DeFi: Detection and Filling of Holes in Point Clouds
Towards Restoration of Digitized Cultural Heritage Models

Ramesh Ashok Tabib Dikshit Hegde Tejas Anvekar Uma Mudenagudi
Center of Excellence in Visual Intelligence (CEVI), KLE Technological University,
Vidyanagar, Hubballi, Karnataka, India-580031
ramesh_t@kletech.ac.in, dikshithegde@gmail.com, anvekartejas@gmail.com, uma@kletech.ac.in

Figure 1: The figure highlights the potential of the proposed DeFi and shows the impact on hole detection and filling in the Heritage 3D models in comparison with the state-of-the-art technique DeCo. While DeCo struggles with hole filling due to its limited understanding of the underlying geometry and the precise location of hole boundaries. The proposed DeFi framework achieves superior hole filling due to prior knowledge of hole boundary and geometry, enabling it to achieve better results in specific areas (hole filling) of point cloud completion.

Abstract

In this paper, we propose DeFi: a novel perspective for hole detection and filling of a given deteriorated 3D point cloud towards digital preservation of cultural heritage sites. Preservation of heritage demands digitalization as cultural heritage sites deteriorate due to natural calamities and human activities. Digital preservation promotes acquisition of 3D data using 3D sensor or Multi-view reconstruction. Unfortunately, 3D data acquisition finds challenges due to the limitations in sensor technology and inappropriate capture conditions, leading to formation of missing regions or holes in the acquired point cloud. To address this, we propose a pipeline consisting of detection of hole boundaries, and understanding the geometry of the hole boundaries to fill the region of the point cloud. Recent research on hole detection and filling fails to generalize on complex structures such as heritage sites, as they find challenges in differentiating between the hole boundary and non-hole boundary points. To address this, we propose to detect boundary points of point cloud and learn to classify them into “hole boundary” and “non-hole boundary” points. We generate a synthetic dataset based on ModelNet40 to learn the detection of hole boundaries. We demonstrate the results of the proposed pipeline on (i) ModelNet40 dataset, (ii) Heritage 3D models generated via photogrammetry, and compare the results with state-of-the-art methods.

1. Introduction

In this paper, we present a pipeline for detecting and filling holes in point clouds, with the aim of preserving and digitally presenting cultural heritage sites[13]. Cultural heritage sites are physical and intangible elements of a culture passed down through generations, and often deteriorate or get destroyed due to natural calamities and human activities. Preserving these sites is a major goal worldwide, and digital recreation using modern technology such as photographs, 3D scanners, and photogrammetry is one way to achieve this[5, 23, 26, 25]. The advancement of 3D data acquisition techniques and increased computational power
have made it possible to digitally recreate, reconstruct, and render 3D models of cultural heritage sites[6, 9]. Many of these sites have been damaged or are in a state of deterioration due to natural weathering, disasters, and wars. The government has shown interest in recreation and restoration of these sites, which paves the way for 3D reconstruction and modeling. Several challenges exist in the 3D reconstruction pipeline, as presented by[6, 3, 29].

Photogrammetry is a technology that uses images and scans to accurately measure and build 3D models of real-world objects or scene. However, reconstructed models often have missing regions or holes, noise[10], low density regions[14, 17], due to various factors such as occlusion, physical properties of the scanned surface, repeated information[32, 25], missing pieces, limited accessibility, and external intervention[6, 9, 11, 12]. Filling these holes is important for better representation of 3D models as shown in Figure 1.

Recent literature has focused on various methods for filling holes in point clouds, including interpolation of new points[19], and generating missing parts[21, 20, 22]. However, these methods have their limitations. Interpolating new points through encoding and decoding the partial/holed point cloud as a latent representation leads to reconstructing the entire point cloud rather than just filling the missing parts, resulting in generic reconstructions that lack specific details[33]. Generating missing parts may be more likely to generate the missing parts but is not generalized to holed point clouds[1]. Interpolating points inside the boundary using higher order polynomial fit, triangulation, or surface fitting faces challenges depending on the size of the missing regions and requires perfect hole boundaries[18, 28]. Towards this, we propose a learning-based filling algorithm that takes into account the geometric information[2, 27, 8, 7] of the detected hole boundaries. Our method aims to generate the missing points in the regions using the specific properties of the input instance, rather than reconstructing the entire point cloud. By utilizing the detected hole boundaries, we can focus on local properties of each sample rather than just the global geometry, resulting in more accurate and specific reconstructions. Our method is expected to provide a better solution for filling holes in point clouds towards the digital preservation and presentation of cultural heritage sites.

