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Abstract

3D dynamic meshes offer significant potential in vari-
ous applications, but their usage is still limited by their
large file size. We present a novel method that can com-
press 3D human dynamic meshes effectively by using em-
bedded deformation to extract the underlying transforma-
tions of consecutive frames. We target 3D dynamic meshes
with changing connectivity which are more versatile com-
pared to traditional mesh animation but also more challeng-
ing. To further reduce the transmission size, we propose a
novel optimization-based technique to determine a sparse
set of key nodes capable of transmitting the transformations
efficiently.

1. Introduction

The Internet is undergoing a revolutionary change.

While the current Internet carries text, audio, images, and

video, the next generation of the Internet will focus on

3D-based scenes and models. Static 3D objects offer rich

viewing experience while dynamic 3D models improve the

immersive 3D experience with temporal information. The

flexibility and potential of 3D dynamic meshes have spurred

further exploration of their capabilities, making them a key

area of interest in the field of computer graphics and related

domains.

Recently, several approaches have been proposed to

compress 3D mesh animations effectively [30], [39]. How-

ever, their methods focus on synthesized mesh sequences

where the topology of different frames is fixed. Effective

compression for 3D dynamic meshes with changing con-

nectivity remains a challenging task. While it is possible to

register them to an approximate mesh animation, the reg-

istration process can be time-consuming, making it unsuit-

able for real-time applications. Moreover, mesh registration

is particularly challenging for models with intricate content

such as loose clothing and hairstyles, as finding a match-

ing template is often difficult and may require designing a

special embodiment. This presents a significant obstacle to

the effective use of scanned models in real-time scenarios,

highlighting the need for new approaches to compress such

sequences.

Although 3D dynamic meshes with changing connectiv-

ity are more general and versatile, the complexities of pro-

cessing them pose significant challenges compared to tra-

ditional mesh animation. They do not have explicit ver-

tex correspondence between frames, and usually have dif-

ferent numbers of vertices as well as varying connectivity

over time. In this paper, we address this challenge by utiliz-

ing the deformable transformations of consecutive frames

without requiring explicit vertex correspondence. The main

contributions of this paper are:

• We present a novel compression method for 3D dy-

namic meshes with deformation transformations as the

motion estimation. We show that the alignment infor-

mation can effectively compress 3D dynamic meshes

whose connectivity can be either fixed or varying over

time.

• We propose an optimization-based approach to obtain

an optimally sparse layout of key nodes for the under-

lying embedded deformation approach. The acquired

key node set is both sparse and sufficient to trans-

mit prediction information for a high quality predictive

frame.

• We show that our optimization approach is beneficial

not only to the compression, but also to the deforma-

tion in terms of convergence.
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2. Related Work
This section reviews current research on Human 3D Dy-

namic Meshes Compression. We start by exploring exist-

ing research on 3D mesh animation compression for fixed

connectivity. Then, we adapt to compression techniques for

changing connectivity dynamic meshes. Lastly, we examine

3D human motion compression, which takes into account

human perceptual characteristics.

2.1. 3D Dynamic Mesh Sequence Compression

Current compression techniques can be divided by

their handling either fixed or varying connectivity, where

fixed connectivity refers to having the same topology over

frames, and is common for computer-designed animations.

Fixed connectivity. Proposed approaches can be sepa-

rated into the following categories.

Prediction-based methods: Early works encoded dif-

ferences in vertex position over frames [13], improved

with second-order code prediction [7] or the use of ICP

to match points and transmit motion parameters and er-

ror residues [21]. Various scalable schemes [46, 9, 3] in-

volved predictively exploiting the already encoded spatio-

temporal neighborhood using rotation-invariant coordi-

nates, weighted spatial prediction, and iteratively decimat-

ing vertices. Observing that within a mesh sequence, the

model’s shape changes smoothly while the fine-scale de-

tails remain the same, [24, 11] represent the animated 3D

model as the deformation of low frequencies while preserv-

ing high-frequency details. Recently, [25] used non-linear

transformations to describe deformations of patches with

similar motion patterns through the sequence, while [6] uses

Graph Fourier Transforms to project the difference between

a vertex and its neighbor vertices onto eigentrajectories.

