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Abstract

Archaeological fragment processing is crucial to support
the analysis of pictorial contents of broken artifacts. In this
paper, we focus on the unexplored task of semantic segmen-
tation of fresco fragments. This task enables the extrac-
tion of semantic information from a fragment, facilitating
subsequent tasks like fragment classification or reassem-
bly. We introduce a semantic segmentation dataset of fresco
fragments acquired at the Pompeii Archeological Site, ac-
companied by baseline models. Additionally, we introduce
a supplementary task of fragment cleaning, providing a
dataset with the detection of manual annotations of archae-
ological marks that require restoration before further anal-
ysis. Our experiments, using standard metrics and state-
of-the-art baselines, demonstrate that semantic segmenta-
tion of fresco fragments is feasible, paving the way toward
more complex activities that require a semantic understand-
ing of fragmented artifacts. Dataset with annotations, and
code will be released at https://repairproject.
github.io/fragment-restoration/

1. Introduction
Archaeological fragment analysis plays a crucial role in

understanding and reconstructing ancient artifacts that have

been damaged or fragmented over time. Among various ar-

tifacts, ancient wall paintings, a.k.a., frescoes, emerge as a

rich source of pictorial content. They often display archi-

tectural elements, depictions of humans and animals, land-

scapes, and mythological scenes, as well as floral and geo-

metrical patterns, creating recurring visual motifs. Archae-

ologists rely on these essential components for the recon-

struction and understanding of these fragmented artworks.

This paper addresses the semantic segmentation of im-

ages of fragments from two ceiling paintings found at the

Pompeii Archaeological Site, which have been damaged by

the eruption of 79 AD and World War II bombings. In par-

ticular, we tackle semantic fragment segmentation through

*Equal contribution.

Figure 1. The proposed pipeline introduces a new dataset and the two

baselines for the following tasks: cleaning of the fragment surface (from

manual annotations) and segmenting the motifs to extract a clear represen-

tation of the pictorial content of the fragment.

two distinct scenarios.

In Scenario 1, we explored a 3-class semantic segmen-

tation approach to differentiate between the image back-
ground, the unadorned fragment region (which we call as

fragment background), and the motifs present on the frag-

ment surface. This prepares the fragments for reassembly

and further analysis of pictorial content, identified through

the segmented motif class. The successful distinction of

these diverse regions enhances the creation of a clean,

high-quality dataset, forming a solid basis for subsequent

learning-based models that aim to understand the visual de-

tails within the fragments.

In Scenario 2, the focus shifts to the semantically seg-

menting motifs into 12 distinct classes, excluding back-

ground regions. This approach allows for more extensive

exploration of the diverse artistic motifs adorning fresco

surfaces. Our dataset comprises fragment images sourced

from two ceiling frescoes, encompassing a total of 12 dis-

tinct motif categories, identified by archaeological experts.

However, the dataset can be expanded by introducing new

motif classes from various frescoes.

In addition to semantic segmentation, we addressed the

need for preprocessing the dataset for restoring manual an-

notations on the fragments made by the archaeologists.To

mitigate potential bias in subsequent computational tasks,

we systematically eliminated these annotations using a

blind inpainting technique. This process ensures a fair eval-

uation of different approaches when working with the frag-

ments. An overview of the proposed pipeline is illustrated

in Fig. 1.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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In addition to the goal of reassembly, semantic segmen-

tation of motifs have broader applications in the field of art

restoration and computer vision. They serve as valuable re-

sources for various computational tasks, such as i) fragment

recognition, style classification and clustering, where motif

types can provide high-level representation of fragments;

ii) the segmented motifs can be used to explore recurring

themes and symbolic elements present in the frescoes for

artistic content analysis; iii) semantic segmentation of mo-

tifs allows for targeted inpainting and restoration of dam-

aged or missing portions of frescoes, helping to preserve

and reconstruct their original appearance.

Our contributions can be summarized as:

• The creation of high-quality rendered images of the

painted surface of real fragments of broken frescoes

from the Pompeii Archaeological Site,

• Introducing two fragment processing tasks (fragment

cleaning and motif extraction) along with annotations

in the form of bounding boxes and pixel-wise segmen-

tation maps to aid these tasks.

