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Abstract

This paper presents a pigment mapping in tomb murals
for digitization. In order to separate pigments from their
substrates, we utilize the Kubelka-Munk (KM) model. How-
ever, these murals are drawn on rocks, and the pigments
have deteriorated and thinned over time. As such, the chal-
lenge is to cancel the impact of the rocks’ heterogeneous
patterns; previous studies using the KM model either ig-
nored the substrate or assumed it to be constant. We in-
troduce unsupervised learning based on neural represen-
tations and physics to facilitate pigment mapping, even on
a heterogeneous substrate. The model takes an image of
the spectral reflectance data at a specific position of a tomb
mural image and the corresponding position as inputs and
outputs the pigment thickness, pigment class, and substrate
class. For physically-consistent estimation, the input re-
flectance is reconstructed using the Kubelka-Munk model
and the output. This allows unsupervised training via the
calculation of the reconstruction loss. While the Kubelka-
Munk model operates on a pixel-by-pixel basis, the utiliza-
tion of neural representation by the input position facilitates
highly accurate estimation, all the while maintaining spa-
tial continuity.

1. Introduction

Decorated ancient tombs, the burial mounds of ancient
rulers, are recognized by their patterned decorations that
adorn the rock grave chambers. These patterns offer valu-
able archaeological insights into the religious beliefs, art,
and societal progression during that period. However, de-
spite their significance, preservation concerns often keep
these tombs closed to the public. Consequently, a critical
task arises: mapping these patterns and subsequently digi-
tizing them for wider accessibility.

When analyzing the patterns within decorated ancient
tombs, distinguishing the pigment from the substrate is es-
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Figure 1: Our goal is to estimate pigment maps even on
heterogeneous substrates.

sential. This process involves viewing the mural as a multi-
layered surface object, comprising pigment and substrate
layers. Two optical models have proven particularly effec-
tive in this regard: Lambert-Beer’s law and the Kubelka-
Munk model [15] (KM model). The latter, introducing more
complex assumptions than the former, offers a more precise
approximation of this layered structure.

The challenge of understanding the pigment distribution
in tomb murals stems from the heterogeneous patterns in-
herent in the rock substrate. The pigments used in these
murals resemble semi-transparent optical models, similar
to watercolor paints, indicating that the influence of the
substrate surface is non-negligible. The substrate pattern’s
complexity significantly amplifies the task of pigment sep-
aration.

This study proposes a method for pigment mapping in
tomb murals, even with heterogeneous rock patterns (Fig-
ure 1). Specifically, we analyze which pigments are of
what thickness. Our approach employs neural representa-
tion and physics-based unsupervised learning. The inputs
are the spectral reflectance data at a specific position of a
tomb mural image and its position, while the outputs are
pigment thickness, pigment class, and substrate class. For
loss calculation, we estimate the spectral reflectance from
these outputs in line with the KM model and calculate its
error from the input. That enables the model to make infer-
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ences based on the physics model.
The significance of our study can be summarized in the
following key points:

* To the best of our knowledge, this paper presents the
first pigment mapping method that adjusts for hetero-
geneous substrates, thus reducing the impact of sub-
strate patterns.

* The neural representation, utilizing the input posi-
tion, facilitates a comprehensive calculation consider-
ing spatial continuity, extending beyond a mere pixel-
by-pixel estimation.

* By integrating the results of reflectance reconstruction
with a physics-based loss function model, we can ef-
fectuate pigment mapping without depending on su-
pervised data.

This study not only facilitates public exhibitions, such as
through AR but also provides a vital reference for restora-
tion work should these historical sites suffer damage from
natural disasters or other unforeseen circumstances.