PCA-based methods: PCA was proposed in [4] to repre-

sent dynamic mesh sequences, decomposing a matrix con-

taining the geometry of all key frames in the original se-

quence into eigenvectors and eigenvalues. This allows pro-

gressive transmission because most of the information can

be found in a linear combination of eigenvectors corre-

sponding to small eigenvalues. This was improved with

second-order prediction in [29] and a compression algo-

rithm for the PCA basis in [48]. In [37], frames were aggre-

gated into clusters with similar poses which were decom-

posed using PCA. The computational cost was addressed in

[31], and a robust PCA method was presented in [30].

Segmentation-based methods: In [45], Lloyd’s algo-

rithm combined with PCA segmented a mesh into groups

of vertex trajectories that move almost independently over

frames. Complexity was reduced in [28], while [5] com-

bined local coordinates and PCA. In [23], a segmentation

scheme partitioned the first mesh of the sequence into sub

meshes having independent deformations. The best affine

transformations of submeshes were then computed and en-

coded. Spatial and temporal mesh clustering based on cur-

vature and torsion was discussed in [51], while a greedy

mesh segmentation was presented in [39] and [38].

Wavelet-based methods: Guskov et al. in [22] trans-

formed an input mesh with an isotropic wavelet transform,

and progressively encoded the resulting wavelet details us-

ing coefficient differences, while temporal wavelet trans-

forms were used in [44, 10] to exploit the temporal coher-

ence of the geometry component.

MPEG Framework: A skinning model was used in [41]

in which vertices were partitioned into clusters and pre-

dicted from their individual weights combined with their

cluster’s transformation, and a set of flexible transform

modules and layer predictors supported different compres-

sion functionalities.

Varying connectivity. 3D mesh sequences recon-

structed from cameras will experience varying connectivity,

but these have seen less research. In [52], an approximate

global topology for the whole mesh sequence was proposed

to deal with changing connectivity; the global topology is

constructed by re-meshing the first frame and mapping it to

the following frames using motion estimation. [15] intro-

duced a similar idea but employs separate Groups of Frames

(GoF), with each GoF having its own global topology. Ex-

tending 2D video block matching, [26] divided a mesh into

cubic blocks which search for the best match block in the

reference mesh frame, while a patch-based matching algo-

rithm was used in [50]. Recently, [19] used the new Vi-

sual Volumetric Video-based Coding (V3C) standard to en-

code meshes by using orthogonal projections, followed by

atlas packing and video coding. By sending the connec-

tivity patch for every mesh frame, this method is able to

deal with sequences with varying connectivity. A newly

proposed method in [42] focuses on encoding the texture

information in a dynamic mesh, as it encodes mesh geome-

try and topology for each frame separately. The paper pre-

sented a patch-based approach that reorganizes the intra-

frame and inter-frame texture tiles to improve spatial and

temporal correlations.

2.2. 3D Human Motion Compression

While a single 3D human model could be compressed by

any static mesh compressor, many research groups actively

exploit the temporal redundancies in 3D human sequences,

using human skinning methods and human movement rela-

tionships. They can be separated into three main categories

of representations: Skeleton, Markers and Mesh.

Skeleton representation: This direction simplifies hu-

man models to skeletons consisting of bones and joints.

Time-varying joint trajectories were compressed in [2] by

discrete wavelet transforms, combined in [35] with kine-

matics and key frames. Wavelet decompositions on joint

rotation angles were approximated in [32], and a related
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approach [8] optimized wavelet coefficient selection com-

bined with inverse kinematics to adapt standard truncated

wavelet compression techniques to the nature of skeletal

animation data. Other schemes employing forward or in-

verse kinematics [34, 33, 32] sample joint trajectories into

discrete patterns [18], fit cubic Bezier curves to bone tra-

jectories [53], or use a tree hierarchy [27] to express the

relationships of movements of body parts.

Marker representation: A 3D model can be repre-

sented as a set of 3D markers, with 40-50 markers at the

minimum for a human. To compress marker movement,

[36] segmented a motion sequence into subsequences such

that poses within a subsequence lie near a low dimensional

linear space; a segment is then compressed using PCA. Or-

ganizing 3D human markers into body parts, motion mark-

ers for one part were combined and represented by a host

node in [20]. Each node is partitioned into motion seg-

ments which were represented by an entropy-coded index

to the motion pattern database.

