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Abstract

In this work, we propose a generative model for enhance-
ment of images captured in low-light conditions. Sensor
constraints and inappropriate lighting conditions are ac-
countable for degradations introduced in the image. The
degradations limit the visibility of the scene and impedes
vision in applications like detection, tracking and surveil-
lance. Recently, deep learning algorithms have taken a
leap for enhancement of images captured in low-light con-
ditions. However, these algorithms fail to capture informa-
tion on fine grained local structures and limit the perfor-
mance. Towards this, we propose a generative model for en-
hancement of low-lit images to exploit both local and global
information, and term it as LightNet. In proposed architec-
ture LightNet, we include a hierarchical generator encom-
passing encoder-decoder module to capture global infor-
mation and a patch discriminator to capture fine grained
local information. Typically, the encoder-decoder module
downsamples the low-lit image into distinct scales. Learn-
ing at distinct scales helps to capture both local and global
features thereby suppressing the unwanted features (noise,
blur). With this motivation, we downsample the captured
low-lit image into 3 distinct scales. The decoder upsam-
ples the encoded features at respective scales to generate
an enhanced image. We demonstrate the results of proposed
methodology on custom and benchmark datasets in com-
parison with SOTA methods using appropriate quantitative
metrics.

1. Introduction

In this paper, we propose a hierarchical generative model

for enhancement of images captured in low-light condi-

tions. We consider both global and local features to model

the proposed framework. Enhancement of images captured

in low-light conditions is the need of the hour as it con-

tributes in expediting the vision for a wide range of applica-
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Figure 1: LightNet: Framework for enhancement of images

captured in low-light conditions.

tions. Applications like autonomous driving systems, traffic

surveillance, wildlife photography, drone surveillance, un-

derwater coral reef monitoring and protection demands the

enhancement of low-light images for clear vision. However,

the images captured in low-light conditions undergo several

degradations limiting the visibility of the scene.

Most prominent degradations observed in low-light con-

ditions [31] include loss of color, contrast, and implicit spa-

tial noise. Spatial noise is introduced due to variation in

each individual pixel or variation across the pixels suppress-

ing the high-frequency components causing blur in the cap-

tured scene. Advancements in capturing technology facil-

itate to overcome these degradations, however deploying

these sensors on edge devices is challenging due to its size

and memory constraints. Towards this, we propose to en-

hance the quality of images captured in low-light conditions

considering the variation per pixel (local information) and

across the pixels (global information) with a combinational

loss function.

Typically, the image captured is a function of its illumi-
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nance Il(x, y) and reflectance R(x, y) and is given by:

T (x, y) = f(Il(x, y), R(x, y)) (1)

Here T (x, y) is the true observation, f is a function of illu-

minance Il(x, y) and reflectance R(x, y) respectively.

In traditional methods, the incident light and reflectance

is jointly estimated from a single true observation. Au-

thors in literature propose Histogram Equalization [15] [1]

and Retinex methods [27] [23] for enhancement of low-

light images. However, Retinex methods use minimiza-

tion framework to iteratively enhance illumination and re-

flectance component for each pixel in an image. Histogram

Equalization methods focus on improving the overall con-

trast of an image resulting in unnatural colors. These meth-

ods possess limitations like assumptions on priors and are

data specific. The methods do not explicitly consider noise

introduced during the capture, and generally apply denois-

ing as a post-processing module.

Authors in [24] perform simultaneous contrast enhance-

ment with denoising using a stacked auto-encoder module.

However, the method doesn’t appreciate the true power of

deep learning architectures. Authors in [10] propose three

sub-modules namely feature extraction module, enhance-

ment module, and fusion module (MBLLEN) and propose

a variant of LLNet. The results of the feature extraction

and enhancement module are fused towards enhancement

of low-light images. [10] provides improved performance

over LLEN with explicit feature extraction module neces-

sary for enhancement of low-light images.

Authors of [10] propose another light-weight convolu-

tional neural network to handle non-uniform illuminations

[25]. [28] propose a hybrid network with content stream

and edge stream to recover the content and high frequency

components. [34] propose a fusion network to address high

contrast and color biases introduced in low-light conditions.

Authors in [2] propose a convolutional neural network for

the enhancement of low-light images using raw images.

Unlike others, we consider extremely dark images given

by Night Rendering Photography, NTIRE 2022 challenge

dataset towards training the proposed architecture as shown

in Figure 2 and demonstrate the quality of enhancement

with appropriate quantitative metrics.

