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Figure 1: We present a pipeline for enabling the fine-scale 3D-reconstruction of a cultural heritage masterpiece - the Bayeux

Tapestry. The proposed system transforms an existing RGB panorama (left) of this embroidery into a normal map panorama

(right), which reveals the thin geometric details of the artwork.

Abstract

The Bayeux Tapestry is an exceptional cultural heritage
masterpiece by its size and the finesse of its details. Dig-
itizing it raises a challenge, knowing that it is extremely
fragile and thus lasers or invasive techniques are out of
scope. In this work, we address this 3D-reconstruction
challenge by introducing a pipeline to generate a high-
resolution panorama of the Tapestry’s geometry. It is based
on a deep learning architecture that converts the RGB im-
ages of a pre-existing 2D panorama into a 2.5D normal map
panorama. With a view to facilitating the Tapestry inclu-
sive accessibility, we further show that coupling our 3D-
reconstruction pipeline with a segmentation method allows
the affordable and rapid creation of 3D-printed bas-reliefs,
which can be explored tactilely by visually impaired people.

1. Introduction

Art conservation has become of paramount importance

since art itself exists [13], and technology has a crucial role

to play in this domain. The emergence of cameras first en-

abled the creation of back-ups of pictured artworks [41].

Then, with the rising of computers and the internet, on-

line museums such as the “Virtual Museum of Computing”

started to develop [6]. The technologies’ improvement then

progressively allowed more complex digitization systems

which go beyond 2D, e.g. laser scanners [30], photogram-

metry [3], structured light [44] or time-of-flight [33]. Nowa-

days, 3D digitization is considered as a common practice in

the cultural heritage domain [28], and high-quality results

have been demonstrated [8]. Thus back-ups are essential to

keep a trace of time deterioration and more important to the

reconstruction of cultural heritage art or monuments after

accidents such as fire destruction [32].

In the present work, we tackle the 3D digitization of

a particular large-scale and fragile artwork: the Bayeux

Tapestry. This masterpiece from the eleventh century tells

the epic of William, Duke of Normandy, through a 70m
long and 50cm high embroidery. Being made of wool

strings on a linen canvas, it exhibits fine-scale surface de-

tails whose perception remains out of scope for the public -

the Tapestry is protected by glass. The exceptional size of

this masterpiece, along with the finesse of its details, makes

its 3D digitization particularly challenging.

Contribution – The deep learning-based solution we

introduce turns a pre-existing RGB panorama [1] into a

2.5D normal map panorama which reveals the thin geomet-

ric variations of the artwork (Fig. 1). This allows not only

the virtual inspection of the embroidery’s details by cura-

tors or the general public but also the automated creation

of 3D-printed objects enabling the actual perception of the

micro-relief. As an application, we show how coupling our

3D-reconstruction pipeline with a segmentation framework

allows the creation of 3D objects which can be explored

tactilely by Visually Impaired People (VIPs).
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2. Related work
Digitization of real-world assets in three dimensions is

an open problem where choosing a reconstruction approach

requires balancing the advantages and drawbacks of each

method. The main criteria are the precision of the recon-

struction, the subject scale, and fragility, the setup cost and

difficulty, as well as specific accessibility constraints. We

are especially interested in digitizing the Bayeux Tapestry,

which, as previously mentioned, is a thousand-year-old

wool embroidery on a linen canvas. Preservation of this

piece of European history is the main constraint, so coordi-

nate measuring machines, with their probe-mounted mov-

ing arms, are obviously out of the equation.

