
Volumetric Fast Fourier Convolution
for Detecting Ink on the Carbonized Herculaneum Papyri

Fabio Quattrini, Vittorio Pippi, Silvia Cascianelli, Rita Cucchiara
University of Modena and Reggio Emilia
Via Pietro Vivarelli, 10, Modena (Italy)

{name.surname}@unimore.it

Abstract

Recent advancements in Digital Document Restoration
(DDR) have led to significant breakthroughs in analyzing
highly damaged written artifacts. Among those, there has
been an increasing interest in applying Artificial Intelli-
gence techniques for virtually unwrapping and automati-
cally detecting ink on the Herculaneum papyri collection.
This collection consists of carbonized scrolls and fragments
of documents, which have been digitized via X-ray tomog-
raphy to allow the development of ad-hoc deep learning-
based DDR solutions. In this work, we propose a modi-
fication of the Fast Fourier Convolution operator for vol-
umetric data and apply it in a segmentation architecture
for ink detection on the challenging Herculaneum papyri,
demonstrating its suitability via deep experimental analy-
sis. To encourage the research on this task and the ap-
plication of the proposed operator to other tasks involv-
ing volumetric data, we will release our implementation
(https://github.com/aimagelab/vffc).

1. Introduction

Some of the most valuable sources of information

we have about ancient cultures and populations are the

manuscripts and, in general, the artifacts with writings and

pictures that survived history [37, 8, 26, 35]. For this rea-

son, even the smallest of such objects is precious for its po-

tentially unique and impactful content. Due to the fragility

of the medium and their long history, most of the ancient

manuscripts found by archaeologists can be extremely de-

graded and irreversibly damaged, and thus, challenging to

handle and analyze. These challenges are even more criti-

cal for those ancient documents that were written on scrolls,

which also necessitate being unrolled for reading.

Digital Document Restoration (DDR) aims to provide

access to these kinds of documents and has therefore gained

great interest from researchers and practitioners [12, 6, 34,

vFFC Bottleneck

Full scroll Scroll fragments Train fragment

Figure 1. We propose an architecture featuring our devised volu-

metric Fast Fourier Convolution operator for the ink detection task

on the fragments of carbonized Herculaneum papyri (parts of this

image are from the official project website https://scrollprize.org/).

7, 55, 13]. Among the DDR techniques, Virtual Unwrap-

ping can be applied when the textual content is physically

unreachable, as in the case of fragile scrolls. Starting from

a digital 3D volumetric representation obtained with X-ray

micro-computed tomography [21], this method entails re-

constructing the 2D text image, allowing researchers, schol-

ars, and the general public to visually inspect and study

these historical artifacts. Early works on the application of

Virtual Unwrapping were limited to specific use cases and

entailed semi-manual pipelines [43, 23]. Later, fully auto-

mated digital unwrapping was applied to undamaged or par-

tially damaged scrolls made of parchments [40, 50, 49, 39],

bamboo [48, 47], papyri [3, 2], silver [16, 4], and the fa-

mous En-Gedi scroll [44], charred and charcoaled by a fire

in early middle ages.

When discussing ancient irreparably damaged scrolls,

few examples carry as much significance and present as
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many challenges as the Herculaneum papyri. This collec-

tion of more than 1800 manuscripts, recovered from the

Herculaneum Villa of the Papyri, presents a particularly

important case due to its unique preservation state and the

special interest of scholars [19]. Carbonized and buried in

ashes during the Vesuvius eruption of 79 C.E., they repre-

sent the only intact surviving library from antiquity discov-

ered in its original location [19]. Among the posed chal-

lenges, the ink is carbon-based, different from the metal-

based ink in the En-Gedi scroll. Thus, the response of the

ink to X-rays is not seemingly distinguishable from that of

the carbonized papyrus support, making traditional Virtual

Unwrapping ineffective.

In the sight of this, in 2023, Parsons et al. [33] pro-

posed to push forward DDR on this challenging collection

by resorting to modern Computer Vision, Document Analy-

sis, and Artificial intelligence techniques. To this end, they

developed and released EduceLab-Scrolls, an open dataset

containing volumetric scans of rolled scrolls and detached

fragments from the Herculaneum papyri, which is the ob-

ject of a dedicated ongoing competition1. The goal is to

develop advanced Virtual Unwrapping strategies to unroll

these challenging scrolls and then perform ink detection on

the unrolled sheets. Meanwhile, the fragments can be used

to develop ink detection algorithms. In fact, for the frag-

ments, it has been possible to obtain infrared images and,

thus, ink maps that can be used for training supervised deep

learning models. Thanks to their effort, this novel task on

such challenging data is receiving increasing interest from

the Artificial Intelligence community.