Most existing non-learning-based hole boundary detection methods rely on manually setting threshold parameters, which is a tedious task[4]. To automate this process, authors in [24] automate this process by per point classification using PointNet[15] architecture. The model finds challenges to detect the hole boundaries as there is imbalance between hole boundary and non-hole boundary. The proposed pipeline focuses on building a learning-based filling algorithm with the geometric information of the detected hole boundaries. The pipeline comprises two main stages: hole boundary detection and hole filling as shown in Figure 2.

Towards this, the main contributions of the paper are,

- We propose DeFi: a pipeline for detection and filling of holes towards improved presentation of point clouds.
 - We introduce a Periphery Detector to aid detection of hole boundaries for complex structures, where distinguishing between hole boundary and non-hole boundary points finds challenges.
We propose Surficial Geometry Interpreter to derive geometric features (point cloud decomposition) of the point cloud towards assisting hole filling.

- We propose to generate synthetic dataset based on ModelNet40 to facilitate learning detection and filling of holes.
- We propose to demonstrate effectiveness of the proposed methodology on both ModelNet40[31] and Heritage 3D models.

In Section 2, we discuss the proposed pipeline for detection and filling of missing regions. We discuss the results and effect on filling of missing regions in Section 3 and conclude in Section 4.

2. DeFi: Hole Detection and Filling

We propose DeFi: a novel perspective for hole detection and filling of a given deteriorated 3D point cloud as shown in Figure 2. The DeFi incorporates mainly two modules: (i) Intrinsic Hole Detector, and (ii) Surficial Hole Filling. We define point cloud \(P = \{p_1, p_2, ..., p_n\} \) where \(p_i \in \mathbb{R}^3 \) where we consider three input features \(x, y, z \) for processing.

2.1. Intrinsic Hole Detector (IHD)

The detection of hole boundaries in point cloud is subtle process, as the underlying surface of point cloud is undefined. Recent advancements in deep learning techniques detect boundaries of point cloud by leveraging local surface information[16, 30]. However, in hole detection problem the hole boundary points sets \(\mathcal{H} \ll \) non-hole boundary points set \(\mathcal{N} \), such that \(\mathcal{H} \cup \mathcal{N} = P \) this demands a robust training strategy for hole boundary detection. Towards this, we propose Intrinsic Hole Detector (IHD), a two-stage approach for hole boundary detection in point clouds, and include (a) Periphery Detector: primarily to detect boundaries of the point cloud by mitigating the aforementioned challenge, (b) Hole Selector: to detect the hole boundaries from identified point cloud boundaries.

- **Periphery Detector:** Unstructured characteristic of the point cloud makes it challenging to understand the boundary points. One approach to detect point cloud boundaries is by finding the distance \(d \) between a query point \(q \) and centroid \(\mu \) of local neighbourhood estimated via euclidean distance \(d(q, \mu) \). The highlighted region with Red box depicts classification of query point as a point on manifold as \(d(q, \mu) \approx 0 \). In contrast the highlighted region with Green box depicts classification of query point as a point on periphery as \(d(q, \mu) \gg 0 \) facilitating detection and filling of deteriorated point cloud.

The classification of a query point into a boundary or non-boundary point depends on the distance between the point and the centroid point of its nearest neighbors using the condition:

\[
b_i = \begin{cases} 1 & \text{if } d_i \gg 0, \\ 0 & \text{else.} \end{cases}
\]

where, \(b_i \) is classified output of Periphery Detector, 1 indicates boundary point and 0 indicates non-boundary point.

