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Figure 1: We demonstrate the superiority of our proposed method TP-NoDe on a sparse and incomplete point cloud of chess

board; It can upsample the sparse point cloud with intricate geometric details, effortlessly recovering the underlying data.

the Left presents a sparse input point cloud, the right section showcases the upsampled point cloud, accurately capturing the

underlying surface with remarkable precision. Observe the intricate details of the recovered information, exemplified by the

successful reconstruction of the Rook piece.

Abstract

In this paper, we propose TP-NoDe, a novel Topology-
aware Progressive Noising and Denoising technique for 3D
point cloud upsampling. TP-NoDe revisits the traditional
method of upsampling of the point cloud by introducing
a novel perspective of adding local topological noise by
incorporating a novel algorithm Density-Aware k nearest
neighbour (DA-kNN) followed by denoising to map noisy
perturbations to the topology of the point cloud. Unlike pre-
vious methods, we progressively upsample the point cloud,
starting at a 2 × upsampling ratio and advancing to a de-
sired ratio. TP-NoDe generates intermediate upsampling
resolutions for free, obviating the need to train different
models for varying upsampling ratios. TP-NoDe mitigates
the need for task-specific training of upsampling networks
for a specific upsampling ratio by reusing a point cloud
denoising framework. We demonstrate the supremacy of
our method TP-NoDe on the PU-GAN dataset and compare
it with state-of-the-art upsampling methods. The code is

*These authors contributed equally to this work

publicly available at https://github.com/Akash-Kumbar/TP-
NoDe.

1. Introduction

Point clouds are a widely used form of 3D data rep-

resentation obtained through various technologies like Li-

DAR sensors and photogrammetry software. The versatil-

ity of point cloud data enables it to be utilized in various

fields such as 3D city reconstruction [25, 38], cultural her-

itage reconstruction [37, 54], geophysical information sys-

tems [41, 40], and AR/VR/XR [16, 49] applications among

others. Additionally, point clouds have a remarkably low

memory footprint compared to other forms of data represen-

tation such as Voxels, Mesh, and Multi-view images, mak-

ing them ideal for 3D immersive telepresence [48]. There

has been a massive surge in technological development in

sensing of 3D data [15, 24]. Despite such technological

development in sensing technologies, they are considered

not reliable in fast decision-making tasks like self-driving

cars and robotics due to memory and latency issues of deep

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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learning models. This challenge can be solved by process-

ing sparse and low-resolution point clouds which can be

later interpolated to dense and highly detailed point clouds

as a requirement of the downstream task. To address this

critical need for accurate and detailed point cloud data, we

must shift our focus towards software development rather

than relying solely on hardware-based solutions.

Towards providing software-based solutions authors in

[60] proposed to use optimization-based methods to up-

sample the point clouds, yet these methods find challenges

due to slow computation and limited upsampling factor. To

address this issue, authors in PU-NET [60] introduced a

parametric-based deep upsampling network that achieved

comparable results. However, PU-NET still faces chal-

lenges in producing fine-detailed upsampled point clouds.

To overcome this limitation, PU-GAN [26] and PUGeo-

NET [46] introduced more accurate deep upsampling net-

works by utilizing GANs and tangent-plane-based sampling

respectively. All of the aforementioned methods are in-

spired by image super-resolution techniques such as [36, 1].

Recent work in image super-resolution; ProGAN [23] in-

troduced a novel approach of progressively upsampling im-

ages, which brings both generalizability and less latency.

Inspired by ProGAN’s [23] progressive ideology in

the 2D realm, we propose TP-NoDe: a Topology-aware

Progressive Noising and Denoising of 3D Point Clouds

towards Upsampling. We propose and employ Density-

Aware k Nearest Neighbour (DA-kNN) for adding local

topological noise followed by denoising as shown in Fig-

ure 1. We propose to employ score-based denoising [33]

in the work proposed framework. The coupled noising and

denoising framework yields an upsampled point cloud.