• Presenting baseline methods for both tasks and con-

ducting a comprehensive comparative analysis of their

performance.

2. Related works
The archaeological fragment analysis has primarily been

employed for fragment reassembly, known as anastylosis, in

the literature [8, 9, 7]. However, it has also been applied to

diverse domains, including the recognition of artistic styles

on fragments [5], fragment retrieval [4, 16], and fragment

classification [20].

Regarding motif segmentation on ancient fresco images,

there is limited prior work. To our knowledge, only one

study focuses on motif segmentation within this context

[4], which initially employs color thresholding to segment

a group of fragments captured together during data acquisi-

tion. For each segmented fragment, color and shape features

are computed to aid in fragment retrieval tasks. Specifi-

cally, the motifs’ shapes are represented by extracting con-

tour information after segmenting fragment regions using

a mean-shift-based color clustering method. Additionally,

their fragment retrieval technique is enhanced by incorpo-

rating spatiograms as color features. Another work [5] fo-

cused on classifying synthetically created fragments based

on their artistic style. They utilized off-the-shelf CNN fea-

tures and various low-level color, texture, and shape fea-

tures, including color histograms, Hu moments, and Gray

Level Co-Occurrence Matrix (GLCM) fed into classifica-

tion algorithms. For fragmented image reconstruction, a

template-matching approach based on computed SIFT fea-

tures on the fragments was proposed [1] for finding the cor-

rect positions of fragments in the fresco plane. Funkhouser

et al. [9] utilized 3D models of real-world archaeological

fragments to compute a set of geometrical features for their

pairwise alignment. In a recent study on archaeological

puzzle-solving [7], color clustering was used as a prepro-

cessing step to extract accurate gradient information on the

fragments’ borders. They also employed color and shape

features for fragment reassembly.

[16] introduced software tools to aid in fragment recon-

struction. Firstly, a content-based database allows virtual

manipulation and retrieval of annotated fragments to iden-

tify the best combination before physical restoration, if re-

quired. Secondly, once the manual reconstruction is con-

cluded, an inpainting module fills in the gaps and virtu-

ally restores the craquelure. Another work [20] proposed

a new classification framework for 3D Terracotta Warrior

fragments. The core of the framework is a bi-modal neu-

ral network that incorporates both geospatial and texture in-

formation to classify each fragment into four classes (arm,

body, head, and legs). Geospatial information is directly ex-

tracted from the point cloud, while a method based on the

3D mesh model and an improved Canny edge detection al-

gorithm is used to extract texture information. The fragment

classification eases the subsequent reconstruction.

Although various image segmentation methods have

been adopted, semantic segmentation of archaeological

fragments is an unexplored task, despite its fundamental im-

portance in understanding the content of the fragments.

3. Case studies
In this work, we focus on semantic segmentation of frag-

ments obtained from fractured frescoes found in the Pom-

peii Archeological Site, which were damaged by the erup-

tion of 79AD and WW2 bombardments. Initially, a larger

collection of fresco fragments was digitized in 3D as part

of the RePAIR project1 which has the ultimate goal of

achieving fresco anastylosis. From this extensive collec-

tion, we carefully selected a subset of high-quality 3D re-

constructed fragments. To achieve photorealistic results, we

used Blender2, for rendering 2D images of these fragments

from their corresponding 3D models. During this process,

we extracted the flat intact surface containing the pictorial

information by aligning it perpendicularly to a virtual cam-

era for optimal rendering. This setup ensured optimal ren-

dering conditions with uniform scale, ideal lighting, and no

photographic distortion.

The final objective of the fragment datasets is the re-

assembly, with motifs playing a critical role in this process.

However, the presence of manual markings and the deterio-

13D models of the fragments will be available at the end of the project.

For more information, please visit https://www.repairproject.
eu/.

2https://www.blender.org/
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ration on the real-world fragments necessitates preprocess-

ing. Collaborating with archaeological experts in this direc-

tion, we identified two key tasks: i) cleaning the manual an-

notations and ii) extracting the motifs present on the painted

surface. For each of the aforementioned tasks, we created

separate datasets to support the evaluation of different ap-

proaches and provide a baseline for comparison. Indeed,

beyond the ultimate goal of reassembly, these cleaned and

annotated datasets have broader applications in the field of

art restoration and computer vision. They serve as valuable

resource for various computational tasks, including frag-

ment recognition, style classification and clustering, artistic

content analysis, and digital restoration.