The methods from literature, learn mapping directly be-

tween ground-truth data and corresponding low-light im-

ages. Alternatively, Retinex theory based methods enhance

the illuminance and reflectance component independently

with dedicated subnetworks. Authors in [32] extend the

work of RetinexNet with new constraints and propose a

novel architecture for enhancement of low-light images. Al-

though most of the methods achieve considerable improve-

ment in performance, the generalisation issue still persists

due to the use of synthetically generated data. To address

this, we propose a novel dataset consisting of real low-light

a) b) c)

Figure 2: Enhancement of images captured in low-light

conditions. a) Input image from NTIRE 2022 Challenge

Dataset [8]. b) Result of proposed methodology. c) ground-

truth. (Note: For illustration purpose we have added a fixed

constant to each pixel of input image.)

images captured with varying ISOs and exposures. We also

release the corresponding ground-truth images. The cap-

tured low-light images coupled with ground-truth informa-

tion facilitates to train deep learning frameworks towards

enhancement of low-light images.

There is a paradigm shift with deep learning frameworks

in terms of computational speed vs enhancement quality.

However, trade-off between computational requirement and

quality is the most crucial aspect of any algorithm design

as it depends on the underlying application it is intended

for. Authors in [18] propose a light weight model for the

enhancement of low-light images. The main goal of our

work is to improve the quality of enhancement irrespec-

tive of the computational time. Unlike deep Retinex meth-

ods, we intend to improve color and contrast of the low-

light images without explicitly separating illuminance and

reflectance parameters. Unlike authors in [20] we propose

an architecture emphasizing on local and global features.

Contributions of the work include,

• We prepare customised low-light dataset, captured

with varying ISOs and Exposures along with corre-

sponding ground-truth information to train deep learn-

ing algorithms. (Section 2).

• We propose a hierarchical generative model with patch

GAN to capture local information explicitly for low-

light conditions. (Section 3).

• We propose a combinational loss function to exploit

local illuminance keeping global features intact.

– We consider VGG 19 loss to preserve the overall

contextual features of the high lit image.

– We consider MS-SSIM loss to preserve channel-

wise structural information.

– We consider Color loss to measure the color loss

between the generated image and the ground-

truth image.
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• We demonstrate the results of proposed LightNet on

NTIRE 2022 challenge dataset and our custom low-

light dataset using appropriate quality metrics. (Sec-

tion 4).t

2. Dataset Preparation: Captured Low-light
Images

In this section, we discuss on the proposed dataset pre-

pared for training the architecture towards enhancement of

images captured in low-light conditions. From Retinex the-

ory, we infer illuminance is the primary factor contributing

for the visibility of the objects in the scene. However, the

colors of each object in the scene vary under different il-

luminations leading to inconsistency of colors in the cap-

tured image. With this motivation, we vary the exposure

settings in the camera to capture the change in color dis-

tribution of the scene as shown in Figure 6. We train the

proposed architecture LightNet, with the proposed dataset

to learn the color distribution under varying camera settings

for consistent enhancement of images irrespective of illu-

mination conditions.

2.1. Dataset Description

Images were captured with Samsung Galaxy Note 10+,

for multiple scenes under varying camera settings. The

camera settings for multiple scenes include keeping ISO

constant under varying exposures. The ISO settings for the

scene vary ranging from ISO50 to ISO3200 and exposure

range from 1/2400s to 1/2s . We capture the correspond-

ing ground-truth information in auto settings of the camera.

The dataset includes a total of 3500 raw image pairs and its

corresponding sRGB image pairs for varying scenes under

varying camera settings. The few samples from the capture

are shown in Figure 5.

3. LightNet: Generative Model for Enhance-
ment of Low-Light Images

In this section, we provide the architectural details of the

proposed methodology (LightNet) and we discuss in detail

on the proposed combinational loss function.

3.1. Network Architecture

Encoder-decoder based architectures like UNET [29]

are widely used for reconstruction of images. Encoder-

decoder based architectures downsamples the input images

into different scales and facilitate learning at different lev-

els. Learning at different scales helps to capture the local

and global variance of features thereby suppressing the un-

wanted features (noise, blur).

In the proposed architecture, we have hierarchical gen-

erator consisting of encoder and decoder block. At en-

coder we encode the input image in three distinct scales i.e.,

Encoding at Lower-Scale, Encoding at Medium-Scale, En-

coding at Higher-Scale as shown in Figure 3. Encoder at

Lower-Scale downsamples the input image by a factor of

2, Encoder at Medium-Scale downsamples the input image

by a factor of 8, Encoder at Higher-Scale downsamples the

input image by a factor of 32 as shown in Figure 3. We

propose modified residual dense blocks (MRDB) as shown

in Figure 4. The MRDB block facilitates learning of local

features emphasising on fine grained structural information

and minuet features. We include MRDB block in Encoder

at Higher-Scale as it contains information of all the scales

in the hierarchy. At decoder, the output of MRDBs is fused

at two levels Decoding at Medium-Scale and Decoding at

Lower-Scale to generate the enhanced low-light image.

