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Abstract

Motivated by the challenges of the Digital Ancient Near
Eastern Studies (DANES) community, we develop digital
tools for processing cuneiform script being a 3D script
imprinted into clay tablets used for more than three mil-
lennia and at least eight major languages. It consists of
thousands of characters that have changed over time and
space. Photographs are the most common representations
usable for machine learning, while ink drawings are prone
to interpretation. Best suited 3D datasets that are becom-
ing available. We created and used the HeiCuBeDa and
MaiCuBeDa datasets, which consist of around 500 anno-
tated tablets. For our novel OCR-like approach to mixed
image data, we provide an additional mapping tool for
transferring annotations between 3D renderings and pho-
tographs. Our sign localization uses a RepPoints detector
to predict the locations of characters as bounding boxes. We
use image data from GigaMesh’s MSII (curvature) based
rendering, Phong-shaded 3D models, and photographs as
well as illumination augmentation. The results show that
using rendered 3D images for sign detection performs bet-
ter than other work on photographs. In addition, our ap-
proach gives reasonably good results for photographs only,
while it is best used for mixed datasets. More importantly,
the Phong renderings, and especially the MSII renderings,
improve the results on photographs, which is the largest
dataset on a global scale.

1. Introduction
The cuneiform script is one of the oldest writing sys-

tems in the world. The majority of the cuneiform script

is found on clay tablets into which each wedge-shaped

cuneiform sign was impressed with a reed stylus. Due to

the three-dimensional nature of the signs, the script is only

legible with proper illumination. Consequently, the work

with single photographs is limited because the lighting is

fixed, while reading requires repositioning the often curved

tablets. So more recent approaches are based on imaging

systems capturing information about the 3D shape such as

the Leuven Dome [8]. Especially, Structured Light Scan-
ning (SLS) is becoming increasingly popular for documen-

tation of small archaeological findings [14]. So 3D models

captured by 3D scanners are also increasingly used to cap-

ture and visualize clay tablets with cuneiform script, espe-

cially in combination with high-quality curvature rendering

technique for 3D datasets using Multi-Scale Integral Invari-
ant (MSII) filtering [19]. Filtering and rendering is applied

with the Free and Open Source Software GigaMesh1. The

first steps in using neural networks to recognize cuneiform

writing on images were taken in the 1990s [21]. Apply-

ing artificial intelligence systems directly to 3D models has

proven challenging, but [1] has shown promising results for

period classification of tablets. This article, which is a con-

tribution to Digital Assyriology [2] also known as Digital
Ancient Near Eastern Studies (DANES), focuses on the use

of different types of renderings and explores their poten-

tial in machine learning as a step towards Object Character
Recognition (OCR) of this particular ancient script. In addi-

tion, we will compare the results on differently rendered 3D

datasets in combination and comparison with photographs

for the task of sign detection.

1https://gigamesh.eu

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Related Work

The formidable challenge of OCR for cuneiform is an

important DANES research topic and paves the way for

the vision of automatic ancient language translation as the

recently introduced Neural Machine Translation (NMT)

model that allows the translation of Akkadian into En-

glish by [7]. The promising results, evaluated by the test

data and experts, are interesting pioneering work in au-

tomatic Cuneiform translation. However, their NMT re-

quires transliterations in cuneiform Unicode or translitera-

tion in Latin script and cannot be performed on photographs

or 3D renderings. Consequently, the OCR preprocessing

of cuneiform tablets is necessary. [24] describes an OCR

system to determine transliterations which consist of sev-

eral subtasks such as sign localization, sign classification,

and sign-to-line assignment. This procedure is a complete

pipeline from a photograph as input to a transliteration as

output. This pipeline performs the above-mentioned steps

of OCR separately, first locating and cropping, then clas-

sifying the extracted signs, and finally arranging them into

lines. The end-to-end evaluation of the pipeline with Char-
acter Error Rate (CER) of 0.69 is improvable and insuffi-

cient yet. However, the sign detection task reached an Av-
erage Precision (AP) of 0.78. It is worth mentioning that

their available dataset of over 1300 fully annotated tablets

is a notably larger corpus compared to research presented

in [3], [9], and [20].