Black-Annotations on the Fresco Fragments (BoFF):
Archaeologists make temporary markings on the intact sur-

face of fresco fragments as reminders during the fresco

anastylosis task, particularly when dealing with a large

number of fragments. These markings include black marks

on the borders, indicating neighboring relationships be-

tween fragments, and arrows showing the direction of con-

struction lines typically visible only on the backside of the

fragments. While useful for archaeologists, these mark-

ings can be misleading and introduce bias in computational

tasks, such as image recognition, motif classification, style

analysis, and automatic puzzle-solving. Thus, cleaning the

dataset is crucial to ensure unbiased evaluations of different

approaches.

The BoFF dataset is specifically designed for the auto-

matic detection of manual markings in bounding boxes to

facilitate their removal through inpainting. It contains 115

fragment images with 405 annotations of bounding boxes

covering manual markings on the fragment images. The

annotations were prepared using the Roboflow3 platform.

Examples of fragment images in BoFF dataset with manual

marks highlighted in red rectangles are shown in Fig. 2

Figure 2. Example fragment images from the BoFF dataset, man-

ual annotations indicated within red boxes.

Motifs on the Fresco Fragments (MoFF): The MoFF

dataset is curated for motif extraction and categorization

from fragmented frescoes, with a particular focus on Ro-

man ceiling paintings at the Pompeii archaeological site.

3https://roboflow.com/

Figure 3. 12 motif categories in the MoFF dataset

These frescoes feature recurring geometric colored pat-

terns known as motifs. The dataset consists of 405 high-

resolution images sourced from two distinct ceiling fres-

coes. Precise pixel-wise segmentation masks, denoting mo-

tifs from 12 different classes (see Fig. 3), identified by ar-

chaeologists, are provided. These pixel-wise annotations

are available in two setups: a 3-class annotation, comprising

image background, fragment background, and motif class,

and a detailed 12-class annotation, exclusively focusing on

distinct motif types (See Fig. 4). Specifically, the motifs

belonging to the categories of Thick Red Stripe, Thick and

Thin Floral Stripe are exclusively found in one fresco, while

Thin Red Stripe category is shared by both frescoes. The re-

maining categories are present only in the other fresco.

Figure 4. Illustration of pixel-wise semantic annotations for the MoFF

dataset. The input image is on the left, followed by 3-class annotations for

Scenario 1 in the middle, and motif-wise annotations for Scenario 2 on the

right (different colors represent distinct pixel classes).

The MoFF dataset presents several challenges for se-

mantic segmentation. While the image and fragment back-

ground classes dominate in terms of pixel count, the motifs

of interest are sparsely distributed across the dataset. Fur-

thermore, the dataset exhibits an imbalance problem among

the different motif classes as well (See Fig. 5). This imbal-

ance can significantly impact the performance of segmenta-

tion models, leading to a bias towards the majority classes

and potentially causing difficulties in accurately delineating

rare motifs. Moreover, due to the damage and aging of the

ancient fresco fragments, the motifs present diverse color

and texture variations, making the task of accurate segmen-

tation more challenging. Addressing such challenges and

developing robust segmentation algorithms capable of han-

dling such scenarios is still an open question within the

computer vision research community [14, 21].
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Figure 5. Distribution of pixel count per class for Scenario 1 (left)

and Scenario 2 (right)

4. Methodology

Our methodology centers around two distinct scenarios

for the segmentation of ancient fresco fragments. In Sce-
nario 1, we aim to semantically segment the images into

three classes (image and fragment background, and motif

class), which eventually yields to detect also the fragment

shape, while in Scenario 2, our focus is on segmenting the

motifs into 12 individual classes. Herein, we assume that

fragment regions are already segmented during data acqui-

sition, which is the case in our work. Before delving into

these scenarios, we address the challenge posed by human

annotations on the fragments. These markings create oc-

clusion and hinder the visibility of motifs and also would

potentially affect tasks like fragment reassembly and puz-

zle solving. To overcome this, our approach involves au-

tomatically removing these manual markings, ensuring the

fragments are free from such annotations, while simultane-

ously facilitating the subsequent segmentation tasks.