Only encoder-decoder based architectures [18], [6], [5],

[7], may not suffice the problem of low-light image en-

hancement as restoring true colors with such models is quite

challenging. Towards this, we propose a new loss func-

tion to capture the lost colors as shown in Equation 5. The

proposed encoder-decoder architecture performs downsam-

pling and upsampling of the input image as shown in Figure

3. We include a patch-based discriminator to capture lo-

cal color and contrast from each patch facilitating improved

color and contrast reconstruction both locally and globally.

Patch discriminator learns the local distribution of contex-

tual and spatial information and resulting feedback is given

to generator. Towards this, we propose a combinational loss

function to capture local color, contrast, and content fea-

tures.

In what follows, we discuss in detail the proposed com-

binational loss function. Unlike the authors in [1], the

proposed methodology depicting a generator with a corre-

sponding patch discriminator ensures the retention of local

and global features is shown in Figure 3.

3.2. Proposed Combinational Loss Function

Images captured in low-light conditions are sensitive to

spatial noise, color and contrast demanding modelling of

a loss function to restore true colors, contrast, and noise.

Towards this, we propose a combinational loss function to

recover the lost color and contrast both locally and glob-

ally. Most commonly used loss functions for enhancement

of images captured in low-light conditions include percep-

tual loss, smoothness loss, and reconstruction loss. How-

ever, these loss functions emphasize more on content fea-

tures thereby ignoring the underlying color, and contrast

component.

The proposed combinational loss function aims to re-

cover lost colors, contrast, and structural information both

locally and globally with the help of patch-based discrimi-

nator. The combinational loss function includes 3 compo-

nents:

The first component (A) focuses on capturing local and
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Figure 4: MRDB: Modified Residual Dense Blocks.

MRDB for capturing local information across all scales.

global structural information as shown in Equation 2. The

second component (B) focuses on recovering lost colors

and contrast both locally and globally as shown in Equation

3. The third component (C) facilitates the reconstruction

of channel-wise structural information as stated in [14] and

is shown in Equation 4. Introducing color loss is the key

towards enhancement of low-light images. During train-

ing, we use the combinational loss function and compute

loss between generated RGB image and the corresponding

ground-truth.

3.2.1 Perceptual Loss (A)

VGG Perceptual loss is based on the ReLU Activation lay-

ers of a pre-trained VGG 19 network and focus on pixel-

wise loss computation. VGG 19 Perceptual loss is shown in

Equation 2.

LV GG/i,j =
1

Wi,jHi,j

∑Wi,j

x=1

∑Hi,j

y=1 (ψi,j(IGT )x,y − ψi,j(GθG(ILL))x,y)
2

(2)

where, ψj(x) be the activations of the jth layer of the net-

work ψ when processing the image x, IGT is the ground-

truth image, and ILL is the enhanced image. By incorporat-

ing the VGG 19 loss function into our methodology, our ob-

jective is to comprehensively capture and preserve the dis-

cernible contextual features, and inherit the same in high-lit

images.

2234



Figure 5: Images captured in low-light conditions, 1st column shows ground-truth image (captured in auto settings), 2nt

column shows images capture with ISO50, 3rd column shows images captured with ISO100 , 4th column shows images

capture with ISO200, 5th column shows images captured with ISO400, 6th column shows images captured with ISO800,

7th column shows images captured with ISO3200. Exposure is fixed across the rows (1strow : 1/24000s, 2ndrow :
1/4000s, 3rdrow : 1/2000s, 4throw : 1/180s, 5throw : 1/20s, 6throw : 1/2s

3.2.2 Color Loss (B)

To restore the lost colors in the generated image, we use

Color loss as given by authors in [16]. The Color loss com-

putes the Euclidean distance between generated image and

the corresponding ground-truth. Initially, we apply gaussian

blur, in order to eliminate sharp frequencies while comput-

ing the color difference as shown in Equation 3.

Lcolor = ||GTG −GNG||22 (3)

where, GTG and GNG are the gaussian blurred image rep-

resentations of ground-truth, and generated images respec-

tively. Color loss is employed as a loss function or penalty

term during the restoration process to mitigate these color

discrepancies and enhance the color consistency.