Mesh representation: Treating human models as

meshes, [43] converted a mesh sequence into skinned rig

models consisting of bones and a skin attached to the bones

by weights. The bones undergo separate rigid transforma-

tions to animate the skin, whose geometry and color are

compressed by Graph Wavelet Filter Banks. Using ad-

vances in human skeleton tracking combined with a frame-

based compression method, skeleton motion information

extracted from depth maps was used to represent the pre-

dictive frames in [17, 16], together with a connectivity com-

pression algorithm.

3. Key frame-based dynamic mesh codec
In this section, we present our proposed codec specifi-

cally designed for time-varying dynamic mesh sequences.

These sequences can have varying connectivity and chang-

ing numbers of vertices across frames, making them chal-

lenging to process efficiently. To overcome this chal-

lenge, our system divides the sequence into multiple GoFs

and sends transformation information for predictive frames.

This approach significantly reduces the amount of data that

needs to be transmitted for a predictive frame, allowing for

more efficient processing and storage of the sequence. In

addition, our codec does not require the complete sequence

to be available before processing, enabling real-time perfor-

mance even for long sequences.

3.1. Encoder

3.1.1 Overview of the Embedded Deformation-based
Encoding approach

Let S = {M1,M2, ...,MF } be the time-varying mesh se-

quence to be compressed, with F as the total number of

frames in the sequence. Let Mt be a static mesh at time t

containing Vt vertices, and static meshes in the sequence S
might contain different topologies.

Our primary approach involves predicting mesh frames

using transformation information from a set of key nodes

that control the surface deformation of the mesh. These key

nodes can be used to geometrically control the deformation

of the entire mesh, allowing us to accurately predict future

frames from a previous one.

Let n = {nj ∈ R
3} ∈ R

N×3 be the set of key

nodes to control the deformation of the local area, and let

R = {Rj ∈ R
3} ∈ R

N×3 and T = {tj ∈ R
3} ∈ R

N×3

be the affine transformation information of each key node.

Here, j ∈ [1, N ] where N << V is the total number of key

nodes controlling the deformation of the mesh. Let GT (.)
be a geometric transformation operator which generates a

geometric approximation M ′
t of Mt so that M ′

t has the same

topology as Mt−1:

M ′
t = GT (Mt−1, n,R,T) (1)

Each vertex xi in Mt−1 , i ∈ [0, Vt−1 − 1] is deformed

according to its Q neighboring key nodes:

x′
i = GT (xi) =

Q−1∑
j=0

wij(Rj(xi − nj) + tj + nj) (2)

where nj , Rj , tj are the position, rotation and translation

of key node j, respectively. wij is the influence weight of

key node nj for vertex xi based on the Euclidean distance

between them.

Figure 1. Encoder structure for a Group of Frames with k frames,

where V is the average number of vertices in the sequence.

Figure 1 presents the block diagram of our proposed en-

coder. Encoding begins by selecting the first frame of a

given GoF as the I-frame, typically encoded at high quality

using a static mesh encoder. We use Draco [1] for I-frame

coding. Then, we choose another frame in the GoF as the

key frame, used to generate a set of N key nodes n along

with the I-frame. It is worth noting that not every GoF re-

quires a key frame, as the set of key nodes n can be reused
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for other GoFs in the sequence if needed. The remaining

frames in the GoF are referred to as P-frames, which are

transmitted using prediction information n, R and T.

We predict our P-frames using the Embedded Deforma-

tion strategy [12] [47], leveraging the relations outlined in

equations 1 and 2. This approach utilizes the set of key

nodes n, as well as the transformation information R and

T, to accurately predict the deformation of the mesh and

generate high-quality P-frames.

3.1.2 Rotation and Translation Extractor

Assuming that the set of key nodes n is known to the en-

coder, the ’Rotation and Translation Extractor’ is responsi-

ble for finding the optimal set of R and T (represented as red

vectors in Figure 1) corresponding to the set of key nodes

n, such that the predicted mesh is as close as possible to the

source mesh. The rotation and translation vectors are each

of length three.

Let D(.) be the solver adopted from the state-of-the-art

mesh deformation method in [12] to obtain the optimal set

of R, T defined through an objective function below.

D(Mt−1, n) = argmin
R, T

(Ldata+αregLreg+αrotLrot) (3)

Here, Ldata penalizes the geometry deviation between

source and target; Lrot measures the deviation of Rota-

tion R from the orthogonal matrix; and Lreg ensures the

smoothness of the deformation.