In this respect, we propose to tackle the task via an ef-

ficient, fully-Convolutional model featuring blocks inspired

by Fast Fourier Convolutions (FFCs) [9], which we modify

to handle volumetric data (Figure 1). Note that the FFC

operator exploits the spectral information of the input to

expand its receptive field in the frequency domain and to

handle pseudo-periodic patterns. Spatial FFC has been em-

ployed for tasks on 2D images but, to the best of our knowl-

edge, it has never been applied to volumetric data. For this

reason, we propose a modification to the original FFC oper-

ation that makes it able to handle volumetric data and thus

be applied to the Herculaneum papyrus fragments scans for

ink detection. Through a deep evaluation analysis, we pro-

vide useful insights on the challenging task of ink detec-

tion on Herculaneum papyri and on the proposed approach,

which we demonstrate to be suitable for the task.

2. Related Work

Digital Document Restoration. DDR encompasses Digi-

tal Imaging, Image Processing, and Computer Vision tech-

niques for non-invasive content recovery from severely

1https://scrollprize.org/

damaged ancient documents [12, 6, 34, 7, 55, 13]. One

of these techniques is Virtual unwrapping [42], which is

mostly applied to documents that are too fragile to handle

and analyze, as in the case of scrolls. First, the entire scroll

is scanned, typically with X-ray micro-computed tomogra-

phy (micro-CT) [21]. Then, each scroll sheet in the volu-

metric representation is segmented and projected into a 2D

image. Depending on the specific use case, an additional

texturing step (such as ink detection) can be performed.

Early works operated on small contrived samples with semi-

manual pipelines [43, 23]. The first fully-automated solu-

tion was proposed by Samko et al. [40], who developed a

novel graph cut method for parchment scrolls sheets seg-

mentation. In [16, 4], the authors read the contents of a

damaged silver scroll by exploiting the specific character-

istics of the material, such as the engraved and ruled text.

Finally, the carbonized En-Gedi scroll was read in 2015 by

Seales et al. [44].

Herculaneum papyri. This work focuses on DDR of the

Herculaneum papyri, a document collection that poses un-

precedented challenges [41] to the application of a classi-

cal virtual unwrapping pipeline. Firstly, the papyrus layers

have been compressed, crumpled, and deformed by the car-

bonization process, making sheet segmentation not straight-

forward. Secondly, the text is mostly written using carbon-

based ink, which is almost invisible on the carbonized pa-

pyrus support in the X-ray scans. Thus, traditional virtual

unwrapping, which heavily relies upon the visibility of ink

or simple layers structure, is not applicable. In a recent

work, Parker et al. [32] proved the detectability of carbon-

based ink in micro-CT scans of the Herculaneum papyri us-

ing a 3D Convolutional Neural Network (Conv) [17] trained

on subvolumes to detect ink in the central voxel. A further

step towards DDR of Herculaneum papyri is due to Par-

sons et al. [33], who proposed an open dataset containing

volumetric scans of such collection. In this work, we tackle

the problem of ink detection on the surface volumes of Her-

culaneum papyri fragments.

Spectral Analysis. Previous DDR approaches, both classi-

cal [29] and learning-based [1, 24], have successfully lever-

aged the spectral information of document images to en-

hance their visual quality. In recent works, the Discrete

Wavelet Transform [27] has been used for Document Bi-

narization to represent the document image in different fre-

quency sub-bands, either to perform Segmentation [1] or to

obtain a ground truth ink map to train a Generative Adver-

sarial Network [24]. Our method exploits the Fourier Trans-

form, localized only in frequency, to operate on the periodic

structures common in the writing substrate. Unlike previ-

ous works, we do not use spectral information to represent

the images but as an operator inside our proposed end-to-

end Convolutional architecture. In particular, we extend the

FFC operator proposed by Chi et al. [9] to make it process
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Figure 2. The standard spatial FFC (left) can be adapted to work on spatio-temporal data by replicating it along the channel dimension

(center). Our proposed volumetric FFC (right) is designed to handle 3D volumetric data directly by combining 3D convolutions and 3D

FFTs. For simplicity, we omit the batch normalization and ReLU operations in the schemes.