Cuneiform was used as the script of several languages,

including Elamite, Sumerian, and Assyrian. In the example

of the Elamite language, an annotated dataset2 is now avail-

able. However, the availability of expert annotated datasets

is still limited for other languages and periods. To con-

tribute to the solution of the missing datasets, we provide

our applied dataset of manually annotated 3D renderings

under a CC-BY license. Because of the scarcity of data, [3]

introduced a weak-supervised learning approach that uses a

large dataset of transliterations and annotated photographs

from the Cuneiform Digital Library Initiative (CDLI)3 to

train a cuneiform sign detector that locates and classifies the

signs. Another approach reduces the impact of data limita-

tions through illumination augmentation [20]. Using a 3D

model rendered under different lighting conditions to aug-

ment their dataset of cut-out signs has shown promising re-

sults in their sign classification. However, their main dataset

consists of cropped signs from photographs from the Hethi-

tologie Archiv at the Hethitologie Portal Mainz (HPM)4.

In this work, we use a Convolutional Neural Net-

work (CNN) to locate cuneiform signs on uniformly sized

2DeepScribe:https://github.com/edwardclem/
deepscribe

3https://cdli.mpiwg-berlin.mpg.de
4https://www.hethport.uni-wuerzburg.de/HPM/

index.php

cropped images which could be utilized in a pipeline as the

recently presented in [24]. Their results suggest a weak-

ness in accurately predicting overlapping bounding boxes

with the ground truth. As a consequence of incompletely

cropping signs due to the inaccurately predicted bounding

boxes, a potential information loss may occur. This could

explain the decrease in classification accuracy of the whole

pipeline compared to their classifier, which was evaluated

on cropped signs from the annotations. Therefore, we pro-

pose to focus on evaluating the sign localization by consid-

ering true positives with an Intersection-over-Union (IoU)

overlap with the ground truth bounding box of at least 75%.

We present a sign detector trained on 3D renderings that still

performs well with this more strict evaluation constraint.

For the evaluation, we compare different types of render-

ings with photographs to determine their potential for such

a task. Furthermore, our evaluation considers the type of

image used, the accuracy of the bounding boxes, and the ef-

fect of illumination augmentation. For our training, we use

four available raster image datasets separately and in com-

bination. We also apply a similar illumination augmentation

method as [20], but to our entire dataset of 3D models.

The aforementioned need for an accurate sign localiza-

tion as part of a pipeline is further motivated by our ap-

proach, which will be introduced in the following section,

along with our approach to this sign detection challenge.

2. Method
First, we briefly introduce a wedge detection pipeline

that includes the sign detector described in section 2.2. Sec-

ond, we describe a data augmentation approach based on 3D

renderings in section 2.3.

2.1. Wedge Detection Pipeline

[23] introduced a pipeline approach to detect wedges in

images of entire Cuneiform tablets. Similar to [24], the

pipeline initially locates the signs as bounding boxes in im-

ages and crops them. These cutouts were used to detect

and classify the wedges, unlike [24] where the signs are

classified. In [23], the same architecture as in this work

was used for the sign detection, but only images of whole

tablet segments were used, which gave useful results with

a mean F1 − Score = 0.61 on renderings but performed

less optimal for large tablets. The investigated wedge de-

tector is based on the ideas of Point RCNN [26] approach.

