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Abstract

In recent years, we have seen the emergence of meth-
ods for creating 3D digital reproductions of objects using
photos. These techniques, particularly when combined with
handheld video devices like smartphones, have significant
applications in various fields such as medicine, museology,
mechanics, and archaeology. However, previous works of-
ten lack an objective assessment of the resulting models’
quality. To address this issue, the paper focuses on the sys-
tematic evaluation of reconstruction methods. This paper
investigates the principles and application of the Chamfer
distance, specifically the average, forward, and backward
variants, for evaluating reconstructions produced by differ-
ent methods: Photogrammetry, NeRF, and NVDiffrec. We
also explore the impact of background filtering on the re-
constructions. The ground truth for comparison is a recon-
struction obtained with a structured light scanner, consid-
ered the best possible reconstruction with current technol-
ogy. The results demonstrate that a comprehensive evalu-
ation of reconstruction methods requires considering mul-
tiple measures, as they provide information about different
aspects of reconstruction quality. By utilizing the Chamfer
distance and comparing against the ground truth, we high-
light the importance of assessing various aspects when ana-
lyzing the performance of different reconstruction methods.

1. Introduction

In recent years, there has been significant interest in de-

veloping techniques for creating digital twins using pho-

tos and videos to generate 3D representations [3]. Neural

network-based algorithms utilizing multiple images from

different angles have gained prominence due to their cost-

effectiveness compared to high-precision scanners [39].

The applications of digital twins in various fields, includ-

ing virtual museums, archaeology, palaeontology, and phys-

ical anthropology, have demonstrated their potential for im-

proving processes and facilitating research, education, and

preservation efforts.

The evaluation of reconstruction techniques in cultural

heritage applications is crucial to ensure the reliability and

effectiveness of the resulting 3D models. Challenges such

as specularity, lack of distinctive features, and difficult

lighting conditions make image-based 3D reconstruction in

these contexts particularly challenging. Researchers have

addressed these challenges by developing lighting mod-

els [17, 23, 34] and reconstruction techniques based on dif-

ferentiable rendering [37, 36, 33], which focus on estimat-

ing scene geometry and modeling light emission and opac-

ity.

Various 3D technologies, such as X-ray computed to-

mography, laser scanners, and photogrammetry, are em-

ployed in creating digital twins of human remains [11,

14, 15]. While CT offers non-invasive capturing of the

complete volume, it is costly and not always accessible.

Photogrammetry, particularly Structure-from-Motion, has

gained popularity due to its affordability and portability us-

ing standard cameras or mobile phones. Studies comparing

imaging techniques in anthropology have shown that while

photogrammetry accurately represents the overall geome-

try of bones and teeth, laser scanner-derived models exhibit

higher accuracy, finer surface details, and smaller surface

features [4, 12, 28].

To address the need for evaluating and comparing 3D re-

construction methods in cultural heritage applications, this

paper proposes a benchmark and evaluation methodology.

We carefully select scenes, provide images and videos as in-

puts, and use 3D laser scanning as ground truth for compar-

ison. Our findings reveal the challenges faced by 3D recon-

struction methods in cultural heritage applications. The pro-

posed benchmarking approach establishes a symbiotic rela-

tionship between vision and graphics technology and social

sciences, such as archaeology and anthropology, paving the
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way for interdisciplinary advancements in these fields.

2. State of the art
Three-dimensional reconstruction is a fundamental prob-

lem in computer vision, and numerous techniques have been

proposed to address it. To evaluate the performance of re-

construction algorithms, several benchmarks and method-

ologies have been developed (see Table 1). The Middle-

bury [27] and Strecha [29] benchmarks were early efforts

in evaluating 3D reconstruction algorithms. They provided

scenes with multi-view images and corresponding 3D ref-

erence models, focusing on Lambertian materials. These

benchmarks introduced objective measures of accuracy and

completeness to compare algorithms, considering the dis-

tance between points in the computed and reference mod-

els.

