finally, we apply test-

time augmentations and model ensemble [6, 64] to further

improve accuracy.

A.13. Ensemble correlation filter tracking based on
temporal confidence learning (TCLCF)

Authors: C. Tsai (chiyi tsai@gms.tku.edu.tw)
Contributions: Conceptualization, Implementation and Val-
idation C-YT

TCLCF is a real-time ensemble correlation filter tracker

based on temporal confidence learning. In the current im-

plementation, we use two different correlation filters to co-

operatively track the same target. TCLCF tracker is a high-

speed and robust generic object tracker that does not require

GPU acceleration. Therefore, it can be implemented on em-

bedded platforms with limited computing resources.

A.14. Ensemble Different Trackers to Make a
Robust Single and Multi-Object Track-
ing (MixItUp-2)

Authors: G. Rahmon (gani.rahmon@mail.missouri.edu), I.
Eddine Toubal, E. Soltani Kazemi, N. Al-Shakarji, K. Pala-
niappan
Contributions: Conceptualization, GR, ESK, IET, KP; Im-
plementation, engineering work, experiments, results and
visualization, GR, IET, ESK; Supervision, KP

MixItUp-2 is an ensemble algorithm that adapts to dif-

ferent scenarios based on the number of objects in the video

sequences. For scenarios with a number of objects less

than 5 in the video sequence, it employs the MixFormer

tracker [9]. MixFormer predicts the bounding boxes of

the objects, providing accurate position estimations. It is

coupled with the Segment Anything Model (SAM) [25],

which generates segmentation masks based on the predicted

bounding boxes, ensuring precise object identification. In

situations with more than or equal to 5 objects present, the

ensemble tracker switches to the DeAOT tracker [64]. It uti-

lizes hierarchical feature propagation and attention mech-

anisms to handle complex scenarios with occlusions and

cluttered backgrounds. This enables the tracker to accu-

rately track and distinguish multiple objects in the video

sequences. By utilizing the ensemble method and incor-

porating MixFormer and DeAOT, the tracker ensures robust

and accurate object tracking across various scenarios.

A.15. Ensemble Different Trackers to Make a
Robust Single and Multi-Object Track-
ing (MixItUp-3)

Authors: G. Rahmon (gani.rahmon@mail.missouri.edu), I.
Eddine Toubal, E. Soltani Kazemi, N. Al-Shakarji, K. Pala-
niappan
Contributions: Conceptualization, GR, ESK, IET, KP; Im-
plementation, engineering work, experiments, results and
visualization, GR, IET, ESK; Supervision, KP

MixItUp-3 is similar to MixItUp-2 (A.14). The differ-

ence between both trackers is in the number of objects used

to use either the MixFormer tracker or the DeAOT tracker.

In case of MixItUp-3 the number of objects is set up as 4.

A.16. Ensemble Different Trackers to Make a
Robust Single and Multi-Object Track-
ing (MixFormerSAMHDeAOT)

Authors: G. Rahmon (gani.rahmon@mail.missouri.edu), I.
Eddine Toubal, E. Soltani Kazemi, K. Palaniappan
Contributions: Conceptualization, GR, ESK, IET, KP; Im-
plementation, engineering work, experiments, results and
visualization, GR, IET, ESK; Supervision, KP

MixFormerSAMHDeAOT is similar to MixItUp-

2 (A.14). The difference between both trackers is in the

number of objects used to use either the MixFormer tracker

or the DeAOT tracker. In case of MixFormerSAMHDeAOT

the number of objects is set up as 2.

A.17. Learning Spatio-Temporal Transformer for
Visual Tracking (starkmulti)

Authors: A. Lukezic (alan.lukezic@fri.uni-lj.si)
Contributions: Implementation: AL

Stark [60] is an end-to-end tracking approach based on

the transformer methodology, which directly predicts one

accurate bounding box as the tracking result. The tem-

plates and the search region are concatenated into a sin-
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gle feature representation and processed using several self-

attention operations to get the final feature representation

on which the bounding box prediction is performed. Be-

sides, Stark does not use any hyperparameters-sensitive

post-processing, leading to stable performances.