3.2.3 MS-SSIM Loss (C)

To preserve the structure channel-wise, we use

MS − SSIM loss function as shown in Equation

4.

MS − SSIM(§, †) = Lm(x, y)αM ·
M∏

j=1

[cj(x, y)]
βj [sj(x, y)]

γj

(4)

where, Lm is luminance comparison at scale M , cj , and

sj are contrast and structure comparison at jth scale. By
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Figure 6: The color distribution of ground-truth image vs images captured under various ISO settings. We observe, with

increase in ISO the span of color distribution increases. The proposed LightNet, aims to learn the difference in color

distribution across ISO and exposures.

incorporating MS-SSIM loss into our methodology, our ob-

jective is to enable capturing of both fine and coarse struc-

tural information in the image. This is particularly ben-

eficial for restoration tasks like denoising, deblurring, or

super-resolution, where recovering details across different

scales is necessary.

3.2.4 Total Loss

The combinational loss function is a combination of Percep-

tual loss, Color loss and MS-SSIM loss as shown in Equa-

tion 5.

Totalloss = α ∗A+ β ∗B + γ ∗ C (5)

where, A = LV GG/i,j , B = Lcolor, C = MS − SSIM .

We set the values of α = 0.3, β = 0.4, γ = 0.3 heuristi-

cally. We use the proposed combinational loss function as

shown in Equation 5 to train the proposed generator mod-

ule. We train the discriminator on BCELoss.

4. Results and Discussions

In this section, we present the results of the proposed

methodology on proposed dataset and benchmark datasets

using appropriate quantitative metrics. We also provide an

overview of implementation settings considered for training

the proposed LightNet.

4.1. Implementation Details

We use Python (v3.8) and PyTorch framework to develop

the proposed architecture and train on Nvidia DGX Tesla

V100. We use Adam optimizer with lr = 0.0002, β1 = 0.5
and β2 = 0.99 for both generator and discriminator. We

train the model for 50k iterations, with Discriminator loss
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set to Binary crossentropy. We propose weighted combina-

tion of loss functions, more specifically we consider VGG

19 content loss to restore the content from ground-truth to

generated image, MS-SSIM to restore structural similarity,

Color loss to restore true colors and contrast levels as shown

in Equation 5. We consider NTIRE 2022 [8] challenge

dataset for training the proposed architecture consisting of

571 pairs along with our own dataset with a batch size of

16.

4.1.1 Results on NTIRE 2022 Challenge Dataset

We demonstrate the results of the proposed methodology

on NTIRE 2022 challenge dataset [8]. The results of the

proposed methodology are shown in Figure 7. The corre-

sponding PSNR and SSIM scores of the same are shown in

Figure 7 highlighted in bold.

PSNR= 29.1631 SSIM= 0.6715 PSNR= 28.0525 SSIM= 0.5087 PSNR= 29.3184 SSIM= 0.7773

Figure 7: 1st row represents input images (NTIRE 2022

Challenge Dataset [8]), 2nd row represents results of pro-

posed LightNet, and 3rd row depicts the ground-truth im-

ages. We observe the proposed LightNet, restores local-

global contextual and structural information consistently.

(Note: For illustration purpose we have added a fixed con-

stant to each pixel of input image.)

4.1.2 Comparison with SOTA methods on SID Dataset

We demonstrate the results of the proposed methodology

on SID dataset [3]. The results of the proposed methodol-

ogy are shown in Figure 8. The corresponding PSNR and

SSIM scores in comparison with authors [18] are shown in

Figure 8 highlighted in bold. Comparison with state-of-

the-art methods on SID dataset using appropriate quanti-

tative metric is shown in Table 1. We infer the proposed

LightNet consistently enhances the images while retaining

the color distribution both locally and globally. Figure 10,

shows exemplar image from SID dataset [4]. We observe,

the proposed LightNet consistently retains local contextual

information (color distribution) in comparison with SOTA

methods.

PSNR= 34.6220 SSIM= 0.8861 PSNR= 27.4207 SSIM= 0.8407 PSNR= 26.6693 SSIM= 0.8266

PSNR= 33.8497 SSIM= 0.8901 PSNR= 29.0877 SSIM= 0.8445 PSNR= 29.2464 SSIM= 0.8332

Figure 8: 1st row represents input images (SID Dataset

[3]), 2nd row represents results of authors in [18], 3rd row

represents results of proposed method LightNet, and 4th

row represents the ground-truth images. We infer, the pro-

posed LightNet restores color, contrast, and luminance con-

sistently.