Algorithm 1: Point Cloud Periphery Detector

\[
\text{Input:} \text{ Point Cloud } \rightarrow P \\
/ / B, N_{in}, 3 \\
\text{Output:} \text{ Boundaries of Point Cloud } \leftarrow b \\
/ / B, N_{out}, 3 \\
1 \text{ Initialize } K, N_{in} \\
2 \text{ for } i \text{ in } N_{in} \text{ do} \\
3 \quad idx_{knn} = \text{KNN}(q_i, K) \\
4 \quad \mu_i = \text{mean(gather operation(} q_i, idx_{knn} \text{))} \\
5 \quad d_i = \text{Calculate distance } (q_i, idx_{knn}) \\
6 \text{ end } \\
7 \text{ idx } = \text{topK}(d, N_{out}, idx) \\
8 \quad b = \text{gather operation}(P, idx) \\
\]

In a similar manner, the distance \(d_i \) is estimated for all
points in the point cloud, and each point is classified as a boundary or non-boundary point using the Algorithm 1. The effect of K-nearest neighbour search in Periphery Detector is illustrated in Figure 3. Periphery Detector facilitates the overall performance of hole detection by significantly reducing the search space. We infer, detecting holes within boundary points is a simpler task when compared to detecting in entire point cloud.

- **Hole Selector**: The Hole Selector f_θ is a learning-based algorithm parameterized by weights θ that classifies each point in a point cloud into either a hole boundary or a non-hole boundary. To achieve this, each point is treated as an independent point and undergoes the same encoding module in the form of a Shared MLP/Convolution. A shared MLP is introduced to extract features from a point and use a symmetric function to extract the global permutation invariant features of the point cloud, facilitating to understand the overall structure of the point cloud. These global features are merged with local features, as shown in Figure 4, to provide a better understanding of the global context for each local feature. The extracted point cloud boundaries are then passed through the Hole Selector to differentiate between the hole boundary and non-hole boundary.

Towards tuning of hole boundary detection by optimizing the weights of Hole Selector, we propose to use Cross Entropy Loss as a per point classification loss function given by,

$$L_{\text{classifier}}(y_i, \hat{y}_i) = -\frac{1}{N_{\text{out}}} \sum_{i=1}^{N_{\text{out}}} y_i \log \hat{y}_i$$

where, b_i is the ground-truth information on hole boundary point or non hole boundary point, \hat{b}_i is the predicted class of the particular point P_i from point cloud boundaries and N_{out} be the number of points in point cloud boundaries.

- **Surficial Geometry Interpreter**: We advocate to employ ABD-Net as a Surficial geometry interpreter.
Figure 6: Our proposed framework features a Surficial Geometry Interpreter module, which is designed to identify the primitive decomposition of hole boundary points within a point cloud. This is accomplished by leveraging a Topological feature extractor to gain a deeper understanding of the surface geometry, and an attention-based per-point classifier to map the Topological features to one of four primitive decompositions: planar, spherical, conical, or cylindrical.

Figure 7: Proposed Holes Set Wadding module consumes Detected Holes and Surficial geometry priors of these holes towards filling of these holes. The h_ϕ module features a global encoder and a local neighborhood-based encoder, which work together to facilitate the decoder in gaining a better understanding of the geometry, proximity, and location of the holes that need to be filled. To perform hole filling, we leverage DeCo[1], which serves as our decoder and enables efficient and effective hole filling within the point cloud.

- **Holes Set Wadding**: Towards hole segment filling, it is crucial to understand the global and local structure based on the geometric signature. To achieve this, we model h_ϕ two parallel encoders: a local encoder and a global encoder, as shown in Figure 7. The local encoder is responsible for understanding the local topology, while the global encoder captures the global information. These two representations are then combined and processed through a decoder that extrapolates the points between the boundary to fill the holes.

Towards extracting geometric features of hole boundaries, we propose to train Surficial Geometry Interpreter using ϕ. Towards filling of hole boundaries, we optimize the weights of Hole Set Wadding module by Chamfer Distance (C_{dis}) as a reconstruction loss. Chamfer distance is the measure of squared distance between each points of one point cloud with nearest point from another point cloud given by,

$$C_{dis}(G, \hat{Y}) = \sum_{g \in G} \min_{y \in \hat{Y}} ||g - y||^2 + \sum_{y \in \hat{Y}} \min_{g \in G} ||g - y||^2$$

(4)

here, g is a point in ground-truth G, and y is a point in filled segment \hat{Y} (generated through Hole Set Wadding module).