As learning-based methods gained popularity, the need

for large-scale and high-quality data became apparent.

Aanaes et al. [2] proposed a benchmark containing 80

scenes captured from multiple viewpoints under various

lighting conditions, utilizing structured-light scanners to

capture 3D data. The Tanks and Temple benchmark [13]

introduced high-resolution geometry data captured with a

Faro Focus 3D X 330 HDR scanner, offering scenes of dif-

ferent complexity levels. The ETH3D dataset [26] focused

on providing high-resolution images and videos recorded

from multiple calibrated cameras, paired with laser-scanned

geometry.

Creating large-scale benchmarks using physical methods

is time-consuming, leading to the exploration of synthetic

data as a viable option [16, 31]. BlendedMVS [35] and

PASMVS [5] employed photogrammetric methods and ren-

dering techniques to reconstruct scenes and generate large-

scale datasets. The MVImgNet dataset [38] comprises a

vast number of videos with reconstructed scenes, allowing

the evaluation of depth maps and direct assessment of 3D

geometry.

These benchmarks and datasets play a crucial role in

evaluating and advancing reconstruction algorithms. They

provide standardized protocols, realistic scenes, and diverse

data, enabling researchers to compare and improve the per-

formance of their algorithms. The availability of large-

scale and high-quality benchmarks is essential for driving

progress in 3D reconstruction.

3. Methodology
We present a methodology for quantitatively measuring

the quality of a reconstruction mesh. For this purpose,

we compute how similar two distinct meshes are using the

Chamfer distance [21]. One of these meshes is a recon-

struction of a real-world object. The other mesh is also a

reconstruction of the same real-world object obtained with

a Calibry Scanner [1], which we define as the ground truth.

By using the Chamfer distance, we can rank the quality of

the reconstruction mesh obtained by different state-of-the-

art methods from images of an object. We use the Chamfer

distance in the same way recent works have used it, but un-

like them, we take advantage of the asymmetric nature of

this distance for presenting two different ways of interpret-

ing the obtained results.

3.1. Chamfer Distance

This section discusses the Chamfer distance and its use

in ranking the quality of reconstruction methods in Multi-

view 3D reconstruction. The Chamfer distance is a measure

used for quantitative evaluation and is often employed as a

loss function for training deep neural networks. It involves

computing the squared distances between nearest neighbor

correspondences of two point clouds.

Several works, such as point set generation [8] and Pho-

tometric Mesh Optimization [18], have utilized the Chamfer

distance as a loss function to train their networks. Addition-

ally, the Chamfer distance has been used for comparing the

quality of 3D reconstructions in the 3D MoMa project [20].

However, it is important to note that the Chamfer distance

is primarily used to rank methods and is commonly applied

to synthetic datasets.

The computation of the Chamfer distance involves sum-

ming the squared distances between nearest neighbor corre-

spondences in two point clouds. The forward distance con-

siders vertices from the source mesh and finds the minimum

distance to the target mesh, while the backward distance re-

verses the process.

dCD(S, T ) =
1

2

∑

x∈S

min
y∈T

||x− y||22 +
1

2

∑

y∈T

min
x∈S

||x− y||22
(1)

The Chamfer distance is sensitive to the number of points

in the point cloud, so normalizing the distances to a mean

distance is proposed to address this issue, as follows:

dNCD(S, T ) =
1

2|S|
∑

x∈S

min
y∈T

||x−y||22+
1

2|T |
∑

y∈T

min
x∈S

||x−y||22

(2)

To further address discrepancies in object sizes when

comparing Chamfer distances, the reconstruction meshes

are normalized to the size of their respective ground truth

objects before measuring the Normalized Chamfer distance.