Unlike previous upsampling methods that use k-nearest

neighbours, our method is robust and generalizable for up-

sampling due to the incorporation of DA-kNN. In contrast

to conventional deep upsampling networks, we progres-

sively upsample the point cloud, starting at a 2 × upsample

ratio and advancing up to a desired ratio. This allows us to

obtain all intermediate upsampling ratios for free, making

it more suitable for edge devices, while also mitigating

the challenge of memory footprint by reusing a single

deep denoising network that serves for both point cloud

denoising and all x-resolution upsampling of point clouds.

Furthermore, we conduct ablation studies to investigate the

effect of generating different noisy perturbations of various

statistical distributions and evaluate the performance of

our proposed method on various local region extraction

algorithms. TP-NoDe achieves good results on benchmark

datasets while maintaining high efficiency.

we summarize our contributions as:

• We propose TP-NoDe: a novel perspective of noising

and denoising of point cloud towards robust and gen-

eralized upsampling.

– We propose Density-Aware k Nearest Neighbour

algorithm(DA-kNN), that selects the number of

neighbours(k) based on a Gaussian kernel den-

sity score.

– We propose a new perspective of adding local

topological noise towards upsampling by incor-

porating density-aware kNN.

– We propose a novel methodology that progres-

sively upsamples point cloud, commencing at a 2

× upsample ratio and advancing up to a desired

ratio.

• We demonstrate the results of proposed methodology

on PU-GAN [26] dataset and compare with state-of-

the-art techniques.

2. Related works
In this section, we provide a detailed review of the exist-

ing methods for point cloud denoising and upsampling. It

covers optimization-based methods like Laplacian smooth-

ing, bilateral filtering, and non-local means filtering, for de-

noising and LOP [28], EAR [21] for upsampling as well as

recent deep learning-based approaches like PU-Net [60] and

its variants for upsampling, and DMR-Denoise [32], and

score-based denoisng [33] for denoising. The strengths and

weaknesses of each approach are discussed, and potential

future research directions are highlighted.

2.1. Denoising

Optimization-based point cloud denoising has com-

monly relied on incorporating explicit geometric priors.

Optimization-based denoising approaches can be classified

into four categories: density-based, local-surface-fitting-

based, sparsity-based, and graph-based methods. Outliers

are removed using density-based approaches [61, 14], they

model the distribution of points and use kernel density

estimation technique. Methods based on local-surface

fitting [3, 14, 9, 10, 21] approximate the point cloud with

a smooth surface and project points onto it. Sparsity-based

approaches [7, 53, 57, 35] rebuild normals and update

point coordinates depending on them. Graph-based ap-

proaches [51, 17, 63, 19, 18] employ graph filters to

denoise point clouds that are represented on graphs. Yet,

there is a trade-off between preserving detail and increasing

denoising effectiveness.

Deep learning-based approaches use neural networks to

estimate the displacement of each point and then apply

the inverse displacement to each point. Such approaches

are PointCleanNet [47] and GPDNet [2]. DMR Denoise

[32]suggested that the underlying manifold (surface) of a
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noisy point cloud can be learned for reconstruction in a

downsample-upsample procedure. Displacement prediction

approaches, on the other hand, may suffer from shrinkage

and outliers, and understanding the underlying manifold

may result in over-smoothing. Score-based denoising [33]

proposes a novel framework that is motivated by the dis-

tribution model of noisy point clouds and distinguishes it-

self significantly from the proposed techniques, which uses

score matching which is a technique for training energy-

based models. [33], [22, 52] entails reducing the squared

distance between the model-predicted gradients and the data

log-density gradients.