Several embedded deformation approaches have been

proposed, and most of them could be used in our proposed

system to obtain R and T depending on the particular appli-

cation. In our presented codec, we have chosen the method

in [12] since it has the ability to deal with intricate human

clothing by integrating isometric deformation into embed-

ded deformation.

3.1.3 Optimal Key Node Generator

The ’Optimal Key Node Generator’ stage of the codec plays

a critical role in determining the quality and bitrate for a

predictive frame. Lowering the number of key nodes may

reduce the bitrate as well as the reconstructed mesh qual-

ity. In Section 4, we propose an efficient solution to the op-

timization between compactness and quality. Our method

leverages a set of sophisticated algorithms to find the opti-

mal set of key nodes n that satisfies the target sparsity while

minimizing the loss of information.

3.1.4 Encoding of the information

We have three main encoding blocks: a static mesh encoder,

a differential encoder, and a Huffman encoder. We use the

state-of-the-art static mesh encoder Draco [1] to encode I-

frames. For any P-frame Mt, which is predicted using the

global set of key nodes n and its own transformation set

R, T, we map all the key nodes nj ∈ n to the previous

frame M ′
t−1 to identify the vertices’ index corresponding

to the key nodes, where M ′
t−1 is the reconstructed frame

t− 1 known by the decoder. Once the indices are obtained,

the key node set n can be encoded efficiently by applying

differential encoding on the list of indices.

The transformation values are calculated with an implicit

quantization that comes from being stored as 4-byte float-

ing point numbers. We do not apply any additional quan-

tization, rather we focus on controlling the rate-distortion

trade-off by adjusting the number of key nodes. We use

Huffman coding for the sets of transformations R, T with

separate Huffman codes for the R and T values. We use a

two-pass technique in which the encoder goes through the

entire sequence to collect statistics on the R and T values,

creates two Huffman codes, and then encodes the sequence

with those codes.

3.2. Decoder

The decoder decompresses the I-frames using the Draco

decoder, and the predicted information n, R, T are extracted

with Differential and Huffman decoding. Fig. 2 shows the

decoder pipeline. After collecting n,R,T for a P-frame Mt,

its distorted mesh M ′
t can be reconstructed through defor-

mation from M ′
t−1, which could be either an I-frame, a key

frame or a P-frame, using Eq. 2.

Figure 2. Decoder structure

4. Choosing Key Nodes: Alternating Direction
Method of Multipliers (ADMM)

When compressing predictive frames, achieving a bal-

ance between compactness and quality is a major goal. The

size of the compressed P-frame depends strongly on the

number of key nodes used, while the frame’s quality de-

pends on both the number and positions of the key nodes.
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One needs only a few key nodes in body parts that have

limited movements (such as head and torso), whereas more

nodes are needed to describe complex motions and intricate

content (such as arms, legs and hands). In this section, we

propose an efficient method to identify the optimal number

of key nodes and their placement to minimize the number of

nodes required while ensuring high-quality reconstruction.

4.1. Problem Formulation

Let P = {R, t} be the set of rotations and translations of

corresponding key nodes in n for a certain P-frame. Typ-

ically, embedded mesh deformation approaches select the

set of key nodes n such that the quality of M ′
t is maximized.

[12] gathered n by uniformly sampling over the surface of

Mt−1 for a very dense set of key nodes. However, from

a compression perspective, it is desirable to minimize the

number of key nodes while simultaneously enhancing the

quality of deformation. To this end, we define an alterna-

tive objective function and its solver as:

D∗(Mt−1) = argmin
n,P

(Lde + λ‖n‖0) (4)

where Lde = Ldata + αregLreg + αrotLrot and ‖n‖0 is

the l0 “pseudo-norm” which is the number of non-zero el-

ements in the vector, to emphasize sparsity. Note that zero

values can be mistaken with the positions, so it is neces-

sary to manipulate vertices’ positions to be above zero for

this objective function. Moreover, with the later proposed

ADMM scheme, it is not required to do so.