A.18. Linking Open-Vocabulary Detec-
tions (LOVD)

Authors: J. Vira (jash.vira@student.adelaide.edu.au), J.
Valmadre
Contributions: Conceptualisation, J. Va., J. Vi.; Implemen-
tation, J. Vi., J. Va.; Validation, J. Vi., J. Va.; Project leader,
J. Va.

LOVD performs tracking-by-detection using a pre-

trained open-vocabulary detection model, Grounding

DINO [67]. The same prompt of about 80 words is used

for all sequences. The visual similarity of two detections is

measured using the KL divergence of their likelihoods over

text tokens. Detections are filtered using their similarity to

the correct detections in the first frame. Contiguous track-

lets are constructed by matching detections to tracklets from

the previous frame, and unmatched detections initialise new

tracklets. Tracklets are associated to past tracks considering

temporal overlap and similarity of motion and appearance.

Masks are obtained for each box using the pre-trained Seg-

ment Anything Model [25].

A.19. long vil net2 (vil net2)

Authors: F. Wang (wff@tju.edu.cn), Z. Qian, R. Han, S.
Wang
Contributions: Conceptualisation, FW, ZQ, RH; Implemen-
tation, FW, ZQ; Validation, FW, ZQ, RH; Project leader,
SW

The primary algorithms utilized include the SAM (Seg-

ment Anything Models) [25] for automatic/interactive key-

frame segmentation and the DeAOT [64] for efficient multi-

object tracking and propagation.

A.20. Memory-based video object segmentation
tracker (M-VOSTracker)

Authors: J. Zhu (jiawen@mail.dlut.edu.cn), Z. Chen, Z.
Hao, S. Chang, L. Zhang, D. Wang, H. Lu, B. Luo, J. He, J.
Lan, H. Chen, C. Li
Contributions: Conceptualisation, JZ; Methodology, JZ,
ZC; Validation, ZH, SC; Project leader, LZ, DW, HL; Ad-
vice and funding, BL, JH, JL, HC, CL

M-VOSTracker mainly consists of an object segmenter

and a mask refiner. The object segmenter is a modified

version of DeAOT [64], we extern the gated propagation

module to 1/8 scale and employ a more powerful InternIm-

age [53] as our backbone. The segmenter uses multi-object

segmentation datasets for training for a better understand-

ing of the relationship between multiple objects and it can

handle multiple objects at the same time during one sin-

gle inference. To further improve the accuracy of tracking

masks, we utilize a pre-trained SAM model which is trained

on large-scale segmented data to refine our tracking results.

A.21. MiOTS (MiOTS (formerly MiOTS rushmi))

Authors: H. Yu (yuhongyuan@xiaomi.com), C. Wan, W. Yu,
D. An, K. He, A. Xiao, J. Dong, C. Deng, M. Xu, X. Yin, K.
Zuo
Contributions: Conceptualisation, MX, XY KZ; Implemen-
tation, HY, CW, WY, DA; Validation, CD, KH, AX, JD;
Project leader, HY

MiOTS is based on a single-object multi-target tracking

segmentation model. For each tracking target, MiOTS ini-

tializes a tracker. The MiOTS framework consists of two

models: MixformerV2 [10] and AOT [63]. MixformerV2

is an extension of the original model with an input size

of 384 and we use the model parameters of SAM [25] as

pre-training and retrain the model to obtain a larger Mix-

formerV2 model. The second model AOT is based on the

R50 backbone network. We directly use the model parame-

ters provided by the official website for this model. During

the tracking process, both MixformerV2 and AOT models

run simultaneously. MiOTS then calculates the Intersection

over Union (IoU) of the tracking results from both mod-

els. If the IoU is less than 0.1, we directly use the results

from AOT, as its recall performance is superior. If the IoU

is greater than 0.5, we use the results from MixformerV2,

as its accuracy is better. Finally, if the IoU falls within the

range of 0.1 to 0.5, we use the intersection of the results

from both models as the final output.

