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Figure 1: We demonstrate the superiority of our proposed method ASUR3D on a sparse and incomplete point cloud of Le
Bassin d’Apollon(The Apollon Pond); Our proposed method upsamples the sparse point cloud with intricate geometric details
to any arbitrary ratio, effortlessly recovering the underlying data. The left presents a sparse input point cloud, and the right
section showcases a 16× upsampled point cloud, accurately capturing the underlying surface with remarkable precision.
Observe the intricate details of the recovered information and the successful reconstruction of the complex structure from a
scanty point distribution of points.

Abstract

In this paper, we introduce ASUR3D, a novel methodol-
ogy for the arbitrary-scale upsampling of 3D point clouds
employing Local Occupancy Representation. Our proposed
implicit occupancy representation enables efficient point
classification, effectively discerning points belonging to the
surface from non-surface points. Learning an implicit rep-
resentation of open surfaces, enables one to capture the
better local neighbourhood representation, leading to finer
refinement and reconstruction with enhanced preservation
of intricate geometric details. Leveraging this capability,
we can accurately sample an arbitrary number of points on
the surface, facilitating precise and flexible upsampling. We
demonstrate the effectiveness of ASUR3D on PUGAN and

PU1K benchmark datasets. Our proposed method achieves
state-of-the-art results on all benchmarks and for all eval-
uation metrics. Additionally, we demonstrate the efficacy
of our methodology on self-proposed heritage data gener-
ated through photogrammetry, further confirming its effec-
tiveness in diverse scenarios. The code is publicly available
at https://github.com/Akash-Kumbar/ASUR3D.

1. Introduction

In the contemporary digital landscape, the conserva-
tion and dissemination of cultural and historical heritage
face pressing challenges, necessitating the emergence of
“E-Heritage” as an innovative solution. Leveraging dig-
ital technologies, E-Heritage involves the digitization and
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digital preservation of tangible and intangible cultural arte-
facts, artworks, monuments, and historical sites, mitigating
risks posed by time, natural disasters, and human-induced
factors. Computer vision researchers have been using pho-
togrammetric processes or using 3D scanning technology to
create virtual 3D representations of historical sites, like the
Michelangelo project [20], Digital Hampi [25] etc. One of
the major sources for E-Heritage is via crowdsourcing of
data [39, 28] towards the virtual preservation of heritage
sites. These virtual models are acquired as point clouds; us-
ing LiDAR [13], 3D-Scans [20] or using Video-SFM [29].
A major challenge in E-Heritage is the storage of huge 3D
models and most of the time these models are noisy due
to their acquisition type. Altaf et al. [12] proposed to re-
duce the storage by storing sparse point clouds and upsam-
ple later during the presentation, they incorporated metric-
tensor [2] and Christoffel symbols [38] to capture continu-
ous manifold representation of 3D data. This representation
ensured to fill holes in 3D data using metrics of neighbour-
ing hole-boundary points and also upsample using the same
metric-tensor. Recent research involves a wide range of
methods from optimization [1, 23, 17, 8] based to deep fea-
tures [45, 21, 24, 35, 30] based point cloud upsampling; Al-
though advancement in Deep-Learning based upsampling
methods, they are usually susceptible to noisy input and do
not generalize on unseen data, Moreover, for every upsam-
pling rate new model is required to train. To address these
problems, the authors in Grad-PU [15] perform decompos-
ing the upsampling problem into midpoint interpolation and
location refinement, which achieves arbitrary upsampling
rates. Despite state-of-the-art performance on benchmark
datasets, it faces challenges in unseen complex and noisy
data. This is due to formulating upsampling as an interpo-
lation problem.

To address the aforementioned challenges in arbitrary
scale point cloud upsampling, we propose, ASUR3D a
novel methodology for the arbitrary-scale upsampling of
3D point clouds. We propose Local Occupancy Represen-
tation of a 3D point cloud inspired by [27] and model it to
act as a universal surface approximator which is indeed in-
spired by MLPs which are considered universal approxima-
tors of any arbitrary function. We learn local occupancy us-
ing state-of-the-art point cloud classification backbones like
DGCNN [40] and PointNN [47]. Local occupancy fields of
point clouds are learnt by first adding noise to the patch and
followed by categorizing each point into surface or noise
point. Finally, we sample points on this local occupancy
field by applying the marching cube algorithm as suggested
by [27].