2.2. Upsampling

Optimization-based point cloud upsampling methods

are not usually driven by data and instead rely on prior

assumptions. They also encounter difficulties in preserving

multiscale structures. The first point cloud upsampling

algorithm was introduced in 2003 by Alexa et al [4] and

involved creating a Voronoi diagram on an MLS(Moving

least squares) surface using three points as input. later,

Lipman et al. [28] presented a non-parameterized approach

for point resampling and surface reconstruction, which was

also applied to point cloud upsampling. Their technique

used the locally optimal projection operator (LOP) too

approximate the surface. Huang et al [20] proposed

the weighted LOP (WLOP), which added local adaptive

density weights to LOP to achieve a more even distribution

of the original point cloud. Preiner et al. [42] proposed the

continuous LOP (CLOP), which described the input point

density based on a Gaussian mixture. Huang et al. [21]

also introduced the edge-aware resampling (EAR) method,

and Wu et al [56] proposed a consolidation method based

on deep points. Dinesh et al. [11] proposed a 3D point

cloud super-resolution local algorithm based on the graph

total variation(GTV).

Deep learning-Based point cloud methods like point-

net [43], Pointnet++ [44], DGCNN [55] were successfully

introduced on point clouds, it became great research area to

upsample point cloud using deep learning methods. Yu et

al. [60] were the first to propose a deep learning model for

point cloud upsampling, using hierarchical feature learning

from PointNet++ [44]. Similar feature extraction strategies

were used by DensePCR [34] and EC-Net [59]. Zeng et

al. [62] introduced the spatial feature extractor (SFE) block

to replace PointNet++ [44] for local feature extraction.

Wang et al. [58] proposed the multi-step point cloud up-

sampling network (MPU) inspired by dynamic graph con-

volution to define local neighbourhoods in feature space.

PU-GCN [45] introduced node shuffle, which uses graph

convolution layers to expand features and rearrange them

through shuffle operations. Li et al. [26] introduced the up-

and-down sampling mechanism in PU-GAN. While Li et

al. [27] proposed Dis-PU, which upsamples the point cloud

in two steps using a feature expansion unit and a spatial

refinement unit. PU-EVA [31] decouples the upsampling

rate from the network structure and uses an approximate

solution based on edge vectors. PUGeo-Net [46] achieves

point cloud upsampling through a purely geometric sam-

pling method. The approaches described above are sensi-

tive to noise and are not generalizable, whereas we propose

a novel perspective for which our approach is both robust to

noise and generalizable.

3. TP-NoDe

In this study, we introduce TP-NoDe, a novel approach

for upsampling point clouds through topology-aware pro-

gressive noising and denoising technique. Building upon

the foundations of score-based denoising [33], our method

employs a density-aware k-nearest neighbour(DA-kNN) to

extract local neighbourhoods based on their geometric com-

plexity, then we concatenate perturbed points to this neigh-

bourhood, taking into account its underlying topological

structure.

We progressively perform the aforementioned topolog-

ical noising followed by parameterized denoising process

(fθ), which is repeated log2(r) times, where r represents

the upsampling factor as shown in Figure 2. By incorpo-

rating topology awareness into our noising and denoising

strategy, we aim to enhance the quality and accuracy of the

upsampled point cloud data.

Note that our methods rely on the assumption that the

denoising framework provides a faithful reconstruction of

the underlying geometry of the point cloud.

3.1. Topological Perturbations

Global noise on point clouds indiscriminately alters

the morphology of the point cloud data, resulting in

uniform perturbations that smooth out vital features such

as edges and corners during denoising. To overcome this,

we propose a novel approach that utilizes topological

perturbations based on the local neighbourhoods. By

incorporating local topological priors into our perturbation

strategy, we can selectively introduce perturbations that

retain the intricate details of the point cloud, preserving its

morphology and underlying structure. This method allows

us to effectively denoise point clouds without sacrificing

important features towards upsampling.

Local Neighbourhood in point cloud processing is a cru-

cial step in feature extraction. Two common methods for

computing local neighbourhoods in point clouds are K-

nearest neighbours (k-NN) [43, 44] and ball query [44].