A.22. MiOTS-ST (MiOTS-ST)

Authors: C. Wan (cwan38@gatech.edu), H. Yu, W. Yu, D.
An, K. He, A. Xiao, C. Deng, J. Dong, M. Xu, X. Yin, K. Zuo
Contributions: Conceptualisation, MX, XY KZ; Implemen-
tation, HY, CW, WY, DA; Validation, CD, KH, AX, JD;
Project leader, HY

MiOTS-ST is based on MiOTS (A.21). In MiOTS-ST,

the MixformerV2 and AOT models are independently em-

ployed based on size ratio. For ratios exceeding 100, Mix-

formerV2 is used due to its accuracy, while for ratios under

100, AOT is selected for its exceptional recall. This ap-

proach effectively leverages the strengths of both models,

promoting accuracy and resilience in our short-term track-

ing and segmentation model.

A.23. MixConvMAE-L (MixFormer)

Authors: T. Song (songtianhui799@gmail.com), Y. Cui, G.
Wu, L. Wang
Contributions: Conceptualisation, GW, LW; Implementa-
tion TS, YC; Validation TS; Project leader, LW
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MixFormer-ConvMAE-Large is an End-to-End Track-

ing with Iterative Mixed Attention (MixConvMAE-L).

MixConvMAE-L consists of two stages which perform

MixFormer-based tracking and Alpha-Refine-based seg-

mentation respectively. Our core design is to utilize the

flexibility of attention operations, and propose a Mixed At-

tention Module (MAM) for simultaneous feature extraction

and target information integration. MixFormer-ConvMAE-

Large is constructed based on pretrained ConvMAE-Large.

A.24. MixFormerV2-Base (MixFormerV2)

Authors: T. Song (songtianhui799@gmail.com), Y. Cui, G.
Wu, L. Wang
Contributions: Conceptualisation, GW, LW; Implementa-
tion TS, YC; Validation TS; Project leader, LW

MixFormerV2 is a well unified fully transformer track-

ing model, without any dense convolutional operation and

complex score prediction module. We propose four key

prediction tokens to capture the correlation between target

template and search area. Based on them, we can easily

predict the tracking box and estimate its confidence score

through simple MLP heads. With our distillation design,

MixFormerV2 can achieve excellent tradeoff between per-

formance and inference latency. Besides, we place an Alpha

Refine model on top for target segmentation.

A.25. MS-AOT: Associating Objects with Multi-
scale Transformers for Video Object Seg-
mentation (aot)

Authors: A. Lukezic (alan.lukezic@fri.uni-lj.si)
Contributions: Implementation: AL

The MS-AOT tracker is built based on AOT [63, 62, 65],

a transformer-based video object segmentation method, by

applying transformers in multiple feature scales. MS-AOT

tracks and segments most of the objects end-to-end without

using bounding-box information. For tiny objects, we use

MixFormer [9], a bounding-box-based tracker, to coarsely

locate the objects before applying MS-AOT to predict seg-

mentation results. The backbone of MS-AOT is ResNet-50,

and the backbone of MixFormer is CvT [54].

A.26. Mstark (Mstark)

Authors: J. Reddy (jayatejared-
dypochimireddy@gmail.com), J. Pochimireddy
Contributions: Conceptualisation, JTR; Implementation,
JR, JTR; Validation: JTR

Tracker Mstark is based on the Stark model [60] incor-

porating two key changes. Firstly, an object presence flag

is added to the Stark model. This flag serves as an indica-

tor that determines whether an object is present in the scene

or not. Secondly, adjustments to the search region of the

model were made expanding the search region by a factor of

3.5. By enlarging the search region, the model has a wider

field of view, increasing the likelihood of correctly detecting

objects that closely resemble the target object. This modi-

fication aims to improve the model’s ability to distinguish

between similar objects and reduce miss-detections. The

object presence flag helps eliminate false positives, while

the expanded search region reduces mis-detections of simi-

lar objects.