Finally, we summarize our contributions as follows:

• We propose local occupancy function for non-
watertight surfaces, emphasizing point cloud patches
rather than the whole. This enables finer upsampling,

preserving local geometry and overall fidelity.

• We provide a comprehensive evaluation allowing us to
assess the impact of different feature extraction meth-
ods on the performance and reliability of our approach.

• We demonstrate the effectiveness of our proposed
methodology on benchmark datasets (PUGAN and
PU1K) and achieve state-of-the-results compared to
other upsampling methods.

• We perform an endurance test for evaluating the ro-
bustness and generalization of the proposed method.
We achieve state-of-the-art results compared to other
upsampling methods on all benchmarking strategies.

• We show upsampling results on Real-world custom-
collected heritage datasets and we achieve state-of-the-
art results compared to other upsampling methods.

2. Related Work
Before the advent of deep learning, upsampling tech-

niques relied on prior assumptions, facing challenges in pre-
serving multiscale structures. The first point cloud upsam-
pling algorithm [1] involved creating a Voronoi diagram on
an MLS(Moving least squares) surface using three points
as input. Later, Lipman et al. [23] presented LOP (locally
optimal projection operator) that approximated the surface
for point resampling, which is applied to the problem of up-
sampling. On top of LOP, weighted LOP (WLOP) [17] was
proposed that added local adaptive density weights to LOP
to achieve even distribution of the original point cloud, and
continuous LOP (CLOP) [32] was proposed that described
the input point density based on a Gaussian mixture. Huang
et al. [18] also introduced edge-aware resampling (EAR).
Dinesh et al. [8] proposed a 3D point cloud super-resolution
algorithm that worked locally based on graph total variation
(GTV).

Deep learning has revolutionized point cloud re-
search with successful methods like Pointnet [33], Point-
net++ [34], and DGCNN [40]. Among these, upsampling
point clouds using deep learning techniques have emerged
as a significant research area. These methods can be cate-
gorized into two types: those with fixed upsampling rates
and those with arbitrary scale upsampling rates.
Methods with ‘fixed upsampling’ rates have embraced the
trend of learning-based upsampling for point clouds, typi-
cally involving three steps: feature extraction, feature ex-
pansion, and 3D coordinate prediction. Yu et al. [45] pi-
oneered deep learning-based point cloud upsampling us-
ing hierarchical feature learning from PointNet++ [34].
DensePCR [26] and EC-Net [44] also adopted similar fea-
ture extraction strategies. Zeng et al. [46] introduced the
spatial feature extractor (SFE) block as an alternative to
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Figure 2: An illustrative depiction of our ASUR3D methodology, which outlines the overall flow. Initially, a sparse point
cloud is partitioned into smaller localized regions, subsequently processed through the learned local occupancy function,
adept at capturing geometric surfaces, thus providing a neural implicit representation (a continuous surface representation).
Following this, the marching cube algorithm is employed to achieve uniform surface sampling, enabling the generation of
the desired number of points. For more details, please refer to Section 4.

PointNet++ for local feature extraction. Wang et al. [43]
proposed the multi-step point cloud upsampling network
(MPU) inspired by dynamic graph convolution, enabling
the definition of local neighbourhoods in feature space. PU-
GCN [35] introduced node shuffle, utilizing graph convolu-
tion layers to expand features and rearrange them through
shuffle operations. Li et al. [21] introduced the up-and-
down sampling mechanism in PU-GAN. Additionally, Li
et al. [22] presented Dis-PU, which performs point cloud
upsampling in two steps using a feature expansion unit and
a spatial refinement unit. However, these methods require
training for a specific upsampling rate, necessitating retrain-
ing for different upsampling rates.