Instead of sampling over the surface of Mt−1 to obtain a

set of key nodes, D∗ serves as a solver to find the optimal

set of both n and P for the compression task. We rewrite the

objective function for D∗(Mt−1) so that it can be solved

with ADMM as:

D∗(Mt−1) = argmin
n,P

(αregLreg+αrotLrot+λ‖n‖0) (5)

subject to M ′
t = Mt. The augmented Lagrangian, for a

parameter ρ > 0, is defined as:

Lρ(n,P, u) = αregLreg + αrotLrot + λ‖n‖0+
ρuT (M ′

t −Mt) +
ρ

2
‖M ′

t −Mt‖2F
(6)

Since Mt is a matrix with size Vt × 3, computing

uT (M ′
t −Mt) involves matrix computations for the whole

mesh making it not suitable for a parallel computing

scheme. Therefore, we rewrite the augmented Lagrangian

in Eq. 6 into the scaled augmented Lagrangian as:

Lρ(n,P, u) = αregLreg + αrotLrot + λ‖n‖0
+
ρ

2
‖M ′

t −Mt + u‖2F − ρ

2
‖u‖2F

(7)

4.2. ADMM Steps

With the scaled augmented Lagrangian derived in Eq. 7,

the ADMM repeats for k = 1, 2, 3...

P(k) = argmin
P

(Lρ(n(k−1),P, u(k−1))) (8)

n(k) = argmin
n

(Lρ(n,P(k−1), u(k−1))) (9)

u(k) = u(k−1) + ρ(M
′(k)
t −Mt) (10)

For the initialization step (k = 0), we define the initial

values for the parameters as:

• n(0): uniformly sampled over the surface of Mt−1 with

a given number of key nodes

• P(0) = D(Mt−1, n(0))

• u(0) = 0 ∈ R
(Vt×3)

This proposed scheme forces the ADMM to start with a

large number of key nodes for the initial value of n(0). The

next iterations in ADMM repeatedly remove less important

key nodes, to achieve a final n(K) that is both sparse and

capable of constructing a good approximation of Mt.

To solve the sub-problems in Eq. 8 and 9, we propose

a three-step mechanism for each iteration of ADMM, sum-

marized in the flowchart of Fig. 3. The normal mesh de-

formation solver D solves Eq. 8 while the combination of

coordinate descent and gradient descent algorithms is tar-

geted to solve Eq. 9. While the input of the deformation

solver D and the coordinate descent algorithm comes from

the previous iteration of ADMM, the input of the gradient

descent block is the direct output of the coordinate descent

block within the same iteration. All blocks will be described

in detail in the subsections below.

4.2.1 D as the solver to obtain P(k)

Eq. 8 can be solved by the deformation operator D defined

in Eq. 3 as follows:

P(k) = D(Mt−1, n(k−1)) (11)

where Ldata needs to be modified to be consistent with the

scaled augmented Lagrangian:

Ldata =
ρ

2
‖M ′

t −Mt + u(k−1)‖2F (12)

where u(k−1) is the running sum of the residuals, defined

as:

u(k−1) = u(0) +
k−1∑
i=1

(M
′(i)
t −Mt). (13)
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Figure 3. ADMM Flowchart

4.2.2 Key Node Sparsification by Coordinate Descent

As we want to emphasize sparsity, the l0 norm problem can

be solved by iteratively setting a coefficient of a key node to

zero (i.e., removing that key node) one at a time while hold-

ing the other key nodes fixed using Coordinate Descent. For

each candidate removal, the cost function based on Eq. 9

will be calculated; the key node with the lowest cost will be

removed. The algorithm for this coordinate descent scheme

is demonstrated in Algorithm 1.

As it requires only a single pass through the data at each

iteration, coordinate descent can be very efficient for large

datasets, especially meshes whose number of vertices can

be in the thousands. It can also be parallelized as the re-

moval of each key node can be evaluated independently.

To further accelerate the process, we design a reduced

geometric transformation operator for this coordinate de-

scent algorithm. While the original geometric transforma-

tion operator requires deformation for every vertex in the

mesh Mt−1, we save the deformed results in a cache mem-

ory and perform re-deformation only on vertices affected by

Algorithm 1 Key Node Set Sparsification

n ← Set of given key nodes

Mt−1 ← source mesh

Mt ← target mesh

emin ← ∞
for nj ∈ n do

S ← n\nj

R̃, T̃ ← D(Mt−1,S) � D follows Eq.(3)

M ′
t ← GT (Mt−1,S, R̃, T̃) � GT follows Eq.(1)

ej ← ‖Mt −M ′
t‖2F

if ej < emin then
emin ← ej
n∗ ← nj

end if
end for
n ← n\n∗ � Remove node n∗

the candidate removal. The reduced operator is illustrated

in Algorithm 2.