In summary, a Region Proposal Network (RPN) based on

RepPoints [25], predicts an area in the image known as the

Region of Interest (RoI) as a bounding box, which may con-

tain a wedge, and the features of this region are extracted by

RoI Align [10]. These RoI features are the input of a refine-

ment neural network that provides offsets for each corner

point of the bounding box to specify a wedge-shaped rotated

quadrilateral instead of a bounding box. Furthermore, this
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network classifies the wedge according to the PaleoCodage

encoding [12] or the Gottstein system [6]. The effect of

the two systems for the wedge detection was evaluated and

discussed in [23], where the Gottstein system achieved a

slightly higher mean precision of 0.52 compared to the Pa-

leoCodage mean precision of 0.43. In general, the precision

of the wedge detection appears to be sufficient to apply, e.g.

for an automatic alignment of the clay tablets, but the chal-

lenge is to improve on the low recall of less than 0.19 when

using the PaleoCodage encoding and 0.15 for the Gottstein

system. The further developments of this important chal-

lenge are not part of this work. However, the sign detector

was further investigated and improved by an augmentation

method described below.

2.2. Sign Detection

The sign detector is a single-class object detection

task, where the outputs are bounding boxes defined by

(xmin, ymin, xmax, ymax) with an assigned confidence

value between 0 and 1, whether the bounding box is a sign

or not. As in [23], we used the one-stage anchor-free ob-

ject detector RepPoints [25] with a ResNet18 [11] as back-

bone. Originally, [25] introduced the RepPoints architecture

with a ResNet backbone used as a Feature Pyramid Network
(FPN) [15]. However, we did not achieve better results with

FPN, so we simplified our architecture by using the layer c4
of ResNet18, which results in a feature map f with a reso-

lution of 64× 64 pixel for our input size of 512× 512 pixel

squares.

RepPoints does not directly predict the bounding box,

but a set of k representation points and a confidence value

for c+1 classes for each point (xf , yf ) of the feature map f
returned by the backbone, where c is the number of classes,

and one is added as the background. In our task, we set

c = 1 because we decided between sign and background.

Applying two non-shared subnetworks with the feature map

as input leads to the classifications and localizations con-

sisting of two point sets P1(xf , yf ) and P2(xf , yf ) of the

objects. The set P1(xf , yf ) is a result of k offsets Δxf and

Δyf for each feature map point (cf. eq. (1)):

P1(xf , yf ) = {(xf +Δxfi , yf +Δyfi)}ki=1 (1)

These k offsets are the first part of the localization subnet

and are also used as deformable convolutional layer input

offsets in classification and further localization subnet. To

refine the point positions, the localization subnet predicts

the set P2(xf , yf ) by k offsets Δx′
f and Δy′f , based on the

points in P1 (cf. eq. (2)).

P2(xf , yf ) ={(xp1i +Δx′
fi , yp1i +Δy′fi)}ki=1,

(xp1i, yp1i) ∈ P1(xf , yf )
(2)

For each experiment, k = 9 is used, following [25]. To train

the network and to get a bounding box result, these k points

Figure 1: Example of the set P1(xf , yf )(brown) with the

resulting pseudo bounding box. The arrows symbolize the

offset from (xf , yf )(blue) to the k points.

Figure 2: Example of the set P2(xf , yf ) (yellow) with

the resulting pseudo bounding box. The arrows symbolize

the offset from P1(xf , yf ) (brown) to the corresponding k
points of P2(xf , yf ).

of the point set Pj for each feature map position (xf , yf )
must be converted to a pseudo bounding box, where the

min-max function is used for both dimensions, as shown

in eq. (3).

x̂min = min
xp∈Pj(xf ,yf )

(xp)

ŷmin = min
yp∈Pj(xf ,yf )

(yp)

x̂max = max
xp∈Pj(xf ,yf )

(xp)

ŷmax = max
yp∈Pj(xf ,yf )

(yp)

(3)

The fig. 1 shows an example of representation points set

P1(xf , yf ) and the offsets Δx′
f and Δy′f with the pseudo

bounding box at the feature map point (xf , yf ). The refine-

ment of these points by the second offsets Δx′
f and Δy′f

and the resulting bounding box, which is also the final de-

tection result, is visualized in fig. 2.