Arbitrary Scale Upsampling methods enable point clouds to
be upsampled to any desired ratio using a single model. Ye
et al. [42] introduced Meta-PU, which dynamically adjusts
the weight of the residual graph convolution block through
meta-subnetwork learning. PU-EVA [24] decouples the up-
sampling rate from the network structure, allowing efficient
one-shot training for arbitrary upsampling rates based on
edge vectors.

In recent years, learning ‘continuous implicit functions’
for 3D shape representation has become prevalent in re-
search [5, 6, 7, 14, 19, 31]. Neural networks are trained to
approximate conventional implicit shape functions, such as
occupancy probability [5, 6, 27] and signed distance fields
(SDF) [31, 14], and unsigned distance fields(UDF) [7]. Re-
cent research on point cloud upsampling uses implicit func-
tions, authors in NePs [11] introduced NeRF [41] based
point cloud upsampling. Moreover, SAPCU [48] used a
signed distance field and use it to arbitrarily scale upsam-
ple point clouds, and are the first in self-supervised [3, 16]

upsampling. Finally, authors in Grad-PU [15] perform de-
composing the upsampling problem into midpoint interpo-
lation and location refinement, which achieves arbitrary up-
sampling rates.

Unlike, prior implicit function-based methods; our study
introduces a novel local occupancy field, which focuses on
learning the implicit representation of local neighbourhoods
within the point cloud, rather than the entire point cloud.
This approach incorporates two distinct hard labels to indi-
cate whether a point lies on the surface or off the surface.
By adopting this strategy, our network gains greater gener-
alization and robustness, as it no longer necessitates training
on complete objects. Consequently, the network can better
comprehend the local geometry, leading to more accurate
upsampling using the implicit representation.

3. Background for Occupancy Network

The Occupancy network presents a 3D reconstruction
methodology based on function space, utilizing implicit
representation for 3D shapes, which contrasts with tradi-
tional discrete forms like point clouds, voxels, and meshes.
The network implicitly defines the surface as a decision
boundary of a non-linear classifier, distinguishing points in-
side and outside the surface. This characteristic restricts its
applicability to only watertight surfaces and, consequently,
the network lacks the ability to refine 3D point clouds effec-
tively. By focusing on global shape rather than fine-grained
geometric features, the network falls short in capturing fine
geometric nuances crucial for accurate upsampling and re-
construction tasks.
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4. ASUR3D

In this section, we introduce ASUR3D, a novel Ar-
bitrary Scale-Upsampling and Refinement methodology,
which leverages a proposed ‘local occupancy network’ to
learn the continuous representation of intricate local geom-
etry as shown in Figure 2. Through patch-based upsampling
of point clouds and discretization of their implicit represen-
tation, ASUR3D achieves the ability to upsample to any de-
sired rate (R), while meticulously preserving complex local
geometry.

4.1. Local Occupancy Function

The proposed local occupancy function learns the intri-
cate surface of a complex structure as a decision boundary
of a non-linear classifier that learns to adeptly discern points
belonging to the surface from those that do not. This novel
approach allows the parametric function to learn the surface
by distinguishing between points on the surface and off the
surface, thus extending the applicability of the occupancy
function to encompass non-watertight surfaces. The local
occupancy function serves as a versatile universal approx-
imator for point cloud surfaces, offering the capability to
sample any number of points from the surface, and also of-
fering generalizability for implicit representation ensuring
enhanced resolution and finer details.

4.2. Training

The proposed local occupancy function acts as a univer-
sal surface approximator using any point cloud classifica-
tion backbone. The local occupancy function takes a noisy
patch of point cloud and classifies each point to either a sur-
face point or not. Surface points are labeled 1 and noisy
points are labeled 0. In our methodology, the core learnable
component is the local occupancy function. This allows us
to sample arbitrary points on the surface later during infer-
ence. Our method can learn non-watertight surfaces, as we
just classify points as “surface or not-surface”, unlike Occ-
Net [27] where it tries to learn an implicit function “inside
surface or outside surface”.