volumetric data. Indeed, the FFC operator combines 2D

convolutions and 2D discrete Fourier Transform (DFT) [10]

and has been applied to spatial data for computer vision

tasks such as inpainting [15], super-resolution [45, 54], and

semantic segmentation [5]. Some attempts have been made

to apply the FFC to spatio-temporal data [9]. Nonetheless,

volumetric data are different from spatio-temporal ones, and

thus, require ad hoc solutions [53, 36, 14, 31]. Therefore,

we argue that a solution based on spatio-temporal FFCs is

not optimal for modeling the correlations between dimen-

sions in volumetric data. In sight of this, we propose the

volumetric FFC operator, which features 3D convolutions

and 3D discrete Fourier Transform and better handles this

kind of data.

3. Proposed Approach
Our goal is to detect the presence of ink in the volumet-

ric representation of a carbonized papyrus sheet. Our model

takes as input such volumes and is expected to output an ink

map with the same width and height of the volume, whose

elements contain the probability of ink being in the corre-

sponding papyrus surface. To tackle this task, we devise

a U-net-like architecture, whose details are given in Sec-

tion 3.2, featuring a variant of the FFC operator that we

devise to handle volumetric data as described below.

3.1. Volumetric Fast Fourier Convolution

The FFC proposed by Chi et al. [9], which here we refer

to as spatial FFC, is a neural operator that combines convo-

lution and Fourier Transform to perform local reasoning in

the space domain and non-local reasoning in the frequency

domain. This information processing expands its receptive

field and makes it suitable for handling pseudo-periodic pat-

terns in the data. The operator has also been applied to

spatio-temporal data [9]. Here, we refer to this variant as

Spatio-Temporal FFC (stFFC). The Volumetric FFC variant

devised in this work presents the same properties of the spa-

tial FFC operator but can directly handle volumetric data. A

visual comparison between these mentioned operators is re-

ported in Figure 2.

The vFFC operator takes as input a tensor X ∈
R

D×H×W×2C , where 2C is the number of channels, D is

the depth dimension, and H and W are the spatial dimen-

sions. This tensor is split into two parts along the channel

dimension, which are fed to two interconnected branches: a

local branch and a global branch. Splitting the input tensor

into two chunks allows the encoding of different informa-

tion in separate regions of the tensor. In addition, this ap-

proach permits the global and local branches to specialize in

different aspects because they do not share the same inputs.

The local branch contains two 3D convolutional layers with

kernel size 3 and is in charge of modeling local volumet-

ric information. In the global branch, the input is mapped

into the spectral domain to model global information. This

branch consists of a 3D convolution with kernel size 3 and

a 3D Spectral Transform (ST 3D) block.

The ST 3D block exploits a three-dimensional real Fast

Fourier Transform (FFT3D) [10]. Specifically, the FFT3D

is performed across the depth, height, and width dimensions

of the input tensor:

FFT3D(X) = Z = R+ iI,

where Z is a complex tensor, with real and imaginary parts

R, I ∈ R
D×H×W

2 ×C . Then, R and I are stacked together

along the channel axis, thus obtaining a tensor

R||I ∈ R
D×H×W

2 ×2C

that is then fed to a 1×1×1 convolutional layer. Batch nor-

malization and ReLU activation functions are applied to the

output of the convolution. The resulting tensor is reshaped

into a complex-valued tensor Z′ ∈ C
D×H×W

2 ×C , and the

inverse real Fast Fourier Transform (iFFT3D) is computed

to obtain the global branch output:

iFFT3D(Z′) = X′ ∈ R
D×H×W×C .
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The output of each branch is summed to the output of

the other, and the resulting tensors are fed to separate batch

normalization and ReLU operation before being stacked to-

gether to obtain the final vFFC output tensor.

3.2. Ink Detection Architecture

Rather than having a different response to X-rays than

the papyrus support, the carbon-based ink in the Hercula-

neum scrolls ink modifies the substrate structural patterns

in subtle ways, as shown in [32]. In particular, parts con-

taining ink have different types of cracks and densities and

are thicker and smoother than empty ones. In this challeng-

ing case, it is important to consider both local and global

contexts. The subtle patterns are, in fact, very localized, but

with a global context, the model is able to consider holis-

tically information from the whole subvolume. Moreover,

we argue that the vFFC operator, which is able to handle

pseudo-periodic patterns, is suitable for modeling this kind

of data. We treat ink detection as a pixel-wise classifica-

tion task, and we use an encoder-bottleneck-decoder archi-

tecture composed of a 3D convolutional encoder, a vFFC-

based bottleneck, and a 2D convolutional decoder. To accu-

rately localize the signal and fuse high-level and low-level

features, we employ skip connections between the encoder

and the decoder, similar to U-Net [38], and vFFC layers in

the latent space of the network.