A.27. Multiple Context-based Multi-Object
Tracker (MCMOT)

Authors: W. Shin (wooksu.shin@nota.ai), H. Lee, H. Park
Contributions: Conceptualisation, WS, HL, HP; Implemen-
tation, WS, HL; Paper writing, HP, WS, HL; Project leader,
WS

MCMOT utilizes MixFormer [9] for target location de-

tection and Segment Anything Model (SAM) [25] for ob-

ject masking. This also involves predicting the position of

each target independently at each time step. However, in

cases where target templates share similar visual appear-

ances, this independent prediction may result in different

templates indicating the same object. To address this, MC-

MOT incorporates contextual information from the previ-

ous time step’s predictions. Specifically, the pixels corre-

sponding to the locations of other templates predicted in the

previous time step are set to 0 in the input search area for the

current template. Additionally, MCMOT combines two on-

line templates, namely the long and short-term templates,

to provide a more comprehensive context. By doing so,

the model can simultaneously benefit from both templates:

preserving appearance features for disappeared objects and

handling rapid changes in appearances.

A.28. Multiple Object Tracker by Particle Reprop-
agation and Sparse Optical Flow (Tracker-
PRO)

Authors: D. Lee (ehdgls@ust.ac.kr), J. Yoo
Contributions: Conceptualisation, D-HL, J-HY; Implemen-
tation D-HL; Validation D-HL; Project leader, J-HY

TrackerPRO is based on the iterative particle reprop-

agation method [8], which employs particles and HSV

color histograms to improve tracking accuracy. In compar-

ison to the previous algorithm, the particle distribution was

changed from Gaussian to circular uniform distribution for

initializing the particles on a circle with uniform density at

all angles. After that, a calculated optical flow was used to

adjust the direction of particles. To track objects of vari-

ous sizes, contraction and expansion areas were generated

around the positions of the particles, and a region with a

color distribution more similar to the object was selected

between these areas. The tracked object was determined

based on the degree of similarity distribution of the parti-

cles across the varying regions.
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A.29. Multiple Target Cues for Tracking (MTC-
Track)

Authors: J. Gao (gaoitjie@163.com), Y. Zheng, B. Zhong,
Y. Chen
Contributions: Conceptualisation, JG, YZ, YC; Implemen-
tation, JG, YZ; Validation, JG, YZ, YC; Project leader, BZ

MTCTrack exploits the more comprehensive informa-

tion of the target by multiple target cues. MTCTrack is built

on top of OSTrack [66] and utilizes long-term contextual

information to propagate the appearance state of the target,

explicitly modeling the apparent information of the target.

Furthermore, Alpha-Refine [61] is employed to produce a

mask prediction as the output.

A.30. OmniTracker pyetest800 convnext
(pytest800 convnext)

Authors: J. Wang (wangjk21@m.fudan.edu.cn), D. Chen, Z.
Wu, C. Luo, X. Dai, L. Yuan, Y. Jiang
Contributions: Conceptualisation, JW, DC, ZW, CL, XD,
LY, Y-GJ; Implementation, JW

Depending on whether the initial states of target ob-

jects are specified by provided annotations in the first

frame or the categories. Combining the advantages of

the best practices developed in both communities, instance

tracking (e.g., SOT and VOS) and category tracking (e.g.,

MOT, MOTS, and VIS), we propose a novel tracking-with-

detection paradigm, where tracking supplements appear-

ance priors for detection and detection provides tracking

with candidate bounding boxes for association. Equipped

with such a design, a unified tracking model, OmniTracker,

is further presented to resolve all the tracking tasks with a

fully shared network architecture, model weights, and infer-

ence pipeline.