4.3. Inference

Leveraging the occupancy scores obtained from the
aforementioned local occupancy function, we utilize the
marching cubes algorithm to effectively extract a point
cloud encompassing an arbitrary number of points. This
algorithm proves instrumental in refining the point cloud
representation by intelligently placing points according to
the occupancy information provided; best depicted by Al-
gorithm 1. As a result, we achieve a highly accurate and
detailed point cloud representation that faithfully captures
the intricate surface of the complex structure under study.

Algorithm 1: Extraction of Points from Local Oc-
cupancy Score using Marching Cube.

Input: P = (x0, y0, z0), ...(xM , yM , zM ), N,
occupancy scores→ O;
// where P is the sparse point cloud with

M points, N is the desired number of

points, and O is the occupancy score for

each point

Output: Q
// where Q is the dense point cloud with N

points

// Define intervals for each dimension

1 x range← calculate interval(min(x), max(x),
resolution)

2 y range← calculate interval(min(y), max(y),
resolution)

3 z range← calculate interval(min(z), max(z),
resolution)

// Initialize voxel grid

4 grid← initialize empty grid(x range, y range,
z range)

5 for point in P do
6 x idx← find nearest index(x interval, point[0])
7 y idx← find nearest index(y interval, point[1])
8 z idx← find nearest index(z interval, point[2])
9 set grid value(grid, x idx, y idx, z idx,

O[point])
// Extract vertices and faces using the

marching cubes algorithm

10 verts, faces← apply marching cubes(grid,
threshold, N )

11 Q ← verts
12 return Q

5. Experiments

This section commences by presenting the superior per-
formance of our method for point cloud upsampling task,
when compared to prior state-of-the-art methods like PU-
Net [45], MPU [43], PU-GAN [21], Dis-PU [22], PU-
EVA [24], PU-GCN [35], NePs [11], Grad-PU [15], PU-
Transformer [37]; on publicly available datasets. Our eval-
uation includes various benchmarking strategies, including
the arbitrary scale-up sampling task. For this task, we con-
sider only NePs and Grad-PU for a fair comparison. Addi-
tionally, we provide endurance test results to showcase the
robustness of our approach under challenging conditions.
Furthermore, we demonstrate the effectiveness of our pro-
posed method on custom-captured heritage data. Note: Our
model is trained using an Nvidia RTX 3090 GPU and Py-
Torch 1.11.
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5.1. Point Cloud Upsampling

During training, we preprocess the input low-resolution
point clouds by segmenting them using furthest-point sam-
pling and K-nearest neighbour techniques, resulting in
patches with a density of 512 points each. To augment
the patches, an equal number of noise points are appended,
drawn from a Gaussian distribution, resulting in a total of
1024 points per patch. As elaborated in Section 4.2, the lo-
cal occupancy functions are designed to discern between
surface points and noise by incorporating a binary class
classifier as given by [27] that operates on the perturbed
patch.

To optimize the model, we employ the binary cross-
entropy loss function and train it using stochastic gradient
descent for 300 epochs, employing a learning rate of 0.001.
To prevent overfitting, we implement early stopping, and
to dynamically adjust the learning rate, a cosine annealing
learning rate scheduler is used. These techniques collec-
tively contribute to the model’s ability to learn effectively
and achieve superior results. Once the local occupancy
function is trained, we can sample an arbitrary number of
points using the marching-cube algorithm as suggested by
[27]. We modify the algorithm according to our decision
boundary as explained in Algorithm 1.

Dataset. For benchmarking, we utilize two public datasets:
PU-GAN [21] and PU1K [35]. To ensure consistency, we
adopt the official training/testing splits and settings from
the original papers, conducting training at the patch level.
Among these datasets, PU1K presents a more challenging
scenario due to its larger data volume and greater diversity
across categories, making it a robust testbed.