3.2. Generating models

We scanned real-world objects inside a room with

enough space to use a Calibry scanner, a hand-held 3D scan-

ner meant to capture objects from 30 cm to 10 m in length.
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Benchmark # scenes Input 3D acquisition

Middlebury [27] 2 multi-view images laser scanner

Strecha et al. [29] 6 multi-view images LIDAR

DTU [2] 80 multi-view images structured-light scanner

Tanks and temples [13] 14 multi-view images laser scanner

ETH3D [26] 82 multi-view images and videos laser scanner

BlendedMVS [35] 113 multi-view images 3D reconstruction

PASMVS [5] 400 multi-view images synthetic

MVImgNet [38] 80,000 multi-view images 3D reconstruction
Table 1. Table

The room is illuminated with a mixture of artificial and nat-

ural light. Firstly, the Calibry scanner produces the recon-

struction of an object. Secondly, we shot a video around

the object, using FFmpeg[30]with 6 FPS frame rate for tak-

ing the images. Finally, we remove the images’ background

using Daniel Gatis’ Rembg framework [9], based on U2-

Net [22], without any additional work. The videos were all

shot with the same smartphone and of resolution 720 × 1280

p., with smartphone in vertical view.

We processed the obtained images with COLMAP [25,

24] using a NeRF script provided by Instant NGP [19]

that gives camera positions in the format NeRF requires.

This process generates a json file, normally called “trans-

forms.json”, that can be used both by NeRF and NVDiffrec

methods.

For performing the NeRF reconstruction, we use the In-

stant NGP framework [19]. We set a minimum of 3, 000
steps and a maximum of 10, 000 in case the loss does not

reach a value smaller than 0.0015 constantly through iter-

ations. We apply the NeRF reconstruction method to both

6 FPS images and 6 FPS images without background. We

found that the COLMAP process over the images with-

out background was having problems finding good cam-

era positions. To tackle this issue, the cameras’ file (trans-

forms.json) for 6 FPS was given as input to the images with-

out background. We call this reconstruction as “NeRF with-

out background with inherited cameras”. In summary, we

obtain three different reconstruction meshes for each object

with the NeRF method. The capabilities of the PC allowed

to generate meshes with resolution 404 × 404 × 404 tetra-

hedrons.

NVDiffrec takes images and masks of the cropped ob-

ject as input, but it also accepts images already cropped as

masks. So, the 6 FPS images without background used for

NeRF without background method are used, as they have

the object already cropped. NVDiffrec also uses the same

“transforms.json” file generated with COLMAP, but with

some modifications. The maximum batch possible for the

image’s resolution and hardware capabilities was 6. The

maximum reconstruction resolution for a reasonable result

is 128 × 128 × 128 tetrahedrons.

We computed a photometric reconstruction using Mesh-

room [10]. This method automatically calculates scene

cameras, so there was no need to give this information as

input. We generated two different models with this method:

one using the 6 FPS images, and another one using the im-

ages without background.

Finally, we made a Control reconstruction. It is a sim-

plification using MeshLab [7] of the ground truth, with the

minimum amount of points without losing the shape of the

model (quantitatively). It is used for comparing the recon-

struction results against a reconstruction with good shape

but poor definition. It is expected for the other reconstruc-

tion methods to do reconstructions with lower Chamfer dis-

tance.

The hardware used for Photogrammetry and all types of

NeRF reconstruction is an AMD Ryzen 7 3750H CPU with

13 GB RAM and an NVIDIA GeForce GTX 1650 GPU

with 4 GB RAM. NVDiffrec uses more resources, so an

external server was used, with an Intel Core i7-9700F CPU

with 128 GB RAM and a GeForce RTX 3090 GPU with 24

GB RAM.

3.3. Data collection

We collected a dataset of 16 different real-world ob-

jects for scanning and evaluating purposes. There are 14

Khachkar samples on small-scale models, each one differ-

ent from each other in material, size, and color. Khachkars

consist of a parallelepiped-shaped stone, with two wider

faces, where a cross is usually sculpted on one of them.

They are part of the Armenian cultural heritage, and now

they are inscribed in the Representative List of the Intan-

gible Cultural Heritage of Humanity[32]. There is also a

small-scale model of an Armenian church. Finally, there

is a real scale polyurethane resin model of a Homo erectus
fossil skull.