4.1. Restoration of manual annotations

We employed a blind inpainting approach to automat-

ically detect and remove the manually drawn annotations

without the need for pre-defined masks for each fragment.

Detection of manual annotations: The primary goal is to

identify and precisely localize the manually drawn annota-

tions on the fragments, thus generating a mask that guides

the inpainting algorithm to focus only on the regions re-

quiring restoration. To achieve this, we examined two dif-

ferent approaches: traditional image processing operations
and YOLOv5[12], a state-of-the-art object detection model.

For the first approach, adaptive thresholding highlighted the

annotation locations, followed by dilation to expand the de-

tected regions and connected component analysis to filter

out noise. Despite YOLO was not specifically designed for

image inpainting, it was used in a number of works [13, 2]

for identifying unwanted objects in an image before their

inpainting. In a similar context, we trained YOLOv5 on the

BoFF dataset curated specifically for this task, to detect the

annotations using bounding boxes. It is worth noting that

the performance of the traditional approach heavily depends

on the optimal adjustment of input parameters for each im-

age. Even with optimal parameters, large areas of the frag-

ments’ surface were highlighted in the resulting masks, risk-

ing the degradation of fresco motifs during inpainting. In

contrast, YOLOv5 identified more precise regions without

any parameter adjustments, which would preserve the artis-

tic integrity of the motifs during inpainting. As a result, we

opted to proceed with YOLOv5 for the subsequent restora-

tion steps.

Inpainting manual annotations: We explored multiple

inpainting algorithms, including Telea [18], Biharmonic

[3], and Criminisi [6], to remove the detected annotations

from fragment surfaces. These regions are often located at

the borders of the fragments, which can lead to unintended

inpainting of the background color (black). To address this

issue, we implemented two strategies: firstly, introducing

a dent in the mask to restrict background inpainting to the

foreground regions of the fresco, and secondly, employing a

two-iteration inpainting process, creating a secondary mask

for the black regions that emerged on the fragment after

the initial iteration. Fig. 6 presents a comparative quali-

tative analysis of the inpainting methods applied within this

adopted strategy to the regions detected by YOLOv5. It is

evident that the Telea and Biharmonic methods resulted in

blurred inpaintings, making them less suitable for our fresco

restoration task. Thus, we proceeded with the Criminisi in-

painting method.

Figure 6. Qualitative analysis of Iterative Telea, Biharmonic and

Criminisi inpainting on a randomly chosen fragment. (a) Zoomed

input image, created inpainting mask is highlighted, (b) Telea [18],

(c) Biharmonic [3], (d) Criminisi [6]

4.2. Segmentation Approaches for Ancient Fresco
Fragments

In this section, we present two segmentation scenarios to

extract the pictorial content from ancient fresco fragments.

4.2.1 Semantic Segmentation of Background and Mo-
tifs

For the first scenario, we adopted the widely recognized

UNET model [17] for semantically segmenting the image
background, fragment background, and motifs into a sin-

gle unified motif class. Our approach involves a compre-

hensive exploration of various configurations for the UNET

model, including different architectures, color spaces, and

image enhancement operations, aiming to identify the best-
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performing configuration for the three-class segmentation

task. Challenges included dealing with imbalanced class

distributions, particularly due to a large number of back-

ground pixels compared to the motif class. Additionally, a

single unified motif class poses challenges with high intra-

class variations due to different motifs exhibiting varying

characteristics in terms of color and shape. This scenario

assumes high inter-class variations, making the task com-

paratively easier than the one in Scenario 2.

Modified U-Net Architecture: The modification of the

U-Net model was achieved by reducing the depth of the net-

work. The original network contains four layers in the con-

tracting path (encoder) and a corresponding four layers in

the expanding path (decoder), as well as a bottleneck layer.

In contrast, the simplified version contains two layers in the

contracting path, two layers in the expanding path, and a

bottleneck layer. Together with using relatively small input

image sizes, the simplification process provided several ad-

vantages, including reduced overfitting and eventually en-

hanced performance on the small dataset, which is the case

in this work, and a shorter training time. Moreover, we ex-

plored the effect of using weighted loss during training to

deal with the class imbalance problem.