Specifically, we employ a 3D ResNet-34 [15] to encode

the subvolumes. The output from the last block is fed to

3 vFFC Residual Blocks, each combining two vFFC layers

with a residual connection. The RD×H×W×C feature maps

from the bottleneck are collapsed to R
H×W×C by averag-

ing the depth dimension. The same applies to the encoder

activations in the skip connections. Then, a 2D decoder re-

constructs the ink map. This decoder is obtained by stack-

ing four blocks made of 2-fold bilinear interpolations and

convolutions, operating on the concatenation of the output

of the previous layer and the features from the correspond-

ing encoder layer. Since the fragments have very high res-

olution but represent small objects, the decoder does not

reconstruct the full-scale ink map but rather a 4-fold down-

scaled one. This approach also limits the computational

weight of the model.

3.3. Training and Inference

We train our model on subvolumes (3D patches) of the

fragments scans both to limit the computational complexity

of our model and to obtain more samples from the same

fragment. Note that this strategy is customary for other

data-constrained tasks such as document binarization [51]

or medical images segmentation [20, 11]. Moreover, we

apply a number of data augmentation operations (described

in Section 4) in order to reduce the risk of overfitting and

help the model generalize to unseen data. Our adopted loss

function is a combination of the Dice loss and weighted bi-

nary cross entropy (WBCE). The Dice score coefficient has

been proposed for unbalanced segmentation [28], while the

weighted binary cross-entropy is customary for classifica-

tion. Let N be the number of voxels, pi ∈ P the predicted

binary segmentation map, and gi ∈ G the ground-truth ink

image. The loss can be written as:

L = Dice + WBCE,

with

Dice =
2
∑N

n pngn + ε
∑N

n p2n +
∑N

n g2n + ε
,

WBCE = − 1

N

N∑

n=1

w[gn log pn + (1− gn) log(1− pn)]

where w is the weight attributed to the ink class. The pre-

dicted ink map contains values ranging from 0 to 1, repre-

senting the ink presence probability. From this, we obtained

a binarized image by applying a threshold of 0.5.

4. Experimental Analysis

In this section, we present the experiment setup concern-

ing the ink detection task on the fragments of the recently

proposed EduceLab-Scrolls dataset and detail our training

strategy. Moreover, we present an extensive analysis of

the proposed components, both to explore their contribu-

tion and give some intuitions on what is more suitable for

this task.

4.1. Experiment Setup

Dataset. As mentioned above, in this work, we focus on

the surface volumes of the fragments in the EduceLab-

Scrolls [33] (see Figure 3). These scans have been per-

formed with X-ray micro-CT and thus are very detailed.

With a 3.2μm voxel size, they have resolutions in the or-

der of thousands of pixels and weigh several Gygabites.

In particular, we use the three publicly available fragments

released for the Vesuvius Challenge on Ink Detection re-

lated to the EduceLab-Scrolls dataset project. These docu-

ments, broken and detached from the scrolls during destruc-

tive physical unrolling tentatives, have visible ink and, thus,

it has been possible to obtain a ground truth ink map, also

thanks to infrared analysis. The scans are all composed of

65 slices but have different spatial sizes: 6330×8181 for

fragment 1, 9506×14830 for fragment 2, and 5249×7606

pixels for fragment 3. In our experiments, we use fragment

1 for test and the other two for training.

Evaluation Metrics. Considering the novelty of the task

and its similarities to other tasks, we use a combination of

metrics to evaluate our models. First of all, we adopt the
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Figure 3. Fragments contained in the considered dataset, in differ-

ent modalities.

score proposed in [33] to evaluate the ink detection perfor-

mance, i.e., the Fβ score, which weighs more the precision

than the recall and is defined as follows:

Fβ =
(1 + β2)pr

β2p+ r
,

where p and r are precision and recall, respectively, and the

parameter β=0.5. Moreover, we employ some scores com-

monly used in Document Binarization, namely the pseudo-

FMeasure (pFM) [30] and the Peak Signal-to-Noise Ratio

(PSNR), which measures the similarity of two images.