The different materials, sizes, and colors of the real-

world objects create different conditions for processing the

images from the video, as they may affect the light on cam-

era, the level of detail, and the contrasts. Then, only ro-

bust pipelines could give consistent good results, as the im-

ages could have better quality and sometimes cropping the

background could be more difficult. The idea behind taking

different models is to imitate real-world conditions when
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shooting videos of archaeological objects of interest. Some

details on selected objects follow:

Wooden Khachkar models. Tend to have many details,

as it is easier to sculpt them, and to be in an equilibrium

between absorbing and reflecting light. See Khachkars 02,

03, 06, 08, 12, 13 and 14 in Figure 1.

Stone Khachkar models. They have sharp edges and

shallow details and do not shine. See Khachkars 01, 04, 05,

10 and 11 in Figure 1.

Plastic Khachkar models. They have smoother edges

and tend to reflect more light and present some shininess.

See Khachkars 07 and 09 in Figure 1.

Church. Made out of wood. Its shape is more complex

than of Khachkars, presenting great detail and overlapping

edges. See Church in Figure 1.

Homo erectus skull replica. The only bioanthropologi-

cal object used for the experimental evaluation. It presents

a lot of complex details. See the skull in Figure 1.

4. Experimental evaluation
To compare the 3D reconstructions given by the afore-

mentioned methods, we do a manual scaling of the objects

by aligning information rich points of the reconstruction to

the ground truth’s. This process is done with MeshLab [6],

which outputs the translation matrix for scaling the mesh.

By using Open 3D framework [40], an iteration over all ver-

tices of the mesh is done and the new vertices after applying

the translation matrix are stored. Please note that this pro-

cess is prone to human error.

After that, we compute the normalized Chamfer distance

using the ground truth. In addition, we store the values of

the forward and backward distances obtained for each mesh,

computed as shown at Sec. 3.1.

If a reconstruction mesh presents low forward and back-

ward distances, which also implies a low total Chamfer dis-

tance, it means that the evaluated reconstruction method is

a good approach in terms of having a model that takes good

shape representation.A method with a high forward distance

could mean that the reconstruction mesh contains too many

vertices with respect to the ground truth, or that it contains a

high amount of noise. A method with a high backward dis-

tance could mean that the reconstruction mesh is not similar

to the ground truth in its details.

4.1. Results

Tables 2, 3, and 4 present the results of the normalized

Chamfer distance measurements (Equation 2). Non nor-

malized results were also stored, but to maintain a narrow

scope, we exclude them. For each model, the tables re-

port the Chamfer distance between the reconstruction and

its correspondent ground truth for each technique used.

Each reconstruction takes as input the extracted images

of a recorded video taken around the object, at 6 frames per

second rate. “w/o BG” means extracting the background of

the images and computing the camera poses with these new

ones, and “inherited cameras” means computing the camera

poses for the images with background and passing them to

the ones without.

Total normalized Chamfer distances show Photogram-

metry as the technique that produces the lowest distances,

but in some cases, NeRF has lower, as in Khachkars 8, 10

and 11. Photogrammetry without background and NeRF

without background have the largest Chamfer distances in

general.

Photogrammetry obtained the lowest distances for nor-

malized forward, only after Control. However, Control has

the largest backward distances, probably setting a limit to

how large can be the backward distance of an object. In this

sense, NeRF without background for Khachkars 5 and 11

are outliers, as these distances are larger than Control dis-

tances. In general, NeRF has the lowest normalized back-

ward distances, followed by NVDiffrec and Photogramme-

try.

One interesting case is Khachkar 13 (Figure 2), being

one of the three objects having Photogrammetry without

background as the lowest value for total Chamfer distance.

In this case, NVDiffrec presents one of its lowest results,

too. Khachkar 13 also has the lowest normalized median

and mean distances for each method, for Total and Back-

ward distances, as shown in Table 5.