The training is driven by two localization losses and

one classification loss. Both localization losses are calcu-
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lated by the smooth l1 distance between the four bounding

boxes describing values xmin, ymin, xmax and ymax of the

ground truth (GT) bounding boxes and the predicted pseudo

bounding boxes. As described in [25], the center of the

GT bounding boxes are projected to the feature map posi-

tion, and only for these feature map points the location loss

Lloc1 of pseudo bounding boxes (x̂min, ŷmin, x̂max, ŷmax)
by the min-max function based on P1 is calculated. The sec-

ond location loss Lloc2 , based on P2, is computed only for

those feature map points where the pseudo bounding box

of P1 has an intersection-over-union (IoU) value with the

GT bounding box above the threshold θTP . The classifi-

cation loss Lclass, for which the Focal Loss [16] is used,

also depends on the bounding box of P1. In addition to the

threshold θTP , θFP is defined, where all predicted boxes

with an IoU value above θFP but below θTP belong to the

GT ’background’, and if the IoU value is above θTP the GT

class corresponding to the bounding box is considered as

’sign’. Unlike [25], we have increased the original values

θFP = 0.4 and θTP = 0.5 to θFP = 0.6 and θTP = 0.7
because the signs are dense and experiments with the orig-

inal values gave worse results. In summary, the complete

loss L of the architecture is defined as:

L = λ1Lloc1 + λ2Lloc2 + λ3Lclass (4)

,where λi are the weights of the partial loss functions. To fo-

cus the training on the localization and to make them on the

similar magnitude, we set λ1 = 50, λ2 = 100 and λ3 = 1.

Our hyperparameter optimization of the Stochastic Gradient

Descent (SGD) optimizer determined the learning rate as

5 · 10−4, the momentum as 0.9, and a weight decay of 10−5

as the best configuration for our training. A further differ-

ence is that our architecture includes dropout [22] with an

extinction probability of 0.2 for the input and the first con-

volution of the backbone and dropout with a probability of

0.5 for each additional convolution layer in the backbone

and for the first three convolution layers of the RepPoints
architecture.

As a post-processing, to keep only the most confident

predictions, we applied Non-Maximum Suppression (NMS)

with a threshold of 0.4 IoU to keep boxes.

2.3. Illumination Augmentation

Since the shape of the Cuneiform signs is three-

dimensional, they appear differently depending on the type

of illumination. Additional to the direct impact of the

brightness, the sign appearance depends strongly on the an-

gle of incidence. The wedge shadows vary due to their

curvature if the light is not orthogonal to the tablet front.

Similar to [20], we used this characteristic of Cuneiform to

render our available tablets with different illumination and

have augmented our data set with a huge set of virtual light

renderings. Our approach to illumination augmentation (IA)

Figure 3: Orbiting Light Source to render the clay tablets

under different illumination conditions. The upper part of

the diagram illustrates the front view of the tablet, around

which the direction light rotates 360°. The side view shown

below is only for a better 3D orientation and visualizes the

constant polar angle. The tablet shown is HS 1194.

is shown in fig. 3. We used the open-source GigaMesh Soft-
ware Framework to render the meshes of the clay tablets

under a virtual light (Phong). Since only annotations of the

back and front are available, these sides are rendered with

an orbiting light source, with the azimuth angle φ varying

in 45° increments from 0° to 360°. To avoid data overload,

we set the polar angle θ constant to 45° (according to [20]).

3. Data
The methods described above are applied to the Frau

Professor Hilprecht Collection of Babylonian antiquities at

the University of Jena, which is published as 3D data in

combination with high-resolution renderings by the Heidel-
berg Cuneiform Benchmark Dataset) (HeiCuBeDa) [18].