Different color spaces: Ancient fresco fragments

present unique challenges. These challenges include varia-

tions in the color and texture of motifs due to the aging pro-

cess, regions with faded motifs, and potential deterioration

or damage to the fragments, leading to missing or unclear

motifs. By exploring different color spaces, we aim to en-

hance the model’s ability to handle these challenges effec-

tively. Certain color spaces might better capture the subtle

differences in motif color and texture, allowing for more ac-

curate segmentation even in cases of fading or deterioration.

Moreover, utilizing specific color spaces might enhance the

visibility of faded motifs, leading to improved segmentation

results. In this context, in addition to conventional RGB, we

explored HSV and YCrCb. HSV separates color informa-

tion from brightness, and YCrCb separates the luminance

information from chrominance information, which can help

in better isolating motifs from the background, especially in

cases where variations in brightness occur due to the pres-

ence of dust and fading.

Image Enhancement Techniques: In order to enhance

the visibility of motifs by increasing the contrast of the im-

age, we explored the effect of image enhancement meth-

ods on motif segmentation performance. In particular,

inspired by the reported improvements in [15], we em-

ployed Contrast Limited Adaptive Histogram Equalization

(CLAHE), Histogram Equalization, and gamma correction.

For achieving contrast enhancement in the brightness com-

ponent of the image while maintaining the original color

balance and avoiding undesirable color shifts, we applied

histogram equalization, gamma correction, and CLAHE to

V and Y channels of HSV and YCrCb, respectively. RGB

images were converted to HSV, and after applying such op-

erations on the V channel, they were transformed back to

the RGB color space.

4.2.2 Semantic Segmentation of Motif Regions

In this scenario, we address the more challenging task of se-

mantically segmenting motifs into 12 distinct classes. Sev-

eral challenges arise in this scenario, including the class im-

balance problem, high intra-class variation caused by bro-

ken fragments resulting in different-sized and shaped parti-

tions of the same motif type, and low inter-class variation

where some motifs may share similar characteristics, lead-

ing to potential misclassifications during manual annotation

or automatic segmentation. To tackle these challenges, we

noted the need for higher-resolution input images and more

sophisticated models. Consequently, we adopted 512-pixel-

sized images and utilized the original U-NET and YOLOv8-

Seg [11] models, selecting the color space that performed

well in the previous scenario.

5. Experiments
5.1. Evaluation metrics

To evaluate the performance of YOLO-v8 and U-Net

models, various metrics are used depending on the task

they are designed for. For the semantic segmentation tasks,

we used Intersection-over-Union (IoU) (or Jaccard Index)

and Pixel Accuracy (PA) averaged over the k pixel classes

(k = 3 and k = 13 for Scenarios 1 and 2, respectively)

present in the predicted segmentation masks. The formula

for calculating either averaged IoU and PA, and the IoU
and PA for a single class i is given in Eq. 1 and Eq. 2,

where TPi, FNi, and FPi represent True Positives, False

Negatives, and False Positives computed for class i, respec-

tively.

IoUaverage =
1

k

∑

i=1:k

IoUi =
1

k

∑

i=1:k

TPi

(TPi + FNi + FPi)

(1)

PAaverage =
1

k

∑

i=1:k

PAi =
1

k

∑

i=1:k

TPi

TPi + FPi
(2)

For the detection of the manual annotation task, we eval-

uated the performance of YOLOv5 both in terms of Preci-
sion (which has the same formula with PAaverage shown in

Eq. 2) and mAP50 (mean average precision at IoU thresh-

old 0.5). In this task, Precision takes priority over Recall,

as inpainting regions of false positive detections (i.e., re-

gions without manual marks) can potentially cause the loss

of valuable information in the fresco image. By maximizing

precision, we ensure that the inpainting algorithm is applied

only to regions with actual manual marks, minimizing the

risk of losing important fresco details.
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Figure 7. Representation of different channels of each color space

5.2. Restoration of manual annotations

We evaluated YOLOv5 model as a baseline for the BoFF

dataset for detecting manual annotations on the fragments.