A.31. PriMem: A Memory-based Tracker with
prior knowledge (PriMem)

Authors: G. Zhao (zhaoguodongfang21s@ict.ac.cn), K.
Huang, Z. Wang
Contributions: Conceptualisation, KH, GZ; Implementa-
tion GZ; Validation GZ, KH; Project leader, WZ

This PriMem tracker is built on top of XMem [6], a

memory-based single-object tracker in video object seg-

mentation. Compared to the original model, we add the

prior knowledge of instances to improve the object track-

ing in complex scenarios. Furthermore, we adopt a SOTA

segmentation model with the incorporation of implicit ex-

pression and the original feature vector to assist the genera-

tion of segmentation masks.

A.32. READMem-MiVOS (READMem MiVOS)

Authors: S. Vujasinović
(stephane.vujasinovic@iosb.fraunhofer.de), S. Bullinger, S.

Becker, N. Scherer-Negenborn, M. Arens, R. Stiefelhagen
Contributions: Conceptualisation, SV, SeB; Implementa-
tion, SV; Validation, SV, SeB, StB, RS, Project leader, NSN,
MA, RS

READMem MiVOS is based on READMem (Robust

Embedding Association for a Diverse Memory) [52], a

modular framework for semi-automatic video object seg-

mentation (sVOS) methods designed to handle uncon-

strained videos. READMem integrates the embedding of

a new frame into the memory only if it increases the diver-

sity of the memory content. Furthermore, it uses a robust

association of the embeddings stored in the memory with

query embeddings during the update process. The tracker

consists of two encoders [20] each for the memory and the

query frame, a space-time memory read block [7], a de-

coder [47] and an external memory which stores previously

observed frames as reference. The memory encoder takes

an image and the object mask jointly to extract memory-

key and -value embeddings, while the query encoder ex-

clusively processes the query image to obtain query-key

and -value embeddings. Cross-attention (performed by the

space-time memory read block) between the query-key and

memory-keys determines relevant information of memory-

values, utilized by the decoder to segment the current frame.

A.33. Reptile Meta-Tracking (ReptileFPN)

Authors: C. Tsai (chiyi tsai@gms.tku.edu.tw), S. Jhang
Contributions: Conceptualisation, C-YT, S-JJ; Implemen-
tation C-YT, S-JJ; Validation C-YT

ReptileFPN is a tracker based on FPN model and a meta-

learning technique called Reptile. We trained a deep learn-

ing network offline by repeatedly sampling different tasks.

The resulting network can quickly adapt to any domain

without the need to train multi-domain branches like MD-

Net. The original architecture of Reptile Meta-Tracker used

a VGG-like backbone. Here we modified it using FPN to

further improve the feature extraction ability. During online

initialization, the ReptileFPN tracker only requires a few

training examples from the first frame and a few steps of

optimization.

A.34. Robust Visual Tracking by Segmenta-
tion (rts rts50 002)

Authors: M. Paul (paulma@vision.ee.ethz.ch), M. Danell-
jan, C. Mayer, L. Van Gool
Contributions: Conceptualisation, MP, MD; Implementa-
tion, MP; Validation MP, CM; Project Leader MD, LVG

RTS [48] is a unified tracking architecture capable of

predicting accurate segmentation masks. To design a

segmentation-centric approach, we take inspiration from

the VOS method LWL [4]. However, to achieve robust and

accurate segmentation on tracking datasets, we propose sev-

eral new components. In particular, we propose an instance
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localization branch that is trained to predict a target appear-

ance model, which allows the detection of occlusions and to

identify the correct target even in cluttered scenes. The out-

put of the instance localization branch is further used to con-

dition the high dimensional mask encoding. This enables

the segmentation decoder to focus on the localized target,

leading to a more robust mask prediction. Since our pro-

posed method contains a segmentation memory and an in-

stance memory that need to be updated with previous track-

ing results, we design a memory management module. This

module first assesses the prediction quality, decides whether

the sample should enter into the memory and triggers the

tracking model if it should be updated. See [48] for more

details.