For the skull, Photogrammetry has the lowest forward

and NeRF without background, inherited cameras, has the

lowest backward. For total Chamfer distance, Photogram-

metry without background is the lowest. According to the

image of the reconstruction in Figure 3, the normalized

Chamfer distance represents the reality.

4.2. Discussion

Normalized Chamfer distance, even though it masks the

different with respect to density between the point clouds

correctly, it cannot mask the differences with respect to the

size of the models. This is illustrated in Table 5, where

Khachkars 01 to 06, the Church and the Skull present 7 out

of 8 reconstructions with 15.00 or more normalized total

Chamfer distance v/s 5 out of 8 in the Khachkars 07 to 14.

This is correlated with the size, as the first group is bigger.

However, more data is needed to confirm this tendency.

NeRF tends to have larger distance values than Pho-

togrammetry in total distances. This is mainly because for-

ward distances are very high in the case of NeRF, and back-

ward distances are lower, but not as much to counter the

forward distances. This could be because NeRF reconstruc-

tions tend to have more artifacts and to be more dense than

Photogrammetry. Also, NeRF prioritizes having a good vi-

sual representation, leaving the inside of the reconstruction

with extra points
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Figure 1. Image samples of the videos taken for Khachkars 01 to 16, the Church and the Homo erectus skull replica.

Table 2. Total Normalized (average of normalized forward and backward) Chamfer distances for each object and reconstruction method.

The minimum distances are highlighted.

Photogramm.
Photogramm.

w/o BG NeRF NeRF w/o BG
NeRF w/o BG,

inherited cameras NVDiffrec Control

Khachkar 01 4.06 41.94 6.45 35.49 23.88 26.38 241.22
Khachkar 02 3.30 42.83 3.34 14.85 13.10 11.52 197.74
Khachkar 03 7.01 50.12 9.95 21.15 12.83 13.06 256.34
Khachkar 04 3.48 27.45 3.00 19.79 18.77 18.91 109.82
Khachkar 05 3.76 30.98 9.42 1511.84 17.09 23.68 118.12
Khachkar 06 9.07 16.08 17.34 30.76 39.49 57.08 41.07
Khachkar 07 2.90 40.58 8.87 11.24 5.03 7.32 43.77
Khachkar 08 5.44 22.23 5.15 53.13 5.80 9.68 29.69
Khachkar 09 2.85 48.52 3.16 4.03 2.29 4.52 18.83
Khachkar 10 5.01 31.79 3.73 62.48 17.91 17.48 38.82
Khachkar 11 5.63 14.76 2.60 161.99 2.01 3.81 20.88
Khachkar 12 3.06 14.15 6.32 98.28 16.36 22.88 24.27
Khachkar 13 1.48 1.34 4.35 24.11 8.50 9.48 21.70
Khachkar 14 2.60 11.40 4.79 98.57 7.91 10.59 26.59
Church 4.43 4.42 51.51 41.97 49.02 17.53 50.87
Skull, upper
side

62.88 61.84 72.44 103.80 88.35 92.53 19.55

Skull, full re-
construction

9.03 102.22 19.55

Mean 8.00 28.78 13.28 143.34 25.33 21.65 75.22
Median 4.06 29.21 5.73 38.73 16.36 15.27 38.82

NVDiffrec does not exhibit the last problem. However,

as shown in Table 3, NVDiffrec tends to obtain larger for-

ward distance values than NeRF. This could be explained

because the background may not be removed precisely due

to the use of a non-specifically trained neural network to

crop the object (Rembg [9]). In this sense, NVDiffrec is
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Table 3. Forward Normalized Chamfer distance for each object and reconstruction method. The minimum distances are highlighted.