The dataset, composed of 115 images, split randomly into

training, validation, and test sets in an 80/10/10 ratio. This

led to 91, 12, and 12 images in each set, respectively, along

with 324, 42, and 39 annotated boxes. The images were

resized to 416 × 416 pixels to suit the model’s require-

ments. We used a pre-trained model from Yolov54 for

model initialization. In training, rotation-based data aug-

mentation expanded the train set to 273 images with 972

box annotations, boosting model performance. Default hy-

perparameters, including 300 epochs, the SGD optimizer,

and a batch size of 32 were used during training. To opti-

mize the model’s performance, we experimented with var-

ious layer freezing configurations and found that freezing

the first three layers (layers 0 to 2) yielded the best results

on the validation set. Early stopping was employed, with

the patience parameter set to 100, to prevent overfitting and

enhance the model’s generalization capability.

We evaluated the trained YOLOv5 model on the test set

in terms of Precision and mAP50. In our experiments, the

trained model achieved Precision and mAp0.5 scores of

0.741 and 0.596, respectively, on the test set. YOLOv5

model was able to identify and locate manual annotations,

even in manual marks appear in low-contrast, while ac-

counting for their different shapes, sizes, and intensities, de-

spite displaying a degree of limitation when faced with non-

monochromatic backgrounds within the detected bounding

boxes. More specifically, we obtained 28 True Positives, 3

False Positives, and 11 False Negatives in 12 test images.

The qualitative detection results are shown in Fig. 8. We

have carefully chosen two sample fragment images from

BoFF dataset to encompass various fragment characteris-

tics, including instances of elongated arrows on the frag-

ment surface and fragments displaying textured patterns.

Corresponding inpainting masks and the resulting inpaint-

ing outcomes, achieved using the method outlined in Sec-

tion 4, are also presented.

5.3. Segmentation of Fresco Fragments

Prior to motif segmentation on the MoFF dataset, we

used the YOLOv5 model trained on the BoFF training set to

4https://pytorch.org/hub/ultralytics_yolov5/

Figure 8. Restoration of manual annotations on two example fragments.

a) YOLOv5 model detections (True Positives, False Positives, and False

Negatives by YOLOv5 are highlighted in red, blue, and green boxes, re-

spectively); b) generated inpainting masks1; c) inpainting results; (d) and

(e) are detailed views of (a) and (c).

detect manual annotations on the MoFF images and inpaint

them. Then, we cropped them to focus only on the fragment

region, effectively removing any unnecessary background

information. These preprocessing steps ensure that the sub-

sequent motif segmentation tasks, i.e., Scenarios 1 and 2,

can be carried out on cleaned fragment surfaces.

In all experiments, the MoFF dataset was split into train,

validation, and test sets with an 80/10/10 ratio, resulting in

324, 40, and 39 images, respectively. Hyperparameter tun-

ing was performed on the validation set, exploring batch

sizes of 16, 32, and 64, as well as learning rates of 0.01,

0.001, 0.0001, and 0.00001.

5.3.1 Semantic Segmentation of Background and Mo-
tifs

In the experiments for this scenario, to optimize computa-

tional efficiency, we resized the restored and cropped im-

ages to 256 × 256 pixels for the comparative performance

analysis of U-NET architectures, color space, and image

enhancement. For Scenario 1, in addition to the averaged

IoU and PA for the three-pixel classes (image background,

fragment background, and motif), we also calculated them

specifically for the motif class. This allowed us to evaluate

the model’s overall segmentation accuracy across all classes

and its ability to precisely capture the motifs on the fresco

fragments.

U-NET architecture: Both the original and modified U-

NET architectures performed best with a batch size of 32

and the learning rate scheduler starting from 0.001, where

the first 25 epochs maintained the same rate, followed by a

reduction by a factor of 0.1. For training, we used conven-
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tional RGB images. Early stopping was employed with the

patience parameter set to 10 to prevent overfitting. To ad-

dress the class imbalance problem, we experimented with

the weighted cross-entropy loss [10]. It favors less occur-

ring pixels classes in the training set with higher weights,

during training in addition to the initial experiment adopt-

ing unweighted loss.