The dataset consists of three different types of 3D render-

ings: VirtualLight (VL), MSII filter (MSII), and

a mixture of both (mixed). The VL is a Phong rendering
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and the default technique of the GigaMesh Software Frame-
work5 and can be seen in fig. 4. Increasing the contrast be-

tween the impressed wedges and the surface based on the

curvature is done by the MSII filter. This type of render-

ing was used to create figs. 1 and 2. The subset of tablets

used, with the exception of one tablet from the Old Babylo-

nian period (c. 1900-1600 BC), is dated between 2500 and

2000 BC. Except for one tablet in Akkadian, all tablets are

written in Sumerian.

The annotations of these renderings were made us-

ing the Cuneiform Annotator application Cuneur [13]

and published as the Mainz Cuneiform Benchmark
Dataset (MaiCuBeDa)6. Due to our focus on sign detec-

tion in this work, we only applied the sign annotations of

the dataset, ignoring the sign classes (the Unicode code

point of the cuneiform sign), which were deemed irrelevant

for this task. These annotations are based on the translit-

erations available at the Cuneiform Digital Library Initia-

tive (CDLI) [4] of the Hilprecht collection. Each annotated

sign of MaiCuBeDa refers to a sign in the transliteration.

Unfortunately, if a sign in the image could not be classified

and assigned, it led to missing sign annotations within the

dataset. In particular, the side signs of the tablet are often

not annotated, but there are also cases of missing annota-

tions in the center of a tablet since transliterations may be

incomplete or signs could not be clearly assigned by the an-

notating person. As a result, we have used a challenging

dataset that contains predominantly incompletely annotated

images.

Number of tablets 490

Number of segments 873

Number of 512× 512 pixels patches 10311

Number of sign annotations 21228

Table 1: Our available annotated data

As part of this work, several extensions and preprocess-

ing of the dataset were performed. First, due to the different

shapes of the clay tablets, the corresponding images have

different resolutions. To standardize and to avoid loss of in-

formation when rescaling to the input resolution described

in section 2.2, we crop the original images into patches of

512 × 512 pixels with an overlap of 256 pixels. The ta-

ble 1 provides an overview of the resulting patches, the

original number of segment images, and the available an-

notations. In addition to the originally provided renderings,

applying the IA described in section 2.3 extended the VL

image set by 7344 additional images of whole segments and

thus 82488 overlapping patches to an image set of 92799

5https://gigamesh.eu
6MaiCuBeDa: https://doi.org/10.11588/data/QSNIQ2

VL rendering patches. We also added the corresponding

photographs available at the CDLI to the dataset. Since

these photographs do not directly match the renderings, we

mapped the images using the Cuneur Transformer7 tool so

that the annotations created for the renderings could also be

used for the photographs. Since all types of renderings are

grayscale, the photographs are converted to grayscale and

performed a normalization. This is done to standardize the

input to the CNN.

4. Results
In this section, we introduce our evaluation method in

section 4.1, which is used in section 4.2 to describe our

results of sign localization. These results are discussed in

section 4.3.

4.1. Evaluation

For each of our experiments, we divide the same train-

ing, validation, and test dataset with a ratio of 2 : 1 : 1.

To avoid overlap between the datasets at the level of sign

clippings and cropped squares, we initially split the dataset

at the segment level and then we crop the images based on

this split. All evaluations are carried out on the separate test

set by the models that have performed best on the validation

set that is evaluated at the end of each epoch.

To evaluate our sign detector, we use the Average Pre-

cision (AP), which is a common evaluation metric for ob-

ject detection [17]. Varying the confidence threshold for

deciding whether a prediction is a sign or background re-

sults in different precision and recall values per threshold,

thus yielding a precision/recall curve. As defined in [5],

we use the interpolated precision/recall curve with 11 recall

levels between 0 and 1 to calculate the AP. Furthermore, we

vary the threshold of the IoU between the predicted bound-

ing box and the GT bounding box θIoU which determines

whether a detection is classified as true positive or as false

positive, to evaluate the localization accuracy of the bound-

ing boxes. In the following, AP@θIoU notes the thresholds

in percent used during the evaluation, e.g., AP@50 repre-

sents an evaluation where 50% IoU overlap is required for

a bounding box to be considered as true positive.