A.35. Segment Anything Model based AOT
tracker (SAM Tracker)

Authors: Y. Liu (651382513@qq.com)
Contributions: Conceptualisation, ZyT, YL; Implementa-
tion, YL

SAM Tracker uses segment anything model to generate

reference segmentation information for AOT tracker [63],

also combined with grounding DINO [67] to generate text

prompts for tracker.

A.36. Segment Anything Model based MixFormer
Tracker (MixSAMB)

Authors: J. H. Lee (wnsgk986@kitech.re.kr), W. S. Shin, J-
H. Lee, S. H. Lee, M. Woo, S. K. Kim, J. Lee, M. Y. Kim, J.
P. Yun, H-I. Won, B. H. Kim
Contributions: Conceptualisation, MYK, BHK; Model de-
velopment, JHL, WSS, JPY; Data development and training,
J-HL, SHL, MW, SKK, H-IW; Toolkit and tracker evalua-
tion, JHL, JL, BHK; Project leader, MYK, BHK

The proposed tracker model uses the Segment Anything

Model (SAM) [25], which has generalization performance,

as a back-end to predict image segmentation information for

a target. To predict target area segmentation of the track-

ing target, we use the predicted result of the bounding box

tracker as a prompt for SAM. To generate accurate prompt

the MixFormer [9] model is used which has shown an excel-

lent performance for bounding inference. The tracker uses

the pre-trained MixFormer-vit-base model, and the SAM

uses the pre-trained ViT-base model [14].

A.37. SegmentAnything + Open CLIP
(HSE University + IPPM RAS) (SR-
ZLT HSE IPPM ClipSegmentAnything)

Authors: R. Solovyev (roman.solovyev.zf@gmail.com), V.
Zunin, D. Lyutkin, A. Romanov, D. Telpukhov
Contributions: Concept and coding of first version, RS; Im-
plementation, DL; Testing, VZ; Validation of results, DT;
Project leader, AR

Our method depends on two models. The first model is

Segment Anything by Facebook [25] based on VIT-H back-

bone. This model searches for the regions of interest and

it returns a set of masks. The second model is the Open

CLIP model13 which find vectors for each region of interest

as well as for all objects to be found. After that, cosine sim-

ilarities between each proposed mask and each object are

found. The mask with the maximum value of metric is cho-

sen for the object. The tracker searches for all the objects

at once and it is a zero-shot tracker (i.e. it was not trained

on any tracking dataset). The developed tracker is freely

available at Github14.

A.38. SeqTrack: Sequence to Sequence Learning
for Visual Object Tracking (seqtrack)

Authors: C. Zong (chengaozong@mail.dlut.edu.cn), X.
Chen, P. Liu, B. Kang, Y. Yuan, D. Wang, H. Peng, H. Lu
Contributions: Conceptualisation CZ, XC; Implementation
CZ, PL, BK, YY; Funding and Guide DW, HP; Project
leader HL

We utilize Seqtrack [5] as our primary tracker, which is

based on a straightforward encoder-decoder transformer ar-

chitecture. The object’s bounding box is represented as a

sequence of discrete tokens, and the encoder extracts vi-

sual features while the decoder autoregressively generates

the sequence of bounding box tokens using the extracted

features. To address the challenge of distractors, we also

employ an auxiliary tracker called KeepTrack [41]. Addi-

tionally, we incorporate a basic motion module (trained on

LaSOT dataset) to predict the target bounding box When

there is an abnormal jump in the results of the tracker. We

use the SAM [25] model to predict the mask.

A.39. starkplusplus (starkplusplus)

Authors: J. Pochimireddy (jassu0821p@gmail.com), M.
Dasari, A. Kumar, R. K. Gorthi
Contributions: Conceptualisation, RKG, JR; Implementa-
tion, JR, MM; Validation, AK; Project Guide, RKG

The modified model is based on the stark [60] single ob-

ject tracking model and incorporates a yolo [50] detection

module to enhance its capabilities. The primary goal of the

modification is to address the situation where the tracker

loses track of the object being monitored. To achieve this, a

yolo detection module is integrated into the model architec-

ture. When the tracker fails to locate the object, the yolo de-

tection module is triggered, allowing the model to perform

a new detection to locate and reacquire the object. Addi-

tionally, a flag is introduced to provide information about

the presence or absence of the object in the current frame.