However, these methods have limitations as they are not
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Figure 2: Depicts our methodology TP-NoDe, which involves concatenating a sparse point cloud with topology-aware noisy

perturbations. The resulting concatenated point cloud is then passed through a denoising function fθ that fits these perturbed

points to the surface of the point cloud, thereby upsampling it. Our method is also depicted in Algorithm 1

density-aware and are not dynamically adaptable to vary-

ing geometric structures. As a result, setting hyperparame-

ters can become a challenging task that requires trial and er-

ror. To mitigate these challenges we propose Density-aware

kNN (DA-kNN) a simple yet effective approach to under-

standing the local topology of a point cloud [5, 6] while

being density-aware. The Density-aware kNN is a simple

extension of the kNN algorithm where the fixed k in the

kNN algorithm is replaced by per-point dynamic number of

neighbours kdi and is given by,

kdi = kb + (kmax − kb) ∗ si (1)

where rb is base k, kmax is maximum number of neighbours

and si is the kernel density score for the euclidean distance

d() between points given by,

si =
1

Mh

N∑

j=0

1√
2π

e−
d(pi,pj)

2h2 (2)

The expression can be stated as follows: The value of

density d for each point in pi, where there are a total of

M points, is influenced by a bandwidth parameter h. The

density value reflects the likelihood of π being situated in

flat areas of the object, signifying the degree of dilation.

The local patch extracted using DA-kNN models local

topological noise/perturbation, facilitating superior upsam-

pling of the point clouds via denoising.

Modeling Perturbation
After extracting pi using density-aware kNN, we concate-

nate a noisy perturbation xi of the given local neighbour-

hood and pass the resulting point cloud to a denoising net-

work. The network outputs an upsampled version of the

pi, denoted as qi. Specifically, let fθ denote the denoising

network parameterized by θ, then we have:

Q = fθ(P ⊕ X )

where ⊕ denotes the concatenation operation.

To enhance the upsampling performance, we investigate

the effect of different types of noise perturbations, repre-

sented by X , added to the neighbourhood of P . By analyz-

ing the impact of various noise distributions, we identify the

optimal distribution that improves the quality of the result-

ing upsampled point cloud Q.

We evaluate our approach using various types of noise,

including Gaussian, Laplacian, Discrete, Uniform, and

Covariance noise.

3.2. Progressive Upsampling

Inspired by the ideology of ProGAN [23], we model

the progressive upsampling technique for the point cloud.

Specifically, given a sparsely populated point cloud with

M points as input, we apply independent perturbations to

the data progressively followed by denoising algorithm [33]

log2(r) times. This generates a dense/ upsampled point

cloud with rM points as best depicted in Algorithm 1 and

figure 4.

4. Experiments
In this section, we investigate the effectiveness of the

topological perturbations incorporated with score-based

denoising [33] towards progressive upsampling. We

use score-based denoising [33] as fθ in Algorithm 1.

Compared to all other point cloud upsampling meth-

ods [60, 46, 26, 39, 50] we leverage pre-trained weights

from [33] to construct a robust and effective upsampling

framework via denoising.

4.1. Dataset

We build upon the work of [33] by utilizing their denois-

ing network as the only learning-based component in our

2275



Algorithm 1: Progressive noising and denoising of

point cloud towards upsampling

Input: P = {(x1, y1, z1), ..., (xM , yM , zM )}, r, kb
/* where P is the sparse point cloud with

M points, r is the upsampling factor,

and kb is the base number of neighbouring

points for density aware kNN. */

Output: Q = {(x1, y1, z1), ..., (xrM , yrM , zrM )}
/* where Q is the upsampled version of P,

with r times more points */

1 iterations ← �log2(r)�
// �� denotes ceil operation

2 for i = 1 to iterations do
// Cluster centroids for each iteration

3 centroids ← φ(Pi, int(M*3/256))

4 dist ← calculate distance(centroids, Pi)

5 kd, kd dist ← density aware kNN (dist, kb,

max k ← kb ∗ 3)

6 mask ← (dist < kd dist)
7 denoised patches = list()
8 for j = 1 to len(centroids) do
9 pj ←Pi[mask[j] = 1]