Digitizing large-scale cultural artifacts very often in-

volves lasers [15, 20, 30], however, this is also out of ques-

tion for fragile artworks such as the Bayeux Tapestry. Alter-

native non-destructive methods based on multi-image 3D-

reconstruction have been proposed [29]. Yet, this method

has been thought of for building reconstruction, not for fine

details of structures such as embroidery. One could imagine

resorting to structured light sensing as in [44] However, the

presence of the protective glass prevents such a technique

from working correctly. A viable solution could be pho-

togrammetric techniques [3]. Those kinds of techniques al-

low representing the shape of large-scale artworks, e.g. the

“Meissen Fountain Table” presented at the Victoria and Al-

bert Museum in London [36]. Still, the 3D-reconstruction

of high-frequency geometric variations remains limited.

Since we are interested in the representation of such fine-

scale embroidery variations, photometric techniques seem

preferable over photogrammetry. Shape-from-shading [22]

has for instance been considered in [19, 21]. Yet, these

works are interested in giving a 3D interpretation of paint-

ings, which are subject to the “trompe l’oeil” ambiguity,

while we are interested in an object presenting real micro-

variations on its surface. The photometric stereo tech-

nique (PS) [42] provides a solution to this high-frequency

3D-reconstruction problem. Furthermore, it has success-

fully been applied in various cultural heritage applica-

tions [17, 31]. Therein, a per-pixel surface normal map

is estimated from a series of photos taken under the same

viewing angle, while varying the lighting directions to cre-

ate shading effects in the images. The precision of the

3D scan is thus mostly dependent on the sensor resolution.

With the emergence of new technologies, the resolution of

recent cameras tends to dramatically increase: we passed

from a resolution of 4 megapixels at the beginning of the

century to a resolution of 45 megapixels in 2023. Hence,

one may have good hopes to recover structures as thin as

the wool strings of the Tapestry. Besides, the setup for pho-

tometric stereo is quite straightforward and relatively cheap.

It only requires a remotely triggered camera, a tripod, and

spherical objects used for calibrating the light directions.

However, applying this solution to the entire Tapestry

would be extremely time-consuming, as this would require

successively setting a PS setup for each scene of the 70m
artwork. On the other hand, we already have at our dis-

posal an RGB panorama of the artifact [1]. Therefore, we

propose to use PS on a small subset of the Tapestry to con-

struct a ground truth database of (image, geometry) pairs.

Then, from this ground truth database, a neural network will

be trained to turn a single RGB image into a normal map.

Consequently, the entire RGB panorama can be converted

into a normal map panorama, yielding the fine-scale 3D-

reconstruction of the large-scale artwork. This is detailed in

the next section.

3. 3D-reconstruction of the Tapestry surface
Our aim in this section is to turn each RGB image of

the panorama [1] into a representation of the surface geom-

etry. Obviously, this is an ill-posed inverse problem since

it is impossible to separate color from shape without a pri-

ori information [2]. Yet, insofar as all considered images

represent a unique embroidery (which is a quasi-planar sur-

face with thin surface variations), we hope that a trained

neural network will manage to generalize correctly i.e., find

a shape that is qualitatively adequate (our work has a peda-

gogical, rather than a metrological, aim). To encode the thin

geometric variations, we represent the 3D shape by a nor-

mal map. The 3D-reconstruction problem thus becomes an

image translation one, where the input image must be con-

verted into a normal map. We propose to solve this problem

using a Generative Adversarial Network (GAN) inspired by

Pix2Pix [24]. As illustrated in Fig. 2, such a network con-

sists of a generator that turns the RGB image into a normal

map and a discriminator that compares the generated map

with the ground truth one.

Image Generator (G) :

encoder - decoder

Intermediate

normal map

Discriminator (D)

True or false

Normal map

Figure 2: GAN architecture: pairs (image, normal map) are

sent to an encoder-decoder generator (G). It creates a new

normal map which is compared with the real one by the dis-

criminator (D) to minimize the discrepancy between them.
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3.1. Training set creation using photometric stereo

The proposed network must be trained on a dataset of

ground truth (image, geometry) pairs. In order to create this

training set, we achieved the 3D-reconstruction of a subset

of the Tapestry through photometric stereo, as illustrated in

Fig. 3.