Photogramm.
Photogramm.

w/o BG NeRF NeRF w/o BG
NeRF w/o BG,

inherited cameras NVDiffrec Control

Khachkar 01 2.32 5.64 11.01 68.58 46.36 49.64 1.07
Khachkar 02 1.85 10.73 4.14 26.41 25.37 19.05 0.62
Khachkar 03 7.60 5.31 17.35 40.14 24.03 19.49 1.48
Khachkar 04 1.71 2.21 1.91 33.62 32.82 31.21 1.26
Khachkar 05 2.98 10.04 14.28 24.91 27.17 43.15 0.77
Khachkar 06 7.80 16.06 27.16 58.48 76.92 101.54 1.83
Khachkar 07 2.03 60.49 13.89 16.34 8.00 10.78 0.61
Khachkar 08 4.63 23.47 8.24 102.63 9.82 14.27 0.76
Khachkar 09 3.47 61.03 4.86 6.10 3.32 6.20 0.33
Khachkar 10 4.82 5.21 5.55 102.69 31.84 28.54 0.42
Khachkar 11 2.44 1.40 2.19 7.07 3.10 4.93 0.91
Khachkar 12 1.98 8.01 9.35 148.55 31.56 29.68 0.75
Khachkar 13 1.19 1.06 7.65 44.48 16.24 16.21 0.75
Khachkar 14 1.79 3.01 7.40 141.80 14.36 18.78 1.19
Church 1.94 3.46 102.09 81.58 96.94 32.12 0.49
Skull, upper
side

4.67 7.89 138.94 203.00 172.90 174.76 0.49

Skull, full re-
construction

7.94 202.78 0.49

Mean 3.60 14.06 23.50 69.15 48.44 37.52 0.84
Median 2.44 6.77 8.79 51.48 27.17 24.02 0.75

Table 4. Backward Normalized Chamfer distance for each object and reconstruction method. Minimum distances are highlighted.

Photogramm.
Photogramm.

w/o BG NeRF NeRF w/o BG
NeRF w/o BG,

inherited cameras NVDiffrec Control

Khachkar 01 5.79 78.23 1.89 2.39 1.40 3.12 481.36
Khachkar 02 4.75 74.92 2.53 3.29 0.83 3.99 394.87
Khachkar 03 6.42 94.92 2.56 2.17 1.62 6.62 511.21
Khachkar 04 5.26 52.69 4.10 5.96 4.72 6.62 218.38
Khachkar 05 4.54 51.92 4.55 2998.77 7.01 4.21 235.48
Khachkar 06 10.35 16.11 7.53 3.05 2.05 12.61 80.31
Khachkar 07 3.76 20.68 3.86 6.14 2.05 3.87 86.93
Khachkar 08 6.24 21.00 2.06 3.62 1.79 5.08 58.61
Khachkar 09 2.22 36.02 1.45 1.96 1.25 2.83 37.33
Khachkar 10 5.20 58.37 1.90 22.26 3.97 6.41 77.21
Khachkar 11 8.83 28.11 3.02 316.91 0.93 2.70 40.86
Khachkar 12 4.14 20.28 3.30 48.02 1.17 16.08 47.79
Khachkar 13 1.76 1.62 1.04 3.75 0.76 2.76 42.64
Khachkar 14 3.41 19.80 2.19 55.33 1.47 2.41 51.99
Church 6.91 5.38 0.94 2.36 1.11 2.94 101.24
Skull, upper
side

121.10 115.79 5.95 4.59 3.81 10.31 38.60

Skull, full re-
construction

10.12 1.65 38.60

Mean 12.40 43.49 3.05 217.54 2.21 5.78 149.61
Median 5.26 32.06 2.55 4.17 1.62 4.10 77.21
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Table 5. Mean and median normalized Chamfer Distance (total, forward, and backward) for each object. Minimum values are highlighted

in yellow and maximums in green.