4.2. Sign Detection

The results take into account several aspects that affect

the performance of the sign detector: the role of various

training data, the applicability to different image types, and

the impact of IA. The table 2 provides an overview of all

results for models trained with different training bases and

evaluated on various test image sets. Having the same hy-

perparameters, they only differ in their input images, after

7Cuneur-Transformer:https://gitlab.com/fcgl/
cuneur-transformer
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Train set Test set AP@50 AP@75 AP@90

VirtualLight

renderings

Photos 0.327 0.182 0.182

VL 0.570 0.362 0.182

MSII 0.503 0.268 0.182

Mixed 0.555 0.288 0.273

MSII

renderings

Photos 0.288 0.182 0.145

VL 0.375 0.212 0.182

MSII 0.602 0.437 0.273
Mixed 0.575 0.357 0.273

Mixed

renderings

Photos 0.244 0.182 0.071

VL 0.443 0.222 0.133

MSII 0.591 0.400 0.182
Mixed 0.609 0.420 0.182

Photos

Photos 0.456 0.222 0.182
VL 0.517 0.269 0.182
MSII 0.514 0.267 0.182
Mixed 0.523 0.287 0.182

VirtualLight

renderings

with IA

Photos 0.417 0.213 0.144

VL 0.603 0.452 0.364*

MSII 0.585 0.363 0.170

Mixed 0.583 0.365 0.152

Complete

Photos 0.508 0.229 0.132

VL 0.598 0.368 0.182
MSII 0.632 0.394 0.160

Mixed 0.633 0.394 0.177

Complete

with IA

Photos 0.569 0.214 0.170

VL 0.626 0.545* 0.182
MSII 0.591 0.400 0.182
Mixed 0.636* 0.431 0.182

Table 2: Results of the Sign Detector on cropped 512× 512
pixel-sized patches compared with different train and test

sets. Complete means the combination of mixed renderings,

MSII filter renderings, VL renderings, and photographs.

The best results of each training data set are highlighted in

bold and those close to the best are highlighted in italics.

The best results per evaluation method are marked with an

asterisk *.

which epoch the best model has been evaluated on the vali-

dation set. The models trained on a combination of various

image types or IA renderings achieved the best-performing

model in fewer epochs compared to training on a single-

source dataset.

The results of the pure datasets have shown that the best

evaluation results are obtained when the applied image type

for training is the same as for testing. One exception is the

training on photographs, which results in a model that per-

forms better on all types of renderings; however, these re-

sults are close to each other. Conversely, the models trained

on renderings achieve a lower average precision on pho-

Figure 4: Sign detection result on a VL rendering patch us-

ing the model trained on VL renderings with IA. This ex-

ample shows the GT bounding boxes (black), true positives

(yellow), false negatives (red), and false positives (blue) of

the evaluated patch.

tographs. Even the best result with VL renderings is over

0.1 lower than a model trained directly on photographs.

Applying a combination of the photographs and all types

of renderings slightly increased the performance of each

image type compared to the best models trained on pure

datasets. Thus, the model is generally applicable to each

type of image presented in this work because it is able to

detect the signs as well as the best model trained on the re-

spective image set.

The use of IA, as described in section 2.3, only as differ-

ent VL renderings, has shown a slight improvement com-

pared to the evaluation on VL renderings for AP@50 and

AP@75, but it has increased the AP@90 by about 20%.

Although this strength in AP@90 was not observed with

the training on the combination of all types of images and

the additional VL renderings by IA, this model achieved the

highest AP@75 on VL renderings, the highest AP@50 on

photographs and the highest AP@50 on mixed renderings.

However, the result on the mixed renderings is close to the

combination without IA.