For the evaluation metrics, we consider three widely
used distance functions in the research community: Cham-
fer distance [10] (CD), Hausdorff distance [9] (HD), and
point-to-surface distance [4] (P2F). These metrics provide
comprehensive insights into the performance of our ap-
proach in comparison to other methods, and the lower the
metrics, the better.
Model Architecture. The backbone architecture plays a vi-
tal role in extracting geometric relations from a point cloud.
We consider two types of backbones for our experiments 1.
Local Manifold based DGCNN [40] and 2. Trigonometric
Features based PointPN / PointNN [47]. As both backbones
are known to learn the local manifold of data, and the im-
plications of these architectures are discussed further.

5.2. Comparison with State-of-the-art Methods

Results on the PU-GAN Dataset. Table 1 presents a com-
prehensive comparison of our method against state-of-the-
art approaches, demonstrating our method’s superior per-
formance across all evaluation metrics. Particularly note-
worthy is our method’s exceptional performance when uti-

Table 1: Quantitative comparison of different state-of-the-
art methods benchmarked on PU-GAN dataset [21]. Our
proposed methodology; outperforms all existing point cloud
upsampling methods for both 4× and 16× upsampling
rates, all evaluation metrics are lower the better and are
reported in ×10−3 units. We highlight bold as best and
underline as second best.

Rates 4× (R=4) 16× (R=16)
Methods CD ↓ HD ↓ P2F ↓ CD ↓ HD ↓ P2F ↓

PU-Net [45] 0.529 6.805 4.760 0.510 8.206 6.041
MPU [43] 0.292 6.672 2.822 0.219 7.054 3.085

PU-GAN [21] 0.282 5.577 2.016 0.207 6.963 2.556
Dis-PU [22] 0.274 3.696 1.943 0.167 4.923 2.261

PU-EVA [24] 0.277 3.971 2.524 0.185 5.273 2.972
PU-GCN [35] 0.268 3.201 2.489 0.161 4.283 2.632

NePs [11] 0.259 3.648 1.935 0.152 4.910 2.198
Grad-PU [15] 0.245 2.369 1.893 0.108 2.352 2.127

Ours (DGCNN) 0.292 2.672 2.122 0.173 3.987 2.183
Ours (PointNN) 0.374 3.805 3.160 0.195 5.279 2.996
Ours (PointPN) 0.238 2.303 1.745 0.103 2.275 2.088

lizing PointPN [47] as the backbone architecture (here on,
we consider PointPN as our backbone for further bench-
marking). Additionally, the combination of PointNN with
no learning parameters and DGCNN [40] as backbones for
our method’s local occupancy function also yields impres-
sive results. Note: Our benchmarking of sota methods is
taken from [15] as reproducing the open-source code gave
us almost equal results with minimal standard deviation.

While Grad-PU [15] achieves the second-best position
in the benchmark, visual analysis reveals significant draw-
backs when tested at 16× upsampling rates, as illustrated in
the example of the elephant point cloud in Figure 5. There
are evident holes and irregularities in the output. Whereas,
PU-Net [45] produces noisy outputs, affecting the quality
of results in both the 4× and 16× upsampling tasks, as de-
picted in Figure 5.

Table 2: Quantitative comparison of different state-of-the-
art methods benchmarked on PU-1K dataset [35], Our
method surpasses other approaches on almost all evaluation
metrics for 4× point cloud upsampling task. We highlight
bold as best. Note: all evaluation metrics are lower the bet-
ter and are reported in ×10−3 units.

Methods CD ↓ HD ↓ P2F ↓
PU-Net [45] 1.55 15.170 4.834

MPU [43] 0.935 13.327 3.511
PU-GCN [35] 0.585 7.577 2.499

PU-Transformer [37] 0.451 3.843 1.277
Grad-PU [15] 0.404 3.732 1.474

Ours (PointPN) 0.398 3.609 1.525

Results on the PU-1K Dataset. Table 2 illustrates the out-
standing performance of our method, surpassing state-of-
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Figure 3: Evaluation of Robustness for varied test datasets. All models are trained on the PU-GAN Dataset [21] and evaluated
on Unique Point Clouds from Sketchfab (Goku and Statue of a Man Giving Water to a Bird). Our method demonstrates
ideal robustness, surpassing state-of-the-art algorithms which exhibit shortcomings when confronted with varied datasets.
Furthermore, our approach effectively retains sophisticated geometric patterns and outperforms point cloud upsampling at
both 4× and 16× rates, indicating its remarkable generalization of surface estimation.