10 nj ← pj + noise(0, σ)
11 qj ← fθ(nj ⊕ pj)
12 add to list(denoised patches, qj)

13 rb ← rb/2
14 Qi := concatenate(denoised patches)

15 Qr ← φ(Qi, int(r * M))

/* φ is farthest point sampling operation

*/

/* fθ is the denoising function and our

proposed algorithm is Illustrated in

Figure 2 */

approach. Specifically, we incorporate pre-trained weights

from the network, which can be found at 1, to facilitate ef-

fective denoising of perturbed points. Note: we do not train

the denoising network ourselves, but rather leverage the ex-

isting weights provided by [33].

The Score-based denoising network data consisted of 40

meshes for training from the training set of PU-Net [60] and

then they used Poisson disk sampling to sample points from

the meshes, at resolutions ranging from 10K to 50K points.

The points are then normalized into the unit sphere. Then,

they are only perturbed by Gaussian noise with a standard

deviation from 0.5 % to 2.0% of the bounding sphere’s ra-

dius.

To facilitate effective evaluation and comparison of

our results, we employ the test dataset provided by PU-

GAN [26], as previously used in [64]. This dataset rep-

1https://github.com/luost26/score-denoise

resents a common benchmark for evaluating point cloud

generation methods, and its use enables a straightforward

comparison of our approach with other state-of-the-art tech-

niques.

Table 1: Quantitative comparison of different SOTA net-

work models on PUGAN benchmark dataset. We effi-

cacy of our proposed method TP-NoDe; outperforms PU-

Net [60] by 2 folds in all point cloud upsampling evaluation

metrics while being the only method not train task specifi-

cally. We demonstrate bold underline as best and bold as

second best. The metrics are in the power of 10−3.

Methods CD HD P2f

EAR [21] 0.52 7.37 5.82

MPU [58] 0.49 6.11 3.96

PU-GAN [26] 0.28 4.64 2.33
PU-GCN [45] 0.25 1.85 2.94

Dis-PU [27] 0.31 4.21 4.14

PU-EVA [31] 0.27 3.07 -

L2G-AE [29] 6.31 63.23 39.37

SPU-NET [30] 0.41 2.18 6.85

PU-NET [60] 0.72 8.94 6.84

Ours (k-NN) 0.40 3.96 5.38
Ours (DA-BQ) 0.35 3.55 5.26

Ours (DA-kNN) 0.33 3.49 5.21

4.2. Comparison with State-of-the-art Methods

Our novel upsampling methodology, TP-NoDe, is

highly robust and performs exceptional grade upsampling.

To demonstrate the efficacy of our proposed approach, we

present both qualitative and quantitative comparisons on the

PU-GAN dataset [26]. Specifically, we compare our results

with those obtained from PU-Net [60] and PUGeo-Net [46]

for an input of 5000 points and an upsampling factor of

r = 4, resulting in 20000 points. Our approach can achieve

superior results, as shown in Figure 3, which showcases

the visual supremacy of TP-NoDe on a 4 × upsampling

task. In contrast, PU-Net [60] fails to upsample areas

with natural holes and instead fills them with geometry.

On the other hand, while PUGeo-Net [46] maintains the

geometry, it fails to produce uniform upsampling. Our

proposed method, TP-NoDe, can perform upsampling

while maintaining finer details when compared to all other

methods. Furthermore, to provide a more comprehensive

evaluation of the actual geometry, we also show the ground

truth with 20000 points, which corresponds to 4 × the input

size of 5000 points. It is evident that our method achieves

outstanding results, which demonstrates the robustness and

superiority of TP-NoDe over existing upsampling methods.

In addition to the qualitative evaluation, we also con-
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Figure 3: In this comparison, we evaluate our method against other state-of-the-art approaches using a selection of intriguing

point clouds with intricate geometric structures which are a statue of a man giving water to a bird, a fox skull and a minion.