In general, the gap between the AP@50 and the AP@75

is tiny when the sign detector is applied to the render-

ings, but the AP@90 is even smaller. However, the strict

90% IoU overlap restriction is not representative because of

the dependence on the GT bounding box. Some bounding

boxes are often not very close to the boundary of the sign,

so some very close detections will not be considered true

positives. Although not every GT bounding box exactly sur-

rounds the signs, the difference between AP@50, AP@75,

and AP@90 indicates how accurately the bounding boxes

are predicted. Consequently, the high AP@75 values of

the evaluation on the renderings suggest an accurate pre-

diction of the bounding box. Our visual investigations of

the results came to the same conclusion that the predicted
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Figure 5: Sign Detection result on a photograph patch using

the model trained on the combination of the datasets with

IA. This example shows the GT bounding boxes (black),

true positives (yellow) and one false positive (blue) of the

evaluated patch.

bounding boxes are close to the signs when we use render-

ings as inputs. This can be seen for one example on VL

renderings in fig. 4. In this figure, a weakness of the sign

detector can also be seen: the detector tends to predict signs

as small units and, consequently, to split larger compound

signs. This results in the two false positives (blue) of the

small units and one false negative (red) of the wide ground

truth sign. In addition, the model detects sometimes false

positives on seals and the broken surface of tablets, and it

rarely mistakes the written tablet identification number for

a sign in the photograph.

As mentioned before in section 3, the tablets are incom-

pletely annotated, so there are a lot of false positives, which

are, in reality, signs. Consequently, the actual results are

better than the numbers. The fig. 5 shows one of these false

positives.

4.3. Discussion of results

As described in section 4.2, the sign detection achieved

sufficient results, especially considering our dataset’s miss-

ing ground truth annotation. To rank our results, we com-

pare them with a state-of-the-art cuneiform sign detector,

which performs the same task as ours on Elamite tablets

[24], in table 3. Due to the large difference in size of the

dataset, which contains only about 18% as many sign anno-

tations as [24], all results must be put into perspective. Our

approach achieved a lower AP@50 for detection in pho-

tographs but a similar AP@75. However, due to the ab-

sence of annotations, the actual performance is better. Fur-

Approach AP@50 AP@75

DeepScribe[24] 0.77 0.21

Ours for mixed renderings 0.64 0.43

Ours for VirtualLight renderings 0.63 0.55

Ours for photographs 0.57 0.21

Table 3: Sign detection result compared with [24]. Our

model was trained with all types of renderings, pho-

tographs, and augmented VL renderings through IA. The

model was evaluated for different input images.

thermore, our annotations were not created for these pho-

tographs, so due to the transformation to process the map-

ping by the Cuneur Transformer, there may be small devi-

ations in the annotated location, and some lateral signs are

generally not visible in the photographs. Since we do not

have a dataset with the annotations specifically created for

the photographs available, we are unable to measure the im-

pact of the transformation error and its associated effects on

the sign detector, but according to our visual evaluation of

the Cuneur Transformer, there are only a few examples with

incompletely matching bounding boxes for the signs.

According to our results, the utilization of renderings to

train a Cuneiform machine learning model seems to be a

suitable approach. Hence, despite the smaller amount of

data with incomplete sign annotations, our AP@50 is close

to the result in [24]. In addition, our AP@75 on render-

ings exceeds [24] results by as much as 0.3 due to our accu-

rately placed bounding boxes. For a pipeline approach like

the ones described in section 2.1 or [24], where the signs

are cut out to process them in a subsequent step, it could

lead to the loss of essential information by locating only

partial signs. Therefore, our approach could have an advan-

tage over such a pipeline. Presumably, our approach could

achieve the same results if a fully annotated dataset with

more signs were available for training and testing.

As described in section 4.2, dealing with compound-

wide signs has proven to be a challenge. Due to the wide

range of sign interpretations, it is even difficult for a human

to determine the sign boundaries. Consequently, there is

possibly no consistent dataset available.