Algorithm 2 Reduced Geometric Transformation Operator

Mt−1 ← source mesh

M̃t ← Deformed mesh before removal

n∗ ← to-be-removed node

for vi ∈ Mt−1 do
if vj ∈ n∗.control area() then

v′i ← GT (vi) � GT follows Eq.(2)

else
v′i ← ṽi � ṽi ∈ M̃t

end if
end for
M ′

t ← {v′1, v′2, ..., v′Vt−1
}

The Key Node Set Sparsification process is repeated un-

til the cost function is less than the l0 norm penalty or the

maximum allowable distortion is reached.

4.2.3 Key node relocation through Gradient Descent

As node removal is expected to introduce some additional

distortion on the deformed mesh M ′
t , the key node relo-

cation algorithm aims to reduce the cost function by itera-

tively updating the positions of key nodes in the direction of

the negative gradient of the objective function until a local

minimum is reached. Let the cost function for this gradient

descent be defined as Lgd = ‖Mt −M ′
t‖2F .

For simplicity, we do not include Lreg and Lrot in this

loss function. The gradient of the cost function can be found

by applying the chain rule to the derivatives of the cost func-

tion with respect to the set of key nodes n:
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∇nLgd =
∂Lgd

∂n
=

∂Lgd

∂M ′
t

× ∂M ′
t

∂n
(14)

∂Lgd

∂M ′
t

= 2× (M ′
t −Mt) (15)

∂M ′
t

∂n
= {∂M

′
t

∂nj
} = {

L∑
i=1

wij(1 −Rj)} (16)

where L is the number of vertices belonging to the region

controlled by node nj . In Eq. 16,
∂M ′

t

∂n is a list containing

gradients of every key node in n. The individual gradient
∂M ′

t

∂nj
of key node nj is calculated based on the derivative of

the loss between xi and x′
i if xi falls inside the area con-

trolled by nj .

The key nodes then move along the negative gradient of

the objective function: n = n− σ×∇nLgd, where σ as the

learning rate. As the geometric transformation operator in-

volves determining the area controlled by the key nodes, the

gradient descent algorithm should move key nodes within a

limited region to ensure their lists of controlled vertices are

not significantly altered. Therefore, a small learning rate σ
is suitable for this purpose.

5. Experimental Results
5.1. Optimal Key Node Generator Performance

In our system, the compression rate is primarily con-

trolled through the number of key nodes for P-frames. The

‘Optimal Key Node Generator’ identifies the optimal num-

ber of nodes and their positions in 3D to achieve a given

target quality. Naturally, a smaller number of key nodes

reduces transmission size but also leads to a decrease in

quality. In this section, we visually illustrate the trade-off

between rate and distortion when using a limited number of

key nodes.

Figure 4. Frame 21 of ‘bouncing’, originally with 10,000 vertices,

reconstructed from 150, 70, and 50 key nodes.

Fig. 4 shows the reconstructed meshes of frame 21 in the

MIT dataset [49]’s ‘bouncing’ sequence using 150, 70 and

50 key nodes.

Providing the codec with more nodes leads to improved

reconstruction outcomes; the deformation can be more flex-

ible when there are more key points controlling the surface.

However, from a compression standpoint, fewer nodes can

lead to lower bitrate, with some sacrifice in precision.

5.2. Predictive Frame Compactness Evaluation

This section focuses on evaluating predictive frame com-

pactness in our compression system by comparing the rate-

distortion curves for different GoF sizes. This comparison

will also offer a valuable guide to selecting the optimal GoF

size that aligns with different preferences. The metric for

evaluating the size of a sequence is: r = B∑F
t=1 Vt

, where B

is the total size in bits after compression, to represent the bit

size per vertex per frame (bpvf).

Figure 5. Longdress sequence frames #1071-#1091 encoded with

different GoF sizes. For the lines indicating GoF sizes larger than

1, different markers represent varying numbers of key nodes used

for compression.