The red highlighted regions represent other methods, while the yellow highlighted regions represent the results of our pro-

posed method TP-NoDe. Our results demonstrate that our approach is capable of retaining missing information in complex

structures while effectively upsampling the point cloud.

ducted a quantitative comparison of our proposed method-

ology on the PU-GAN dataset for point cloud upsampling.

The performance of our approach is reported in Table 1.

Notably, all values in the table, except for ours, are taken

from [64]. When compared to PU-Net, our proposed TP-

NoDe with Density Aware kNN (DA-kNN) achieves su-

perior performance with a significant decrease of 0.39 in

Chamfer Distance [13], 5.45 in Hausdorff Distance [12],

and 1.63 in Point to Surface Distance [8]. These results

confirm the robustness and effectiveness of our proposed

approach over existing upsampling methods.

In summary, our novel methodology, TP-NoDe, has

demonstrated exceptional performance in point cloud up-

sampling. We have presented both qualitative and quanti-

tative comparisons with existing methods, showcasing the

superior results achieved by TP-NoDe.

4.3. Ablation Study

This section describes the ablation studies conducted to

analyze the impact of different designs of our proposed

methodology on point cloud upsampling. We conducted

an in-depth analysis of our proposed methodology, TP-

NoDe, by evaluating it on various types of noise (Gaus-

sian, Laplace, Uniform, Covariance, Discrete) and differ-

ent topologies, including global and local topologies (k-NN,

DA-BQ, DA-kNN), as described in Section 3.1. The re-

sults of our ablation studies are reported in Table 2. The

table demonstrates that our proposed TP-NoDe with pro-

posed DA-kNN (Density Aware kNN) performs the best

with Gaussian noise, with a dynamic number of neighbours

varying from 64 to 512. These findings highlight the effec-

tiveness of our proposed approach and its ability to handle

various types of noise, as well as its adaptability to different

topologies. Overall, the ablation studies provide valuable

insights into the design choices of our proposed methodol-

ogy and their impact on point cloud upsampling. The results

confirm the robustness and effectiveness of TP-NoDe with

DA-kNN in handling noise and adapting to different topolo-

gies by varying the number of neighbours respectively.

In Figure 4, we showcase the qualitative analysis of

our proposed progressive upsampling methodology. Our

methodology involves starting with a 2× upsample ratio
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Table 2: Quantitative comparison of our ablation studies where we test our algorithm, with the noise of various statistical

distributions and different neighbourhood search algorithms. Here all the metrics are in the power of 10−3. We demonstrate

bold underline as best and bold as second best. The ablations show that our proposed method TP-NoDe incorporated with

DA-kNN topological grouping and Gaussian noise performs the best also presented in Table 1

Discrete Laplacian Gaussian Uniform Ball CovarianceNoise CD HD P2F CD HD P2F CD HD P2F CD HD P2F CD HD P2F
Global 0.4415 5.4466 5.1549 0.5068 13.8065 5.2873 0.4327 5.5879 5.2768 0.4404 5.1157 5.3333 0.4808 4.9309 5.8065

128 0.4529 5.0474 5.5524 0.4078 5.1854 5.5549 0.4212 5.3688 5.4005 0.4564 5.1915 5.6116 0.4680 5.6051 5.3744
256 0.4818 4.3008 6.0210 0.4321 4.3858 6.1196 0.4443 4.0442 5.7025 0.4853 4.8119 6.0666 0.50057 4.6757 6.0730k-NN
512 0.4894 4.1077 6.6383 0.4370 4.4739 6.4390 0.4492 4.2634 6.3644 0.4894 4.1077 6.6383 0.5087 3.966 6.5592

64 0,4645 4.0303 5.4615 0.5099 16.4335 5.7810 0.4219 3.9940 5.4940 0.4692 3.9828 5.4005 0.4886 4.2917 5.3166
128 0.4332 3.9509 4.9731 0.7437 23.494 5.1536 0.3585 3.5555 5.3662 0.4465 3.9653 4.9579 0.4545 3.9032 5.6548DA-kNN
256 0.4385 5.0608 4.8240 0.6025 19.6728 5.2518 0.3834 4.3078 5.2638 0.4462 4.9196 5.1982 0.4674 4.8866 5.6668