(a) Digitization of the scene 55. The camera

is fixed on a tripod, and the flash is held on

the side, directed toward the captured scene.

(b) Calibration

sphere stick on

the glass panel.

(c) Distribution of flash locations on

a hemisphere around the subject.

(d) 3D-scan equip-

ment.

Figure 3: Equipment and protocol for the 3D-digitization of

the Bayeux Tapestry by photometric stereo.

Acquisition protocol The PS technique infers geometry

from the brightness variations arising in the images as the

light direction changes. Getting sharp images without noise

is key to the reconstruction quality. We thus decided to use

a DSLR camera with high light sensibility, which can be re-

motely triggered and connected to a flashlight (cf Fig. 3d).

An important point to mention is that a pre-study of the

digitization protocol was performed and submitted to the

“Direction régionale des affaires culturelles” (DRAC Nor-

mandie) to ensure there was no deterioration risk. Therein,

we established that the energy brought by our flashlight

amounts to 6 seconds of the Bayeux Tapestry’s normal

lighting conditions in its exhibition room.

PS assumes that all images are captured from the exact

same point of view. However, at the scale of a pixel, any

sensor vibration due to a manual trigger or floor vibrations

due to walking around can create misalignments in the se-

quence of images. A strong and stable tripod, as well as

remote triggers, are thus highly recommended. In order to

calibrate the location of the flashlight for each image of a

sequence, we placed small reflective spheres at the images

corners. Since the artifact was kept behind its protective

glass, we designed cheap, hand-made calibration spheres,

by joining plastic door knobs and bathroom wall suction

cups (Fig. 3b), enabling easy displacements of the spheres.

Once the equipment is gathered, the digitization steps

are the following: 1) place the camera on its tripod and ad-

just the frame; 2) place the reflective spheres on the image

corners; 3) focus on the subject; 4) remotely launch a se-

quence of shots while changing the flash location between

each shot. A minimum of 3 shots with non-co-planar light

sources is required for photometric stereo, but we went with

12 shots to enable robustness to outliers such as cast shad-

ows and caustics induced by the spheres and glass panel.

As illustrated in Fig. 3c, eight of the sources were uni-

formly placed at an elevation angle of roughly 50◦ (the op-

timal value for the digitization of quasi-planar artefacts [7]),

while four additional shots were taken with a smaller eleva-

tion angle to increase the number of outlier-free images.

Pre-processing Before proceeding to the 3D-

reconstruction, it is necessary to calibrate the incident

lighting using the reflective spheres. It is straightforward

to infer the illumination direction from the location of the

saturated pixels on the sphere. However, the flash source

being non-directional, each sphere provides a different

estimate: we simply average them to have a reliable

estimate at the center of the scene.

Despite relying on a stable tripod, there might still be

slight sensor displacements between the shots. To cope with

this issue, we automatically register the image sequence us-

ing a low-rank approximation procedure [34]. The Tapestry

has a diffuse reflectance, hence the light-geometry interac-

tion is fully governed by Lambert’s law. Undesirable caus-

tics and shadows cast by the calibration spheres, visible in

Fig. 4a, can thus be considered as outliers to the linear Lam-

bertian model. In addition to compensating for misalign-

ments, the low-rank approximation procedure allows us to

automatically remove such artifacts from the input images.

3D-reconstruction algorithm Given the pre-processed

images and calibrated illumination, we iteratively estimate

the reflectance, normals, and source intensities by semi-

calibrated PS [12]. This yields a normal field which is

integrated into a depth map using discrete cosine trans-

form [35]. Since we wrongly assumed directional lighting

for simplicity, the depth map exhibits a well-known low-

frequency bias (“potato chip” effect [23]). We remove this

bias by fitting and subtracting a low-dimension polynomial

from the depth map, which is simpler to implement than,

e.g., resorting to photogrammetry [26]. Next, we use finite

difference to obtain the normal map which will finally serve

as the ground truth in our deep learning-based algorithm.