3. Results and Discussions

In this section, we provide a brief description on the dataset considered for experimentation, the experimental setup of the proposed methodology, and demonstrate the results of proposed methodology in comparison with state-of-the-art methods[24, 1].

3.1. Dataset

We synthetically introduce missing regions considering ModelNet40[31] as a base dataset to facilitate detection, and filling of holes. We employ Traceparts dataset to train Surficial Geometry Interpreter.

- **Synthetic Data Generation**: Due to unavailability of missing region dataset and the corresponding ground-truth, we synthetically generate the missing regions using ModelNet40[31] dataset. We consider a random query point (q) and apply K-Nearest Neighbour search on the point cloud to generate the missing regions. The r points nearer to the query point (q) are deleted to create a hole and the remaining $(K - r)$ points are labeled as hole boundary. ModelNet40 dataset consists of CAD models of 40 categories. These CAD models are sampled to 4096 points to form a point cloud. We generate 40K samples including train and validation set.

- **Traceparts[7]**: dataset consists a total of 16157 mechanical component models, along with primitive
shapes information labeled as planar, spherical, cylindrical, and conical. The dataset is divided into 12984 training samples and 3173 testing samples.

3.2. Experimental Setup

In this section, we discuss experimental setup used in DeFi, and provide a detailed description on Intrinsic Hole Detector and Surficial Hole Filling module used in DeFi.

- **Intrinsic Hole Detector**: Initial we extract the boundary points of the given point cloud using Periphery detector as shown in Algorithm 1. This helps to balance the ratio of the number of points belonging to missing region boundary points verses non missing region boundary points. We train Hole selector f_θ module using the extracted boundary points and classify the boundary points into missing region boundary points and non missing region boundary points. We use PointNet[15], PointNet++[16], and DGCNN[30] as a backbone architecture for Hole selector. We train Hole Selector f_θ with initial random weights θ for 100 epochs on synthetically generated data with 1024 points as a input, and with learning rate of $10e^{-3}$ using Adam optimizer.

- **Surficial Hole Filling**: uses the detected boundary points as clues and estimates the underlying geometry.

We estimate the basic geometry of the detected hole boundaries through Surficial Geometry interpreter (g_ϕ) with ABD-Net[7] as the backbone. We train ABD-Net on Traceparts dataset for 50 epochs and classify the geometry of hole boundary points into four basic primitives namely Planar, Spherical, Conical, and Cylindrical. Classified geometric signatures of the hole boundary points are considered as a clue for completion/hole filling using Holes Set Wadding with DeCo architecture[1] as the backbone. We use the hyperparameter settings similarly to the authors of DeCo and train the filling/completion architecture h_ϕ for 250 epochs.

3.3. Results

In this section, we demonstrate the results of proposed methodology DeFi on hole detection and filling of point cloud using synthetically generated dataset. Due to limited availability of literature on learning-based hole detection techniques, we compare the results with[24] and show the corresponding segmentation IoU scores in Table 1. Authors in[24] use PointNet[15] as backbone architecture for hole detection. Through experiments, we infer unbalanced distribution of hole and non-hole boundary points makes hole boundary detection a challenging task. As discussed in Sec-
tion 2, Periphery detector helps us to mitigate the challenge by confining the search space.

Table 1: Comparison of hole boundary detection with PointNet, and PointNet++ with and without our Periphery Detector. The term mIoU denotes the mean Intersection over Union (IoU) of both hole and non-hole segments. In this context, the Hole IoU corresponds to the IoU calculated specifically for the hole segment. Higher the IoU, better the results. Higher values are represented in Bold. Topmost values are represented in “.” (blue).

<table>
<thead>
<tr>
<th></th>
<th>mIoU</th>
<th>Hole IoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>PointNet15</td>
<td>0.4530</td>
<td>0.0172</td>
</tr>
<tr>
<td>Learning-based Hole Detection24</td>
<td>0.4530</td>
<td>0.0172</td>
</tr>
<tr>
<td>IHD with PointNet(Ours)</td>
<td>0.5555</td>
<td>0.3234</td>
</tr>
<tr>
<td>PointNet++16</td>
<td>0.8239</td>
<td>0.6899</td>
</tr>
<tr>
<td>IHD with PointNet++(Ours)</td>
<td>0.8956</td>
<td>0.8361</td>
</tr>
</tbody>
</table>