By combining the strengths of the stark model, the yolo

13https://github.com/mlfoundations/open_clip
14https://github.com/ZFTurbo/

VOTS2023-Challenge-Tracker
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detection module, and the inclusion of the flag, this mod-

ified model offers improved tracking performance by au-

tonomously re-detecting the object whenever it is lost and

providing real-time information about its presence.

A.40. STARK-ST50 with Alpha-Refine
(stark st50 ar)

Authors: B. Yan (yan bin@mail.dlut.edu.cn), H. Peng, J.
Fu, D. Wang, H. Lu
Contributions: Coding and implementation, BY; Supervi-
sor, HL

Stark st50 ar combines Transformer-based STARK [60]

with Alpha-Refine [61].

A.41. Track and Segment Anything Model (T-S-
AM)

Authors: F. Wang (wff@tju.edu.cn), Z. Qian, R. Han, W.
Feng
Contributions: Conceptualisation, FW, ZQ, RH; Implemen-
tation, FW, ZQ; Validation, FW, ZQ, RH; Project leader,
WF

We select an effective tracker DeAOT [64] as the base-

line tracker for efficient multiple target tracking and prop-

agation. We further apply a large model SAM (Segment

Anything Models) [25] for automatic key-frame segmenta-

tion.

A.42. Tracking Anything in High Quality (HQ-
Track)

Authors: J. Zhu (jiawen@mail.dlut.edu.cn), Z. Chen, Z.
Hao, S. Chang, L. Zhang, D. Wang, H. Lu, B. Luo, J. He, J.
Lan, H. Chen, C. Li
Contributions: Conceptualisation, JZ; Methodology, JZ,
ZC; Validation, ZH, SC; Advice and funding, BL, JH, JL,
HC, CL; Project leader, LZ, DW, HL

HQTrack mainly consists of a video multi-object seg-

menter and a mask refiner. The segmenter is an improved

version of DeAOT [64], we cascade a 1/8 scale gated propa-

gation module for perceiving small objects in complex sce-

narios. Besides, Intern-T is employed as our feature extrac-

tor to enhance object discrimination capabilities. Our object

segmenter uses multi-object segmentation datasets for train-

ing for a better understanding of the relationship between

multiple objects. It can handle multiple objects at the same

time during one single inference. To further improve the

quality of tracking masks, we utilize a pre-trained HQ-SAM

model [24] to refine our tracking results. HQ-SAM designs

a learnable high-quality output token, which is injected into

SAM’s mask decoder and is responsible for predicting the

high-quality mask. We calculate the outer enclosing boxes

of the predicted results of our segmenter as box prompts and

feed them into HQ-SAM together with the original image to

get the refined results, the final tracking results are selected

from the segmenter and refiner. For more implementation

details, we refer readers to our technical report [68].

A.43. Unified Object Tracking via Target-aware
Disappear Detection (UniTD)

Authors: Z. Tang (7211905025@stu.jiangnan.edu.cn), Y.
Liu, P. Shao, H. Wang, S. Zhao, X. Zhu, T. xu, X. Wu
Contributions: Conceptualisation, ZT, YL, XZ, TX; Imple-
mentation, ZT, YL, PS, HW; Validation, SZ, XZ; Project
leader, XW, TX

We use the baseline Unicorn [58] to solve the SOT and

MOT tasks at the same time. To address the new VOTS

task, we mainly follow the SOT paradigm, but extending

the original single ground truth prompt into multiple ones.