The quality of this normal map can be qualitatively veri-

fied by integrating it again into a depth map, as in Figs. 4b

and 5c. Besides, such depth maps can be meshed and turned

into a printable 3D volume, as illustrated in Fig. 5d.
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(a) Two of the input images. Note the shadows and caustics induced by the

spheres and the glass.

(b) Highly detailed 3D-reconstruction, overlaid on

one pre-processed input image.

Figure 4: Photometric stereo-based generation of a ground truth (image, geometry) pair, illustrated on the death of Harold

sequence (scene 57). The normal map corresponding to the PS reconstruction, coupled with any of the pre-processed images,

will serve as ground truth in our training set.

(a) Image (b) Normals (c) Depth (d) 3D-print

Figure 5: Photometric stereo-based generation of a ground

truth (image, geometry) pair, illustrated on the Duke

William sequence (scene 27). Besides constituting our

training set, the estimated geometries can be 3D-printed in

view of tactile experiments (see Sect. 4).

Complete database The previous process resulted in the

high-resolution 3D-reconstruction of 16 scenes among the

58 scenes of the Bayeux Tapestry. Therein, each normal

map is of size 5568× 3712 px, and is pixel-accurate regis-

tered with 12 gray-level images. On those images shadows

or caustics are not present thanks to the pre-processing pro-

cedure. To constitute our ground truth database, we empiri-

cally picked one gray-level-converted pre-processed image.

Remark that since we have the estimated reflectance, we

could have rendered new synthetic images under novel illu-

mination. We left such an approach as perspective. Then,

we split these 16 (image, normal map) pairs into 13 for

training and 3 for testing. Lastly, each pair was randomly

cropped into 500 thumbnails of size 256×256 px, providing

a total of 6500 data for training and 1500 for testing.

3.2. GAN-based normal estimation framework

Base architecture Given the previously described ground

truth database, we first trained a standard GAN architecture

(Fig. 2) to minimize the 1-norm difference between real and

simulated normal maps, using the Adam algorithm, which

we let iterate during 50 epochs.

Concave-convex ambiguity This basic GAN architecture

provided somehow reasonable results, with an average an-

gular deviation of 13.30 ± 1.07◦ on the test set. How-

ever, by integrating the resulting normal maps, we noticed

that some structures were incorrectly reconstructed. Indeed,

as illustrated in Fig. 6, several yarns appear concave, al-

though by nature the embroidery exhibits only convex struc-

tures. This is after all not that surprising: inferring geome-

try from a single image comes down to solving the shape-

from-shading problem, which is fundamentally prone to the

concave-convex ambiguity [18].

Here, we can interpret the concave aspect of the gener-

ated yarn as an over-interpretation of the high frequencies

by the GAN. In fact, frequency artifacts are well known

in deep fake detection [25]. They appear during both the

generation and discrimination steps of the learning process.

During the image generation step, a U-Net architecture is

used [24, 39]. This neural network architecture is based

on several mathematical operations, including convolutions

and max pooling. During the contraction process, those in-

crease the pixel classification and decrease its localization.

In other words, we know if the pixels are concave or convex

thanks to their closest neighbors, so the fine structures of the

embroidery are well generated but not the general structures

like yarns form.

GAN Regularized GAN

Figure 6: GAN-based 3D-reconstruction of the King Ed-

ward sequence (scene 1). Without regularization, some of

the embroidered yarns are wrongly inferred as concave.
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Low-frequency regularization During the discrimina-

tion step, the generated normal is compared to the input

one by combining two losses: L1 and LGAN . Here, LGAN

is a Markovian discriminator (PatchGAN) which captures

the high-frequency structures, while the L1 term is expected

to enforce low-frequency correctness. However, the previ-

ously observed concave-convex ambiguities show that the

low frequencies are not sufficiently well generated in our

particular context. This drove us to add a third term to fur-

ther encourage low-frequency correctness. To this end, we

added an L1 regularization on the low-pass filtered normals:

Lreg(N, Ñ) = ‖F (N)− F (Ñ)‖1 (1)

where F is a low-pass filter:

F (N) = F−1(F(N) ·H) (2)

H(u, v) =

{
1 if D(u, v) ≤ D0

0 if D(u, v) > D0
(3)

D(u, v) =

√(
u− M

2

)2

+

(
v − N

2

)2

(4)

with F the Fourier transform, (M,N) the image size and

D0 a parameter empirically set to 50. Fig. 7 summarizes

the architecture of the proposed regularized GAN.

Evaluation The regularized GAN was trained in the same

conditions as above, on the same dataset. This required

about 12 computation hours on an Intel Xeon E5-26-40 v4
processor at 2.4 GHz equipped with an MSI Ge Force GTX

1080 Ti 3584 Cores GPU with 11GB of RAM. Quantita-

tively, we obtain an average angular deviation of 13.26 ±
1.11◦ on the test set, which is slightly better than the unreg-

ularized version. As expected, the differences between the

unregularized and the regularized are sparse, and located on

the few yarns which were incorrectly inferred as convex. A

concavity correction example is provided in Fig. 6.

In Fig. 8, we provide a few qualitative normal recon-

struction results. The results on the test set are very sat-

isfactory. This is not very surprising since the illumination

resembles that in the training set. Still, it is worth notic-

ing some imperfections: in the first reconstruction, a spot is

wrongly interpreted in terms of shape rather than color vari-

ations. Indeed, no such spot is present in the training set,

which should be enlarged if we want to improve robustness

to such effects. Also, the second reconstruction is slightly

blurred: this is likely due to the encoder-decoder architec-

ture, which builds upon convolution layers. Interestingly,

the proposed approach seems robust to illumination varia-

tions: the third image was directly taken from the online

panorama of the Tapestry [1]. In this case, the illumination

is uncontrolled and we have no ground truth, yet the results

are qualitatively satisfactory.

Image

Generator Intermediate

normal

Discriminator

True or false

Normal

Filtered

normal

Filtered

intermediate

normal

Figure 7: Regularized GAN architecture. In comparison

with the standard GAN architecture (Fig. 2), a low-pass fil-

ter is applied to both the ground truth and the generated nor-

mals, and the loss in the discriminator combines distance

between both the normals and the filtered normals, to fur-

ther encourage low-frequency correctness.

Estimated

normal maps

Input

images

Real

normal maps

Daylight image

Figure 8: Normal map reconstruction by the regularized

GAN architecture on images from the test database (top

rows) and on a photograph acquired under uncontrolled

lighting (bottom row).

3.3. Normal map panorama

An image digitization campaign of the Tapestry was car-

ried out by “La Fabrique de Patrimoines en Normandie” in

January 2017. This digitization had several goals: serve

as a reference for studying the future evolution of the ar-

tifact; serve as the basis for different research programs;

feed a geo-referenced image database; and provide high-

resolution images of the artifact for research, cultural, ed-

ucation, and communication purposes. The campaign re-

sulted in a series of 86 high-resolution images (roughly

8000× 5500 px).
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Figure 9: A view of the web interface which allows the ex-

ploration of the geometric panorama of the Tapestry.

Those daylight images enabled the constitution of a

high-definition digital panorama of the Tapestry, of size

680.000 × 5500 pixels. This RGB panorama is readily

available online, allowing one to remotely explore the art-

work [1]. Using our regularized GAN architecture, we con-

verted each of the input RGB images into a normal map and

re-assembled all the obtained normals into a new panorama.

This new geometric panorama of the Tapestry can be ex-

plored in a web interface (Fig. 9) which will be made pub-

licly available, allowing anyone to explore the thinnest geo-

metric details of this cultural heritage masterpiece. Besides

online exploration, reconstructed geometry can also serve

as a basis for creating 3D-printed objects in view of tac-

tile experiments, in particular for visually-impaired people.