Performance results are presented in Table 1. It is seen

that adopting weighted loss significantly improves perfor-

mance in terms of PAmotif . This improvement is expected

due to the increased weight assigned to the least represented

class, which happens to be the motif class. This adjustment

penalizes prediction errors within this class more heavily,

consequently leading to enhanced detection performance.

Table 1. Performance evaluation of different UNET architectures, using
∗unweighted and †weighted loss for imbalanced distribution of classes.

RGB images are used in the experiments. No augmentation was applied.

Architecture IoUaverage IoUmotif PAaverage PAmotif

Original UNET∗ 0.74 0.01 0.83 0.003

Modified UNET∗ 0.75 0.07 0.84 0.07

Original UNET† 0.76 0.19 0.86 0.21

Modified UNET† 0.82 0.32 0.89 0.39

Different color spaces and image enhancement meth-
ods: Using the simplified UNET architecture which per-

formed best in Table 1, we explored segmentation perfor-

mance using input images represented in different color

spaces and various image enhancement techniques applied

to them. Training is accomplished using 50 epochs using

the weighted loss in these experiments. Performance results

are shown in Table 2, where we highlight the first, second,

and third best-performing configurations using red, blue,

and green fonts, respectively.

It is observed that the RGB color space achieves

relatively high overall segmentation scores in terms of

IoUaverage and PAaverage, while its motif-specific seg-

mentation scores are significantly lower than in overall seg-

mentation. HSV color space outperforms RGB in both over-

all segmentation and motif-specific segmentation, showing

higher IoU and PA scores. This demonstrates that HSV

better captures the fine details in motif color and texture,

leading to improved motif segmentation results. YCrCb

color space also performs reasonably well, with competi-

tive scores compared to RGB, but slightly lower than HSV

in both overall segmentation and motif-specific segmenta-

tion.

Image enhancement operations, except Gamma correc-

tion, had a negative impact on the RGB color space sig-

nificantly. In contrast, for the HSV color space, most image

enhancement methods (i.e., HistEq, and Gamma) had a pos-

itive impact, resulting in higher IoU and PA scores for both

overall segmentation and motif-specific segmentation. This

highlights HSV’s superiority in capturing fine motif details

and benefiting from image enhancements. For the YCrCb

color space, CLAHE and HistEq yielded improvements in

overall segmentation.

These results indicate that the choice of color space, cou-

pled with specific image enhancement techniques, can influ-

ence segmentation performance, and HSV with appropriate

enhancement stands out as the most effective approach for

accurate motif segmentation on the MoFF dataset.

Table 2. Segmentation performance of different color spaces and

image enhancement techniques on MoFF dataset. The first, sec-

ond, and third best-performing configurations are shown using

red, blue, and green fonts, respectively.

Configuration IoUaverage IoUmotif PAaverage PA motif

RGB 0.82 0.32 0.89 0.39

HSV 0.87 0.65 0.92 0.81

YcrCb 0.80 0.45 0.88 0.72

RGB&CLAHE 0.47 0.14 0.63 0.14

RGB&HistEq 0.82 0.43 0.89 0.48

RGB&Gamma 0.86 0.48 0.91 0.58

HSV&CLAHE 0.56 0.69 0.71 0.83

HSV&HistEq 0.80 0.57 0.89 0.98
HSV&Gamma 0.86 0.66 0.92 0.90

YCrCb&CLAHE 0.87 0.59 0.92 0.70

YCrCb&HistEq 0.85 0.60 0.92 0.88
YCrCb&Gamma 0.85 0.51 0.91 0.67

Fig. 9 presents qualitative results for two example frag-

ments, one clean and the other deteriorated. The U-NET

model mostly succeeds in segmenting the fragment regions;

however, the motif segmentation in the degraded fragment

exhibits some incorrect segmentations.

Figure 9. Example images and segmentation results of Modified

U-NET for Scenario 1 (computations were done by HSV images).

5.3.2 Semantic Segmentation of Motif Regions

In the experiments for Scenario 2, restored and cropped

fragment images in HSV color space were resized to 512×
512 pixels to obtain a more detailed representation of the

motifs.