the-art approaches across nearly all evaluation metrics on
the diverse PU-1K dataset. This demonstrates the remark-
able adaptability and efficacy of our approach in handling
highly varied data. Notably, Grad-PU [15] secures the
second-best position in the benchmark. However, PU-Net
[45] falls significantly behind.

5.3. Endurance Test

Efficiency towards arbitrary Upsampling. In contrast to
the majority of previous methods [45, 43, 21, 22, 36, 24,
35, 37], our approach does not require retraining for dif-
ferent upsampling rates. Similarly, prior art methods like
NePs [11] and Grad-PU [15] also share this characteristic
of not needing retraining. To perform a fair comparison, we
evaluate both NePs and Grad-PU using the model trained
on the PU-GAN dataset. For these methods, we vary only
the upsampling rate (R) during inference while keeping all
other parameters fixed. Based on the results presented in
Table 3, our approach achieves better accuracy across most
of the evaluation metrics, except for the HD metric with a
3× upsampling rate.
Robustness to Unseen Data. Generalizability to unseen
data is a crucial aspect of an upsampling algorithm. To as-
sess this, we conduct an evaluation of our approach in com-
parison to state-of-the-art methods using randomly web-
scraped data from Sketchfab. As depicted in Figure 3, our
method significantly outperforms the state-of-the-art algo-

Table 3: Quantitative comparison for arbitrary scale point
cloud upsampling task of different state-of-the-art methods
benchmarked on the PU-GAN dataset [21], for rates rang-
ing between (2× → 7×). Our approach is evident and
maintains superior performance throughout the comparison.
We highlight bold as best. Note: all evaluation metrics are
lower the better and are reported in ×10−3 units and a sin-
gle trained model is used to evaluate all arbitrary upsam-
pling rates.

Rates NePs [11] Grad-PU [15] Ours (PointPN)
CD ↓ HD ↓ P2F ↓ CD ↓ HD ↓ P2F ↓ CD ↓ HD ↓ P2F ↓

2x 0.642 7.324 2.574 0.540 3.177 1.775 0.519 3.102 1.755
3x 0.409 5.389 2.176 0.353 2.608 1.654 0.342 2.639 1.537
5x 0.248 3.922 1.871 0.234 2.549 1.836 0.224 2.425 1.667
6x 0.242 3.671 1.809 0.225 2.526 1.981 0.216 2.437 1.735
7x 0.237 3.796 1.795 0.219 2.634 1.940 0.209 2.346 1.534

rithms on this unseen data, this proves our modelling of
local occupancy as a universal surface approximator. PU-
Net [45] produces noisy output, while PU-GCN [35] and
Grad-PU [15] exhibit holes in their results.
Robustness to Noisy Data. In order to assess the robust-
ness of each method against noise commonly present in
point clouds captured by scanners, we conducted a compre-
hensive evaluation. We first generated random noise offline,
following a standard Gaussian distribution N (0, 1), which
was then multiplied by a factor τ to control the noise level.
Subsequently, we applied this noise to the low-resolution
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Figure 4: Efficacy of our proposed method over state-of-the-art point cloud upsampling methods on custom collected on
heritage data of Lord Nandi in 1st row and carving of God Harihara in the 2nd row. Red highlights represent poor upsampling
of the sparse point cloud and green highlight represents the best upsampling result.

point clouds of the PU-GAN dataset for testing. The results,
presented in Table 4, demonstrate the superior performance
of our method consistently, particularly at high noise levels
and yet proves the robustness of proposed local occupancy.
Generalization on Heritage Data. Finally, after success-
fully conducting the stress tests and outperforming state-
of-the-art methods, we proceeded to evaluate our model on
custom-collected Heritage data, obtained using video Struc-
ture from Motion (SFM) [29]. This dataset poses addi-
tional challenges due to the presence of noise and the lack
of geometric smoothness. SOTA method PU-Net [45], PU-
GCN [35] and Grad-PU [15] fail in upsampling underlying
intricate geometry of Bull’s eyes and jewels, similarly fail in
upsampling eyes, nose, lips and crown of God Harihara as
shown in Figure 4. Whereas, our approach exhibits robust

performance and effectively addresses the noise and geo-
metric irregularities, showcasing its capability to produce
accurate and high-quality upsampling results for Heritage
data.