Considering various methods of rendering a mesh, such

as with the MSII preprocessing, has shown that transfer-

ring 3D information to a 2D image can improve the detec-

tor performance. Using the MSII filter on the meshes re-

sults in a higher contrast between the wedges and the clay

surface based on the curvature. 3D renderings after MSII

filtering are much more legible than photographs, which is

consistent with human perception of cuneiform tablets. In

addition to preprocessing, a mesh of a clay tablet offers the

possibility of IA, as described in section 2.3. Applying this

method to augment the dataset has shown an improvement
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in the sign detector for VL renderings. Specifically, an in-

crease of about 0.1 of AP@75 and 0.2 of AP@90, indicates

that the accuracy of the bounding box has improved.

Despite the better results with the renderings, the best

results were obtained in combination with the photographs.

This could be explained by the different information pro-

vided by renderings and photographs, which helps the

model to generalize. Consequently, it seems necessary to

use both media to get good machine learning OCR results.

5. Conclusion and Outlook
We have investigated a Cuneiform sign detector based

on RepPoints to locate signs and cut them out for subse-

quent steps, as in the pipeline approach of [24] or [23], from

the viewpoint of the bounding box localization accuracy,

the dataset impact and the improvement by IA. Achieving a

high AP@75 on renderings suggests that the detector’s pro-

posed bounding boxes completely encircle the signs, which

is necessary to cut them out for a previous step in a pipeline.

In further research, it would be interesting to apply this sign

detection with a rendering training dataset in the pipeline

of DeepScribe [24] to see if the classification result can be

improved by more accurate bounding boxes and by the ren-

derings themselves. At the moment, the signs are only lo-

calized in the form of a bounding box; however, the repre-

sentation points of the RepPoints might be able to represent

them differently. Varying the backbone, pre-training the ar-

chitecture with a different dataset, or increasing the number

of ResNet [11] layers is another way to study the architec-

ture.

Furthermore, our research has shown that using 3D scans

offers a wide range of possibilities. First, the meshes pro-

vide the ability to apply IA, which has shown improved re-

sults and can be scaled by angle variation in the future. Sec-

ond, our results suggest that a preprocessing of the meshes,

in our case MSII, also increases the performance of the

sign detector. Further research could also evaluate other al-

gorithms as mesh preprocessing, e.g. Ambient Occlusion.

However, it should be noted that 3D model datasets are

rarely available and are time-consuming to create due to the

3D scanning process.

To compare the performance between the originally

unannotated photographs and the different types of ren-

derings, we mapped them onto the renderings to make

them accessible for the available annotations. Our results

have shown: All types of renderings can produce better

results than photographs. Although the mixed renderings

are the most suitable input to localize signs, the best re-

sults have been achieved by the training with a combination

of all datasets, including photographs. As our research has

shown, the combination of 3D scans with photographs pro-

vides a great opportunity to create and improve machine

learning models of cuneiform OCR.

Future Work

The localization and classification of cuneiform signs is

a crucial step towards the goal of automatic transcription

of cuneiform tablet images in the form of transliterations

or translations, or even their application in augmented re-

ality environments such as Google Lens, which could take

automated analysis of Cuneiform tablet content to a new

level. While this work has given insights into which types

of media and their combinations can improve the classifica-

tion and location tasks, future experiments could tackle the

combination of sign classification approaches with translit-

eration assignments or automated translation approaches.

Also, one could think of repeating the experiments of this

work with cuneiform tablet renderings of cuneiform tablets

of epochs that were not considered by the MaiCuBeDa

dataset or previous datasets to discover epoch, language,

or writing style specific challenges. Finally, the location

and classification of not only cuneiform signs but also of

paleographic sign variants, potentially varying even in the

same spatio-temporal settings, will be a research challenge

of great importance for creating and linking to accurate

cuneiform paleography databases, such as the emerging Pa-

leOrdia 8 based on Wikidata.
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