Implementation Details. Considering that most of the in-

formation is in the central slices and to reduce computa-

tional impact, we use 16 slices for training. Note that us-

ing more slices would not straightforwardly improve per-

formance: in fact, fragments have hidden text, in papyrus

layers fused in the back, that could be present in the surface

slice if we go too deep. Taking also into account that the ink

is a localized signal, we train on 16×256×256 subvolumes.

For optimization, we use the AdamW [25] optimizer

with β1 = 0.9, β2 = 0.95, and the OneCycle scheduler [46]

with learning rate 0.003. We set the batch size to 4 and

apply floating point 16 mixed precision to speed up train-

ing. For regularization, we use Drop Path [22] with rate

0.1, Channel Dropout [52], with rate and maximum dropped

channels both set to 0.5, and additional data augmentation

strategies as described in Section 4.1. We set the ink weight

in the WBCE to 1 and train the models for 20 epochs, which

takes 24 hours with an NVIDIA RTX A5000. At test time,

for the entire test fragment, we perform the prediction on

16×256×256 subvolumes and keep only the prediction on

the inner 16×128×128 part to reduce border artifacts.

Data Augmentation. We perform data augmentation in

order to enhance model generalization and robustness. In

particular, we obtain the training subvolumes starting from

a 3D lattice of the whole fragment scans, with cells of size

32×512×512 and stride 64. During each training iteration,

we extract subvolumes of size 16×256×256 from a random

3D position of the lattice cells. The rationale behind this

strategy is twofold. In the spatial dimension, the random

crop increases the variability in the training data, prevent-

ing the network from being exposed to the same patches

repetitively. In the depth dimension, exposing the network

to different slices ensures that the model learns to discern

patterns across all depth coordinates. Indeed in a real-world

application, the surface volumes would be extracted from

segmented sheets in a scroll. This process is prone to errors

and misalignment. Thus, there is rarely correspondence be-

tween depth coordinates in different samples. By enforc-

ing depth invariance, the network is able to model patterns

independently of specific depth locations. Moreover, we

randomly apply horizontal and vertical flip, 90◦ random ro-

tation, and transposition to obtain the corresponding Dihe-

dral group D4 transformations, further increasing diversity

in spatial patterns.

4.2. Results

In this section, we report an analysis aimed at identi-

fying the most relevant elements of the training procedure

and assessing the effectiveness of our proposed vFFC-based

model for the ink detection task.

Training Startegy. First, we analyze the contribution of

the applied data augmentation strategies. The results of this

analysis are reported in Table 1. It can be observed that

the Dihedral transformations bring the most benefits to the

training by inducing the larger variability. From these ex-
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Figure 4. Qualitative results of the considered variants on the test fragment. Red indicates the missed ink predictions, green indicates the

pixels correctly identified as ink, and maroon indicates the background pixels incorrectly classified as ink.

Dihedral
Transform

Random
Crop

Channel
Dropout Fβ pFM PSNR

- - - 0.37 0.53 9.37

� - - 0.46 0.57 10.38
� � - 0.46 0.57 9.62

� � � 0.47 0.58 10.09

Table 1. Ablation analysis on the augmentation strategies adopted.

Loss w Fβ pFM PSNR

Dice - 0.40 0.56 9.47

WBCE 1 0.44 0.56 10.34
WBCE + Dice 5 0.41 0.53 8.20

WBCE + Dice 2 0.45 0.56 9.86

WBCE + Dice 1 0.47 0.58 10.09

Table 2. Ablation analysis on the training loss function.

periments on fragment 1, the benefit of the random crop is

not evident. Nonetheless, when testing on the public and

the private test set of the Kaggle Ink Detection Challenge

associated with the EduceLab-Scrolls dataset, this regular-

ization strategy has been proven beneficial for increasing

the generalization capability of our model in handling frag-

ments in which the relevant information is localized in dif-

ferent slices. The effect of the random crop, especially on

the depth axis, is visible from the activation maps discussed

in Section 4.2.1. Then, we perform an ablation on the train-

ing loss terms, whose results are reported in Table 2. It

emerges that the WBCE leads to good performance, and the

combination with the Dice helps refine the results. More-

over, giving more weight to the ink class leads to worse per-

formance, despite the ink class being much less represented

than the background.

Architecture. We compare the proposed architecture with a

number of baselines in Table 3. To assess the effectiveness

Bottleneck Fβ pFM PSNR

- 0.46 0.58 9.87

stFFC 0.45 0.58 9.76

3D-Conv 0.46 0.58 10.04

vFFC 0.47 0.58 10.09

Table 3. Quantitative comparison between our model featuring vF-

FCs in the bottleneck and baselines with different bottlenecks.