Such an application is explored in the next section.

4. Application: 3D-prints for blind people

In 2020, M. J. Burton et al. [9] estimated that 1.1 billion

people have a visual disability. For them, the visual art-

work’s perception remains difficult. In order to be more

inclusive, some museums make visual artworks accessible

through another sense – hearing or touch. For example,

the Petite Galerie du Louvre presents artworks with au-

dio descriptions, while the exhibition “Touching the Prado”

combines paintings with Braille descriptions and three-

dimensional plates. The 3D-reconstruction of the Tapestry

which was described previously allows us to follow a sim-

ilar track, by enabling tactile exploration of the artwork

through 3D printing. To this end, we embed the previous

3D-reconstruction framework into a larger pipeline aim-

ing at the automated generation of 3D objects from a sin-

gle image of the Tapestry, as illustrated in Fig. 11. This

pipeline combines the previous 3D-reconstruction module

with a segmentation tool so that the semantically important

structures can be emphasized in the 3D-printed bas-relief.

4.1. Detection and segmentation

We developed a module for detecting, segmenting, and

classifying the elements present in the input image. We

know from previous studies of the Tapestry [5] that there

is a total of 1515 elements, which can be grouped into 10
different categories. We decided to focus on four: letters,

animals, people, and boats. The module aims to locate, pre-

cisely segment, and classify each of these elements. For

this, we use the Mask-RCNN [37] algorithm implementa-

tion provided in Detectron2 [43], cf. Fig. 10.
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Figure 10: Mask-R-CNN neural network architecture. Pairs

(images, annotations) are fed to the neural network, which

is trained to locate, segment, and classify the elements

present in the image. Here, segmenting the three charac-

ters is difficult, as one is partially occluded by another.

To constitute the database, we chose 12 representative

images of size 8100× 5600 px. Using the CVAT [14] tool,

we annotated the four class elements. The database is aug-

mented by simulating camera translations through random

crops of size 5500 × 5500 px. We then rescale them to

1000 × 1000 px by linear interpolation and apply random

modifications of brightness, saturation, luminosity, and con-

trast. This yields a total of 56000 pairs (image, annotations)

for training, and 50 for testing. Out of the 8 models pro-

vided in Detectron2 [43], we chose the X101-FPN model,

whose weights pre-trained on COCO were refined using our

learning database. For the optimization, we used an inertial

stochastic gradient descent algorithm, which is stopped af-

ter 50000 epochs. The batch size is 5 images per epoch.

Refining the weights requires about 30 computation hours

on the same processor as in Sect. 3.

The results, illustrated in Fig. 12, are in line with what is

expected on simple and non-overlapping elements. Yet, as

soon as the elements are superimposed, the approach limits

become visible. Under-segmentation (right character head

in the second image), misclassification (left horse classified

as a man in the last image) and over-segmentation (second

horse detected in two parts in the bottom-left image) indeed

appear. A possible workaround would be to refine the auto-

matic segmentation by a semi-supervised technique such as

GrabCut [40] or SAM [27].
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An image of the Bayeux Tapestry Detection and segmentation

3D-reconstruction

3D-printed bas-relief

Figure 11: Complete pipeline for enabling the tactile exploration of the Bayeux Tapestry. The proposed system transforms an

image (left) of this embroidery into a 3D-printed bas-relief that can be explored tactilely (right). A detection and segmentation

module isolates each element of the scene, while the 3D-reconstruction module transforms the image into a normal map.

Figure 12: Detection and segmentation of the four chosen

categories. The results are globally satisfactory, except on

overlapping elements.