Figure 5 shows a comparison among various sizes of

GoF for the Longdress sequence from frame #1071 to

#1941 with an average number of vertices of 22,307. This

sequence is encoded using a single set of key nodes. The

figure illustrates a clear trend that improves compression

performance with larger GoF size. Specifically, as the GoF

size increases, the overall bitrate substantially decreases

for the same output distortion. These results emphasize

the benefits of using our Embedded Deformation-based P-

frames for efficient video compression under resource con-

straints.

5.3. Impact of generated key nodes on deformation

Embedded deformation approaches rely on the underly-

ing set of key nodes to control the deformation. The choice

of the layout of those key nodes determines the flexibility of

the deformation and directly affects the final alignment re-
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sults. Typically, key nodes are gathered by sampling on the

source surface [12]. The authors of [47] stated that mesh

simplification algorithms can also produce good alignment

results. In this section, we compare the performance of

mesh deformation using the optimal key nodes obtained

from our ADMM mechanism with traditional methods: uni-

form sampling on the surface, and mesh simplification.

Figure 6. Average bi-directional RMSE of using different layouts

for Mesh Deformation approach.

Figure 6 demonstrates the performance of the state-of-

the-art mesh deformation method [12] given different lay-

outs for the key nodes. It can be observed that with our op-

timal key nodes, the deformation method converges faster

than other traditional methods of sampling key nodes, even

with a sparser structure.

5.4. Accumulated Distortion of P-frames

Our codec employs a predictive approach to generate

each P-frame from its previous frame. That previous frame

might itself be a P-frame, when the size of a GoF is larger

than two. Compression is typically applied to P-frames by

reducing the number of key nodes, resulting in some de-

gree of distortion. Figure 7 illustrates how the distortion in

P-frames accumulates over time.

To address this, for each P-frame it will be important

to encode the prediction errors that exceed some distortion

threshold. We plan to add a mechanism for encoding pre-

diction residuals in our future work.

5.5. Time-varying mesh sequence compression per-
formance: Comparison with baselines

In this section, we compare our method with [17] (called

Skeleton-based) and [40] (called TFAN), with the reference

results collected directly from [17]. We evaluate our method

on 1600 frames of the Dimitrios sequence with an average

vertex count per frame of 35,100 [17]. There are four sets

of key nodes, generated with different sparsity levels, influ-

encing the compression of this sequence. We use the surface

Figure 7. Accumulated distortion on the consecutive P-frames of

a GoF of 5. Samba sequence frame 21 to 25.

error metric RMSE used in [17]:

RMSE =
1

M
max

( F∑

t=1

e(Mt,M
′
t),

F∑

t=1

e(M ′
t ,Mt)

)
(17)

where e(Mt,M
′
t) denotes the directed root mean squared

distance between Mt and M ′
t , obtained from METRO [14].

The comparison in Figure 8 shows that our proposed

approach produces less distortion at low bitrates (below 8

bpvf) thanks to the ADMM scheme identifying sparse key

node sets that effectively reconstruct high-quality predictive

frames. However, our method does not demonstrate a sig-

nificant reduction in distortion as the bitrate increases. This

is primarily due to the absence of encoding the prediction

residuals, which is crucial for accurate reconstruction.

Figure 8. Surface error distortion RMSE versus bitrate for the

Dimitrios sequence for frames #400 - #2000.

6. Conclusions and Future Work
In this article, we present a novel compression approach

to compress time-varying human mesh sequences by ex-

ploiting transformations based on embedded deformations.
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Our experimental results show that this type of information

has the potential to effectively compress mesh sequences

with changing connectivity. In addition, we proposed a

mechanism to find sparse key node sets, allowing for ma-

nipulation of the compressed bitrate while reconstructing

high-quality predictive frames.

The proposed system enables real-time processing, inter-

active virtual reality experiences, and efficient 3D content

streaming, particularly for models with inconsistent topolo-

gies such as scanned models. Furthermore, the ‘Optimal
Key Node Generator’ may provide valuable insights into

regions undergoing prominent changes between frames.

These insights could be beneficial for gesture analysis, mo-

tion tracking, feature extraction, and other related tasks.

A limitation of our proposed codec is the absence of pre-

diction error encoding. In our future work, we intend to de-

sign an efficient mechanism to encode prediction errors spe-

cific to embedded deformation-based transformations, al-

lowing additional control over the distortion-rate trade-offs

for the reconstructed frames.
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