To address the problem of disappearance of objects, we fur-

ther design a target-aware disappear detection method. Re-

detection is activated when the score is below the threshold,

and here the threshold is target-aware. We use a pre-trained

to model to deal with all the videos, thus a fixed threshold

might not be suitable for all kinds of targets. So the thresh-

old is related to the scores computed in the first frame in

this method. Specifically, we endow different thresholds to

different objects.

A.44. UNINEXT with ResNet-50 back-
bone (UNINEXT R50)

Authors: B. Yan (yan bin@mail.dlut.edu.cn), Y. Jiang, J.
Wu, P. Luo, Z. Yuan, D. Wang, H. Lu
Contributions: Coding and implementation, BY; Supervi-
sor, HL

UNINEXT is a powerful unified model for 10 instance

perception tasks. It reformulates 10 instance perception

tasks into a prompt-guided object discovery and retrieval

fashion.

A.45. UNINEXT with ViT-Huge back-
bone (UNINEXT Huge)

Authors: B. Yan (yan bin@mail.dlut.edu.cn), Y. Jiang, J.
Wu, P. Luo, Z. Yuan, D. Wang, H. Lu
Contributions: Coding and implementation, BY; Supervi-
sor, HL

UNINEXT is a unified model for 10 instance per-

ception tasks. UNINEXT Huge [59] takes ViT-Huge

as the backbone. Other settings are aligned with

UNINEXT R50 (A.44).

A.46. ViT-adaptive Dense-Fusion Transformer
Tracker (VAPT)

Authors: C. Tang (tangchuanming96@gmail.com), J. van
de Weijer, J. Zhang
Contributions: Conceptualisation, CT, JW; Implementation
CT; Validation CT; Adviser JZ; Project leader, JW
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VAPT is a two-stage video tracking-to-segmentation ar-

chitecture. The tracker is based on a ViT encoder with an

adaptive network, a 4-layer Dense-Fusion Decoder (DFD)

and two DCF target prediction heads. The adaptive network

is built on 12-layer zero-centred attention blocks which

integrate the feature context of each near layer into the

same feature space. DFD is built with a target query ten-

sor, four zero-centered attention layers and a project MLP

layer. DCF target heads extend convolution layers inspired

by ToMP [40] head. The segmentation network is follow-

ing HQ-SAM [24] to generate high-quality masks of tar-

gets based on the predicted bounding box. During infer-

ence, we propose a strategy named CycleTrack to correct

for errors caused by distractors by verifying temporal cycle

consistency. This is based on the insight that the tracked

target should track the previous-frame target when tracking

backwards in time as a posteriori condition. To improve

the long-term adaptive tracking ability, we extend the basic

memory update strategy in ToMP, into a staggered template

update method. In addition, search-region jitter is another

inference strategy in VAPT. It will be applied when the tar-

get is lost to re-find it in a large-scale region.

A.47. vision transformer tracking (vttrack)

Authors: P. Liu (liupengyu@mail.dlut.edu.cn), X. Chen, C.
Zong, B. Kang, Y. Yuan, D. Wang, H. Peng, H. Lu
Contributions: Conceptualisation PL, XC; implementation
PL, CZ, BK, YY; Funding and Guide DW, HP; Project
leader HL

We fine-tuned the weights generated using the MAE [19]

method on the tracking dataset. We used the VIT-large

model. First, both the template and search regions were

patch embedded, then concatenated together for feature ex-

traction and fusion through transformer block structure. Fi-

nally, the fused features are output to the classification and

regression heads to complete the generation of bounding

boxes. We apply a Hanning window on the output of the

classification head to utilize the motion information of the

object. After that, we retrieve the output of the regression

head at the position with the highest confidence and output

the bounding box. We used Segment Anything Segment

Anything Model (SAM) [25] as the model for outputting

masks. When the confidence value outputted by the tracker

is very low, it is considered that the target is no longer in the

image, and an empty mask is outputted.
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Matas, Fatih Porikli, Luka Čehovin, Georg Nebehay, Gus-
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