Total Chamfer Forward Chamfer Backward Chamfer
Mean Median Mean Median Mean Median

Khachkar 01 23.03 25.13 30.59 25.98 15.47 2.76
Khachkar 02 14.82 12.31 14.59 10.45 15.05 3.64
Khachkar 03 19.02 12.94 18.99 13.54 19.05 4.49
Khachkar 04 15.23 18.84 17.24 16.46 13.22 5.61
Khachkar 05 266.13 20.38 20.42 23.07 511.83 5.78
Khachkar 06 28.30 24.05 47.99 54.67 8.62 8.94
Khachkar 07 12.66 8.10 18.59 6.40 6.73 3.86
Khachkar 08 16.90 7.74 27.18 9.45 6.63 4.35
Khachkar 09 10.89 3.59 14.16 4.84 7.62 2.09
Khachkar 10 23.06 17.69 29.78 16.68 16.35 5.81
Khachkar 11 31.80 4.72 3.52 3.68 60.08 5.92
Khachkar 12 26.84 15.25 38.19 15.83 15.50 10.11
Khachkar 13 8.21 6.42 14.47 8.70 1.95 1.69
Khachkar 14 22.65 9.25 31.19 10.28 14.10 2.91
Church 28.15 29.75 53.02 17.03 3.27 2.65
Skull, upper
side

80.31 80.40 117.03 89.71 43.59 8.13

Skull, full re-
construction

55.62 55.62 105.36 7.94 5.88 5.88

Figure 2. Khachkar 13 reconstructions. The minimum for total CD

is Photogramm. w/o BG. The minimum for forward is Photogram-

metry w/o BG and for backward is NeRF w/o BG, inherited cams.

comparable with NeRF w/o BG, inherited cameras. Indeed,

results for both methods are similar for forward distances,

but not for backward.

The backward normalized Chamfer distance results im-

Figure 3. Reconstructions of the right side of the skull. Photogram-

metry w/o BG has the lowest normalized Chamfer distance.

plies that Photogrammetry methods have more problems

capturing the roughness of the models. Photogrammetry

without background, specially, struggles to capture it. On

the contrary, NeRF presents the lowest distances in gen-

eral, competing directly with NeRF without background, in-

herited cameras. Despite this, the latter technique presents

some outliers like Khachkar 11, where the distance grows

one order of magnitude. This implies that Photogramme-

try methods, despite not being the best results on backward
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distance, are more reliable.

NeRF is better at capturing the complexities of the object

than Photogrammetry techniques. Note the Church results

shown in Table 4 for normalized backward distances. For

this object, Photogrammetry has a distance around seven

times larger than NeRF, on average, of the point cloud. The

same is true for the Skull, as seen that NeRF has a dis-

tance two orders of magnitude lower than the Photogram-

metry method. Therefore, as the scanned object complexity

grows, the difference in backward distance for NeRF and

Photogrammetry also grows.

Furthermore, when NeRF without background distances

are too large, it is mainly due to the cameras not being

well computed because of lack of information about the

space where the Khachkar is located. Photogrammetry

with images without background presents the same prob-

lem. Therefore, the algorithms that analyze the scene to

create camera poses benefit from the background.

The case of Khachkar 13 suggests it has some ideal char-

acteristics for background to be extracted well without ad-

ditional work, and probably the details are easier to capture.

This is because it has the lowest normalized results, in gen-

eral. It also has low distances in all those techniques that re-

quire cropping the background, coinciding with the results

in Figure 2.

5. Conclusion
We propose an objective assessment of the quality of re-

sulting meshes from different image from video based re-

construction techniques, by decomposing the Chamfer dis-

tance in forward, backward, and total or average distances.

The videos taken as input for the reconstruction methods

were shot in the most possible real conditions to test the

reconstruction techniques with real input. To increase the

challenge, a bioarcheological object was also used. The re-

sults shown that the forward, backward, and total Cham-

fer distances need to be taken into account when analyzing

the performance of the reconstruction methods, as some of

these metrics are more influenced by the size of the model

or the amount of detail present on it.

As stated in this study, there are some new challenges

that need to be tackled when evaluating the quality of the

models. In particular, some open questions are how to eval-

uate the impact of artifacts inside a point cloud that cannot

be seen from outside the mesh and how to evaluate the re-

silience of the reconstruction technique to input with inter-

ference.
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