Figure 4: We showcase the effectiveness and robustness of our TP-NoDe method for upsampling sparse point clouds with

complex structures. We demonstrate the upsampling of a point cloud with only 5000 points by a factor of 8, the intermediate

factors 2, and 4 are also visualized, using point clouds with intricate details such as Stanford’s Armadillo, Super Saiyan Goku,

and a figure of Reuther. Our method generates detailed and uniform upsampling results with high fidelity, without requiring

different models for different upsampling ratios.

and gradually increasing it until the desired ratio, which

we set to 8× in Figure 4. Our approach involves progres-

sively upsampling the point cloud, and we present all inter-

mediate outputs and the final 8× upsampling of the actual

geometry. Additionally, we provide the ground truth with

40000 points, which corresponds to 8× the input size of

5000 points of point clouds. As one can observe in Fig-

ure 4 results of 2× upsampling capture global-coarser up-
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sampling and local topological with finer detailed upsam-

pling for 8× resolution. One potential reason for this is

due to our proposed Algorithm 1 progressive reduces the

number of neighbours in DA-kNN that facilitates superior

upsampling of point cloud via noising and denoising.

4.4. Limitations

Despite achieving promising outcomes in our research,

we acknowledge several limitations that require attention.

Initially, our current approach utilizes local grouping al-

gorithms such as k-NN and density-aware kNN to extract

geometrically meaningful regions. However, these meth-

ods involve numerous hyperparameters, which can affect

their efficiency. To tackle this, we suggest incorporating

a learning-based model that can augment points based on

specific requirements, enhancing the accuracy and efficacy

of our region extraction methodology. Furthermore, we uti-

lized a score-based denoising framework as our denoising

backbone, which was solely trained on Gaussian noise. This

can restrict the application of our technique in real-time li-

dar point cloud analysis as they comprise a mixture of mul-

tiple noise sources.

Despite these limitations, we believe that our study offers

valuable insights into point cloud upsampling via denoising.

We hope that our findings will inspire further research to ad-

dress these limitations and lead to the development of more

robust and effective methods for point cloud upsampling.

5. Conclusions
We have proposed TP-NoDe, a novel approach for up-

sampling 3D point clouds using topology-aware progressive

noising and denoising. We introduce and leverage Density-

Aware kNN (DA-kNN) to introduce local topological noise

and score-based denoising to map the noisy perturbations to

the topology of the point cloud. Unlike traditional deep up-

sampling networks, TP-NoDe progressively upsamples the

point cloud, starting at a 2 × upsample ratio and advanc-

ing up to a desired ratio, enabling us to generate intermedi-

ate upsampling resolutions for free. TP-NoDe also reuses

a single deep denoising network that serves for both point

cloud denoising and all x-resolution upsampling of point

clouds, mitigating the challenge of memory footprint. We

have demonstrated the effectiveness of TP-NoDe on the PU-

GAN dataset, achieving state-of-the-art results while main-

taining high efficiency. Our proposed methodology offers a

promising solution for achieving accurate and detailed point

cloud data, essential for a variety of applications.

6. Broader Impact
This study explores the intersection of local topological

perturbations and denoising algorithms for realistic point

cloud upsampling. Point cloud upsampling is a critical

technique in academia and industry as it allows for im-

proved accuracy and resolution in 3D scanning and virtual

reality applications. Integrating local topological perturba-

tions into denoising algorithms can prove pivotal, unlock-

ing fresh possibilities for modelling and simulation in con-

struction and beyond. Our investigation also indicates that

our work on topological perturbations could enhance down-

stream point cloud analysis tasks such as object classifica-

tion and part segmentation. This research has the potential

to provide robustness and improve accuracy in point cloud

analysis. The exciting implications of this work cannot be

overstated, making it a fascinating area for exploration and

advancement.
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