4.2. Creation of the shapes

Using the masks found during the first stage, the aver-

age height of each element is fixed manually (Fig. 13), so

that the different semantic structures can easily be identified

in tactile experiments. Then, the surface thin variations are

transferred into these elements by integrating the normals

obtained from the previously described 3D-reconstruction

module. The result is a 2.5D representation where each el-

ement can be identified by its height, and the inside of each

element is “textured” according to the actual geometry of

the embroidery in order to give a feeling of the thinness of

the artwork. Fig. 15 shows some examples of 3D models

that have been created in this way.

4.3. Experience feedback

To empirically validate the interest of our pipeline, we

printed a series of bas-reliefs and, as shown in Fig. 11,

we provided them to volunteers during a tactile experience.

This experiment was carried out with the support of one

“sighted” person, three partially blind and three blind ones,

to receive feedback from people with different perceptions.

Objects detected

and segmented
Extracted masks Manual

levels choice

Figure 13: Setting each element’s average height, from the

detected and segmented masks. Here the background is at

level zero, the letters at 2mm, and the comet at 3mm.

General impressions We have received very positive ini-

tial feedback. In fact, these supports have been perceived

as very complementary to the tactile plates handmade by

Rémy Closset (Fig. 14). Whereas those are sculpture-like

smooth, ours transcribe the artwork’s thin geometry. How-

ever, for both of them, the addition of an audio description

is essential to accompany the touched discovery and to ex-

plain its semantic content, as is also analyzed in [38]. In

our future prints, we will therefore amplify it before the in-

tegration. A major difficulty remains in the perception of

partially occluded objects. In this case, we can either re-

spect the original work or transform it, for example by tak-

ing the liberty of not representing the occluding element.

The latter solution eases the elements’ understanding and

was more appreciated.

Figure 14: Bas-relief handmade by M. Closset [16], repre-

senting Harold’s oath sequence.
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Figure 15: Three scenes from the Bayeux Tapestry (left), and their 3D representation obtained following the proposed

approach. Attributing a different height to the segmented elements allows highlighting them while transferring the embroidery

geometry enabling the perception of the artwork micro-relief.

Possible extensions of the device It seems very impor-

tant to pay attention to the represented elements’ spacing.

So far, to not betray the original artwork, we kept its layout.

This may not be relevant when the spacing is insufficient to

feel the separation between two elements. In future print-

ings, we will make sure that all elements are separated well.

Another possibility is to allow elements to be detached from

their support, like a puzzle. This idea would ease the ele-

ments outline’s discernment, and make at the same time the

experience more interactive.

We also proposed a color addition to the prints. Although

using colors for VIPs may not seem relevant, this is not

true for partially blind people. High-contrast colors would

help them to distinguish elements. Furthermore, during the

Bayeux Tapestry creation, only 10 natural dyes have been

used, which makes the print’s colorization doable. Work in

progress [11] is aimed at identifying the wool composition

used during the Bayeux Tapestry creation, and so its origi-

nal colors. It would be interesting to add them to our prints,

in order to show what the work might have looked like at its

creation end.

A last proposal is to enhance tactile exploration with

haptic feedback and sound. For instance, an audio descrip-

tion could be launched when an object is touched twice, in

a similar way hand gestures are recognized in deaf-blind

communication systems [4].

5. Conclusion and perspectives

We have proposed a framework for the fine-scale 3D ap-

proximation of the entire Bayeux Tapestry’s surface, with a

particular view at improving its pedagogical access. A reg-

ularized GAN architecture was proposed, which infers the

geometry of the embroidery’s surface from a single image.

This allowed us to transform an existing RGB panorama

into a normal map panorama which can be used for remote

inspection of the embroidery’s geometric details. As an ap-

plication, we also showed how such a 3D-reconstruction

pipeline can be coupled with automatic segmentation tools

for generating 3D-printed objects which enable inclusive

tactile explorations of the artwork. In addition to the av-

enues of improvement mentioned in the previous section,

we plan to improve the device and integrate it into a mul-

timodal inclusive system, in the manner of Q. Cavazos et

al.[10].
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