We visually represent the results of proposed methodology in Figure 8. We infer, the vanilla PointNet[15] fails to detect holes, as illustrated in Figure 8. In contrast, the Intrinsic Hole Detector (IHD) variant of PointNet is capable of detecting holes, and is further supported by our quantitative analysis presented in Table 1. We observe a significant improvement of 10% in mIoU and 31% in Hole IoU compared to vanilla PointNet on Hole Detection. We report a similar finding for PointNet++[16] and its IHD variant, where we achieve a 7% improvement in mIoU and 14% in Hole IoU, as depicted in Figure 8. This is due to the fact that IHD reduces the search space of hole detection by limiting the point cloud to just the periphery points.

Furthermore, we observe both vanilla DGCNN and its IHD variant fail significantly in detecting holes. This is because edge conv module in DGCNN may consider to build semantic relationship between two or more holes, leading to a drop in hole detection performance. Overall, our results demonstrate the IHD variant on existing state-of-the-art point cloud semantic segmentation algorithms performs better than their vanilla counterparts in detecting holes, indicating the effectiveness of our proposed approach.

Humans typically perceive the overall structure of an object in 3D by understanding or extracting the boundary points, and the proposed Periphery Detector performs similar to human perception. The Periphery Detector algorithm can facilitate the understanding of the overall structure/boundary of an object in 3D, as demonstrated in Figure 9. Additionally, this algorithm opens the door for many applications, such as classification of point clouds and understanding key points through heat waves and kernels. In this paper, we utilize this algorithm to extract all the boundaries from the point cloud, which aids in differentiating between hole boundaries and non-hole boundaries.

We report the performance of our proposed surficial hole filling module with and without surficial geometry interpreter in Figure 10. One can conclude that our proposed Surficial geometry interpreter is capable of understanding the underlying geometry which indeed facilitates Hole filling unlike vanilla DeCo[1] which fail comprehensively to extrapolate the hole boundary points. We also infer that our proposed method yields noisy hole filling output may be due to the fact that our methodology is not an end-to-end trained model on a specific task. Although our study has some limitations, we believe that it provides valuable insights into the hole filling process in point clouds. We anticipate that our results will stimulate further investigation to overcome these limitations and promote the creation of more reliable and efficient approaches for filling holes in point clouds.

We demonstrate the detection and filling of hole through our proposed methodology on heritage 3D models in Figure 1 and Figure 11. We observe, there is discontinuity...
in the detected hole boundaries due to the complex structures/curvature of the point cloud. We observe the filled points do not deviate from the hole region when compared with Vanilla DeCo. The complex structure/curvature of the hole boundary, makes the surface hole filling uneven resulting in cluster of points in a particular area within a hole region as shown in Figure 11.

4. Conclusions

In this paper, we have proposed a pipeline for the detection and filling of holes in point clouds to aid in the digital preservation and presentation of cultural heritage sites. We have proposed a method for detecting hole boundaries by balancing the uneven distribution of point clouds, and have shown that our proposed approach achieves significant improvements in IoU on hole boundary region detection when trained on PointNet, PointNet++, and DGCNN. Additionally, we have demonstrated that our proposed ABD-Net approach is effective in filling holes by leveraging geometric signatures and achieving a 0.2 decrease in Chamfer distance when trained on Deco. We have demonstrated the results of proposed methodology on 3D acquired heritage point clouds, highlighting the potential of our proposed pipeline for digital preservation and presentation of cultural heritage sites.

5. Acknowledgement

This work is partly carried out under the AICTE- RPS project “Shape Representation, Reconstruction and Rendering of 3D Models” (8-247/ RIFD/ RPS (POLICY-r)/20LB-19), Department of Science and Technology (DST) through the ICPS programme - Indian Heritage in Digital Space for the project “Crowd-Sourcing” (DST/ ICPS/ IHDS/ 2018 (General)), and Department of Science and Technology (DST) through ICPS programme - Indian Heritage in Digital Space for the project “Digital Poompuhar” (DST/ ICPS/ Digital Poompuhar/ 2017 (General)).
References

[24] Ramesh Ashok Tabib, Yashaswini V. Jadhav, Swathi Tegginkeri, Kiran Gani, Chaitra Desai, Ujwala Patil, and