Semantic motif segmentation using U-NET: We explored

both UNET architectures - modified and original - for se-
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mantic motif segmentation. Rotation is used as a data aug-

mentation technique to enhance the model’s robustness to

unseen data. The goal is to segment the motif regions

into 12 classes, corresponding to different motif types. To

achieve this, we trained the U-NET models with ground

truth masks containing 13 classes (12 motif classes + 1

background class), where the fragment background and im-

age background classes were merged into a single back-

ground class. This approach simplifies the task, focusing

only on motif segmentation without the need to distinguish

between fragment and image backgrounds, which aligns

with the primary objective. The U-NET was trained in

a similar manner to the previous scenario, except that the

batch size was decreased to 8 for the Original and 16 for the

Modified U-NET. The rest of the parameters did not change.

On-the-fly data augmentation was added in the form of ran-

dom rotation and random flips, both horizontal and vertical.

Semantic motif segmentation using YOLOv8: The

YOLOv8 architecture achieves motif segmentation through

its instance segmentation capabilities. Although an official

paper describing the details of its implementation is not yet

available, it builds upon the success of the previous mod-

els [19] as a fast and reliable object detector. This makes

it well-suited for our experiments, where detecting motifs

is the primary focus while the background holds relatively

less significance. The model was trained from scratch using

ground truth polygonal masks5 containing the 12 different

motif classes. Training is performed using a batch size of

16 for 200 epochs.

Results: We present the results in Table 3, evaluat-

ing them using the same metrics as in our prior experi-

ments. It is seen that U-NET, even in the original archi-

tecture, was unable to achieve high IoUmotifs or PAmotifs

scores, while the YOLO approach significantly outperforms

U-NET in terms of both metrics. In this assessment, the

PAmotifs and IoUmotifs refer to the average across all 12

motif classes, excluding the background.

Table 3. YOLOv8 achieves the best results regarding the motif seg-

mentation (PAmotifs includes all classes without background),

while UNET wins when including the background in the evalua-

tion (PAavg refer to all classes including background, same for

IoU ).

Architecture IoUmotifs IoUavg PAmotifs PAavg

YOLOv8 0.582 0.538 0.634 0.797
Original U-NET 0.416 0.606 0.452 0.630

Modified U-NET 0.345 0.569 0.392 0.600

We also present the results for all 13 classes, includ-

ing the background class. Interestingly, it is seen that the

IoUavr of YOLOv8 drops notably when including this mea-

sure, whereas the opposite is true for U-NET. U-NET’s

5YOLOv8 uses polygonal masks around the objects and does not make

use of a pixel-wise segmentation mask.

IoUavr reaches its peak for both the original and modified

architectures. This demonstrates that U-NET predicts back-

ground class better, which is actually not our primary goal.

Future work could involve devising a custom loss function

to adjust the weighting of background pixels. This adjust-

ment would enable U-NET to focus more on motif segmen-

tation, potentially leading to higher PA values. Eventually,

it is worth noting that segmenting 12 different motif types,

which encompass smaller regions compared to the overall

background region, presents a significant challenge for fu-

ture research.

Fig. 10 presents two qualitative results for the experi-

mented architectures. It is seen that YOLOv8 localizes mo-

tifs better and predicts motif class with higher precision than

two U-NET architectures.

Figure 10. Semantic motif segmentation results of different archi-

tectures for Scenario 2.

6. Conclusions
This paper focuses on an unexplored aspect related to

fresco fragments: semantic segmentation. This task in-

volves extracting meaningful information from fragments,

facilitating downstream activities like fragment classifica-

tion and reassembly. We have introduced a dataset for se-

mantic segmentation comprising real fresco fragments from

the Pompeii Archaeological Site, along with baseline mod-

els.

Additionally, we have introduced an additional task con-

cerning fragment cleaning. In this context, we have curated

a dataset containing annotations of archaeological marks

that necessitate restoration before fragment analysis. Our

experiments have been conducted on both datasets using

standard metrics, state-of-the-art baselines, and a compre-

hensive analysis of diverse color spaces.

The results demonstrate that semantic segmentation of

fresco fragments is an achievable objective, opening up pos-

sibilities for more complex activities that necessitate a se-

mantic understanding of fragmented artifacts.
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