4.1.3 Comparison with SOTA methods on Our Dataset

We demonstrate the results of the proposed methodology on

our proposed dataset. The results of the proposed method-

ology are shown in Figure 9. The corresponding PSNR and

SSIM scores are shown in Figure 9 highlighted in bold.

Table 2 shows quantitative comparison on state-of-the-art

methods for custom dataset. To demonstrate the robustness

of the proposed methodology, we consider the camera set-

tings with ISO50 and ISO100 under Exposure 1/2s, 1/180s,

and 1/24000s (Extreme low-light condition).

4.2. Ablation Study

LightNet Architecture. We trained our network on

NTIRE 2022 Challenge, SID Sony Dataset, and custom

dataset after including the proposed patch-discriminator

with BCELoss. We observe a PSNR (in dB)/SSIM gain
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Table 1: Results of proposed methodology in comparison

with State-of-the-art-methods using PSNR and SSIM (Av-

erage across the selected data on SID dataset [3]) as a ref-

erence based quantitative metric. Last row corresponds to

results of proposed LightNet (Represented in bold).

Methods PSNR↑ SSIM ↑
SID [4] (2018) 28.80 0.787

DID [26] (2019) 28.41 0.780

SGN [11] (2019) 28.91 0.789

LLPackNet [17] (2020) 27.83 0.750

DCE [12] (2020) 26.53 0.730

LDC [30] (2020) 29.56 0.799

REDIRT [19] (2021) 28.66 0.790

LightNet (Ours) 30.72 0.850

PSNR= 15.5862 SSIM= 0.6244 PSNR= 13.4288 SSIM= 0.5053 PSNR= 12.8613 SSIM= 0.4253

PSNR= 18.6679 SSIM= 0.7404 PSNR= 17.4327 SSIM= 0.6492 PSNR= 15.1250 SSIM= 0.5056

Figure 9: 1st row represents input images (our dataset), 2nd

row represents results of authors in [18], 3rd row represents

results of proposed method (LightNet), and 4th row repre-

sents ground-truth images.

from 28.66 dB/0.790 to 30.72 dB/0.850 indicating a 2.06

dB (7.15% ↑) gain.

5. Conclusions
In this work, we have proposed a generative model for

enhancement of images captured in low-light conditions

(LightNet). The proposed architecture includes a hierarchi-

cal encoder-decoder module along with a patch discrimina-

tor to capture local information as a key towards improving

Figure 10: The zoomed in view of exemplar from SID

Dataset [4]. 1st row: shows the input low-lit image, re-

sults of authors in [19], 2nd row shows ground-truth image

and the results of the proposed LightNet. We observe, the

proposed LightNet outperforms the SOTA methods.

Table 2: Results of proposed methodology on Custom

dataset in comparison with state-of-the-art methods using

PSNR (in dB) metric. To demonstrate the robustness of

the proposed methodology, we consider the camera settings

with ISO50 and ISO100 under Exposure 1/2s, 1/180s, and

1/24000s (Extreme low-light condition). The cells high-

lighted in ”.” represent the highest values, and the cells

highlighted in ”.” represent the second best values.

Note: Enlighten Anything model [33] fails to segment the

scene effectively under extreme low-light conditions (Ex-

posure 1/240000s + ISO50) leading to failure in low-light

image enhancement.

Exposure (in seconds) 1/2s 1/180 1/24000

Quantitave Metrics PSNR↑ PSNR↑ PSNR↑
Methods ISO 50 ISO 100 ISO 50 ISO 100 ISO 50 ISO 100

LIME [13](2016) 17.63 17.33 18.20 19.83 6.51 7.52

RetinexNet [23](2018) 12.71 10.89 16.24 14.13 11.09 12.22

Zero DCE[12](2020) 14.12 10.95 19.35 17.55 5.96 7.01

Zero DCE++ [21](2021) 13.10 10.49 20.86 17.14 5.99 7.14

Enlighten Anything[33](2023) 20.61 21.35 18.08 19.51 - 11.24

UHDFour [22](2023) 25.59 26.23 22.10 24.35 16.09 16.78

LightNet(Ours) 31.17 31.98 30.03 30.34 25.61 26.11

the quality of enhancement. We have proposed a combina-

tional loss function to exploit lost color and contrast infor-

mation both locally and globally. We have demonstrated

the results of proposed method using NTIRE 2022 chal-

lenge dataset, SID dataset and our dataset. We have shown

the results of low-light enhancement using different quality

metrics.
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