Infrared image Probability map

Figure 5. Prediction probability map of our proposed model on the

test fragment.

of vFFCs, we compare our proposed model against vari-

ants featuring different kinds of bottlenecks. In particular,

we consider a variant without bottleneck layers, one with

stFFCs, and one with 3D-Convs. Overall, using the pro-

posed vFFC in the bottleneck leads to the best performance.

Arguably, this is due to the more precise prediction of the

background pixels, as can also be observed from the quali-

tative comparison in Figure 4 (see, e.g., the top-right part of

the prediction map).

Kaggle Ink Detection Challenge Results. We participate

in the Kaggle Vesuvius Challenge - Ink Detection2 with a

2www.kaggle.com/competitions/vesuvius-challenge-ink-detection
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boosted version of our model. In particular, we maintain

the architecture but employ a different training and infer-

ence strategy to fully exploit the training fragments avail-

able. In particular, we split each available fragment into

two parts in order to obtain a total of six subsets. Then, we

train six versions of our model in a k-fold strategy and set

the prediction threshold to 0.8. We then submit an ensem-

ble of these models, combined via majority voting on each

pixel with four votes out of six. The submission scored sil-

ver medal (i.e., within the top-5% submissions) in the com-

petition, scoring around Fβ=0.70 on the public test set and

Fβ=0.60 on the private one.

4.2.1 Visualizations

For reference, in Figure 5, we report the ink prediction prob-

ability of our model. Although we set the prediction thresh-

old to 0.5, we argue that such a non-thresholded visualiza-

tion can be helpful when visually inspecting the fragments.

Finally, we study the model class activation map by us-

ing LayerCam [18]. In particular, we consider the whole

depth size for a given 2D patch on the papyrus surface, ob-

taining a volume V with shape 65 × 256 × 256. Then, we

extract subvolumes of size v ⊂ V with shape 16×256×256
and stride set to 1, covering the whole Z axis, and feed them

to the network. We compute the mean activation value on

the spatial dimensions for each depth slice and show the re-

sult in Figure 6. On the x-axis of the activation maps plot,

we report the value of the starting z ∈ Z coordinate of the

subvolume. On the y-axis, we plot the absolute z ∈ Z depth

coordinate. As we can see, the plot is divided into three re-

gions, corresponding to the upper (0 ≤ z < 24), middle

(24 ≤ z < 40), and lower (40 ≤ z ≤ 65) parts of the pa-

pyrus volume V. When we feed to the model slices corre-

sponding to small values of z, they are all informative; thus,

the network does not look specifically at any of them but

rather combines the patterns. In the center-most region of

the plot, the network consistently focuses on the slice with

z ≈ 30 for several slidings of the subvolume. We argue

that this is the main manifestation of the depth invariance

that we instill with the subvolume random crop. This way,

the network can account for segmentation misalignment in

real-world scenarios, learning to recognize important slices

independently from their relative position in the subvolume.

Then, with growing values of z, the depth slices contain less

and less information, so the network focuses on the slices

with relatively lower values of z. We provide visualizations

of the volume V in Figure 6: from the depth slice, we can

see that the information is for the most part in the low z
coordinates, while the infrared image and the ground truth

show where ink is present in the surface and changes the

inner texture of the papyrus support.

Depth sliceActivation maps

Infrared imageGround truth

0

8

16

24

32

40

48

56

64

256 256

256

Figure 6. Activation maps by varying the depth and keeping the

spatial coordinates of the subvolume fed to our model (blue rep-

resents the minimum value, yellow the maximum). For reference,

we report the corresponding ground-truth ink map, the infrared

image of the surface, and the coronal slice of the subvolume.

5. Conclusion and Future Work

In this work, we have devised the vFFC operator, a mod-

ification of the standard FFC designed to handle volumetric

data directly. Moreover, we have proposed to incorporate

the vFFC in an architecture for the DDR sub-task of ink de-

tection on volumetric scans of carbonized papyri fragments

from the EduceLab-Scrolls dataset. Through experimental

analysis, we have assessed the effectiveness of our approach

and hopefully contribute to the emerging research interest

in DDR on the challenging Herculaneum papyri data. Fi-

nally, we argue that the vFFC operator could also be ap-

plied to other tasks and scenarios involving volumetric data

(e.g., medical imaging), which we leave for future work.
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