5.4. Limitations

Our work demonstrates promising results in point cloud
upsampling using local occupancy. However, certain lim-
itations are acknowledged, such as the reliance on local
grouping algorithms (knn) with hyperparameters and the
occurrence of block-aliased surface points in low-resolution
voxel sizes in marching cubes. To address these issues, we
foresee incorporating learning-based models for patch ex-
traction and using higher-resolution voxel sizes. Despite
these limitations, the research offers valuable insights and
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Figure 5: Performance Comparison of Our Method and State-of-the-Art Approaches on PU-GAN Dataset’s [21] Intriguing
Point Clouds (Elephant and Tiger). Our approach excels in preserving intricate geometric structures and effectively up
samples point clouds at 4× and 16× rates, demonstrating its capability in retaining missing information in complex structures.

Table 4: Quantitative comparison for robustness evaluation
of different state-of-the-art methods benchmarked on the
PU-GAN dataset [21], across various noise levels (τ ) for
4× point cloud upsampling task. Our approach is evident
and maintains superior performance throughout the com-
parison. We highlight bold as best and underline as second
best. Note: all evaluation metrics are lower the better and
are reported in ×10−3 units.

Noise Level τ = 0.01 τ = 0.02
Methods CD ↓ HD ↓ P2F ↓ CD ↓ HD ↓ P2F ↓

PU-Net [45] 0.628 8.068 9.816 1.078 10.867 16.401
MPU [43] 0.506 6.978 9.059 0.929 10.820 15.621

PU-GAN [21] 0.464 6.070 7.498 0.887 10.602 15.088
Dis-PU [22] 0.419 5.413 6.723 0.818 9.345 14.376

PU-EVA [24] 0.459 5.377 7.189 0.839 9.325 14.652
PU-GCN [35] 0.448 5.586 6.989 0.816 8.604 13.798

NePs [11] 0.425 5.438 6.546 0.798 9.102 12.088
Grad-PU [15] 0.414 4.145 6.400 0.766 7.339 11.534

Ours (PointPN) 0.418 4.102 6.527 0.734 6.934 10.575

hopes to inspire further advancements for more robust and
effective point cloud upsampling methods.

6. Conclusions

We have proposed ASUR3D, a novel methodology for
the arbitrary-scale upsampling of 3D point clouds employ-
ing Local Occupancy Representation. Our method lever-
ages the proposed local occupancy function incorporated
with a trigonometric feature extractor to create a univer-
sal surface approximator. Unlike traditional deep upsam-

pling networks, ASUR3D utilizes the marching cube al-
gorithm to upsample point clouds at desired rates, utiliz-
ing only one trained model, which makes it highly effi-
cient. We demonstrated the effectiveness of ASUR3D on
benchmark datasets, PU-GAN and PU-1K, achieving state-
of-the-art results. Furthermore, we conducted an endurance
test to validate the robustness and generalization of our pro-
posed local occupancy function, showcasing its capacity as
a universal surface approximator. The proposed method-
ology has shown promising results for achieving accurate
and detailed point cloud upsampling, as demonstrated in
the endurance benchmark. Additionally, we illustrated the
power of ASUR3D on captured heritage data, where it out-
performed state-of-the-art methods, showcasing its preci-
sion and robustness in upsampling real-world captured data.
Overall, ASUR3D offers a comprehensive and effective so-
lution for point cloud upsampling, providing superior re-
sults, efficiency, and versatility.
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