2. Related work
2.1. Pigment mapping using KM model

We can divide the variables of the KM model into two
categories: pigment layer parameters and a substrate pa-
rameter (see Section 3). Prior studies often made the as-
sumption that the substrate parameter was either negligi-
ble or constant. For example, in the case of opaque paint-
ings, such as oil or acrylic paintings, the pigment layer
is so thick that it completely obscures the canvas sub-
strate [24, 7, 8, 11, 21, 23] The substrate parameter is sup-
posed to be a constant value in [1, 22] because the substrate
is often homogeneous paper (white) in the watercolors and
printings. However, when we assume a non-negligible het-
erogeneous substrate, the problem becomes more compli-
cated; we need to estimate the substrate parameter on each
pixel while analyzing pigments.

2.2. Other Pigment mapping

Spider model [18] is an effective physics model for sep-
arating pigments from the substrates. This model is primar-
ily based on Lambert-Beer’s law, a one-flux model focusing
on light attenuation in a singular direction shown in Fig-
ure 2(a). However, crucial to note that Lambert-Beer’s law
does not consider the non-negligible scattering caused by
pigment particles as a parameter. While the Spider model
is reliant on RGB images, hyperspectral data for pigment
mapping has been widely reported [6, 5, 4, 12, 20]. Hyper-
spectral data provides more detailed spectral information,
which could potentially enhance the accuracy of pigment
mapping. In recent years, with the rise of deep learning,
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Figure 2: (a) Lambert-Beer’s low based model [18]. (b)
General KM model, assuming simple substrate. (c) KM
model for our study, assuming heterogeneous substrate.

research has emerged that combines hyperspectral data and
deep learning to perform pigment mapping of cultural her-
itage [9, 13, 3].

3. Kubleka-Munk model

The Kubelka-Munk model [15] is predicated on light at-
tenuation due to scattering and absorption within the pig-
ment layer, considering two fluxes: incident and reflected
directions (Figure 2(b)(c)). The two-flux attenuation model
parameters include a scattering coefficient S and an absorp-
tion coefficient K, each of which indicates the degree to
which light gets attenuated by either absorption or scatter-
ing. We use ¢ and j to represent the diffuse light flux in
the top-to-bottom (incident) and bottom-to-top (reflected)
directions within the pigment layer, respectively. We ex-
press the change in ¢ and j for an infinitesimal thickness dx
as follows.

di
di =

(S + K)idex — Sjdzx, (1)
—(S + K)jdz + Sida. )

Solving the differential equations of this two-flux model al-
lows us to determine the reflectance Ry, of layered-surface
objects:

R fi(lgb_Roo)—ROO(Rb_i)eSX(ﬁfROQ)
km —
( b~ 00)_(Rb— L )esx(ﬁ*Roo)

R
KM(X, R, S, Ryp),

3)

where X signifies the thickness of the pigment layer,
Ry denotes the substrate reflectance, and R, represents
the reflectance when thickness X = oo. As stated by
Kubelka [14], we can obtain the scattering coefficient S and
absorption coefficient K for each pigment from measure-
ments. Moreover, we can compute ., using these coeffi-

cients.
K K\* K
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Note that the thickness X of the pigment layer represents
the relative optical path length, and as such, it doesn’t have
any units.

4. Neural pigment representation
4.1. Problem setting

Pigment layer: Existing studies suggest that specific types
of pigments have been identified, and the pigments used in
tombs are not mixed [10]. This introduces the need to un-
dertake a two-pronged estimation process. Firstly, we must
identify which pigment is used at each point on the mural.
Secondly, we need to estimate the thickness of the pigment
application. Within the context of the KM model variables,
this study aims to classify the values of .S and R, and es-
timate the value of X.

Substrate layer: The substrate layer, comprised of a vari-
ety of minerals, allows us to theoretically classify the sub-
strate’s spectrum based on the number of minerals present
in the rock. In this study, we use K-means clustering on
the spectral data from parts of the substrate where no pig-
ment was applied. This method will assist in determining
the precise color of the rock at each location on the mural.

4.2. MLP network

Figure 3 provides an overview of our model. To accom-
plish pigment mapping on a heterogeneous substrate, we
utilize a network architecture similar to NeRF [17], wherein
the network input comprises coordinates from the input im-
age to account for spatial continuity.

We use the 2D position of the hyperspectral image p =
(x,y), which are normalized to [—1, 1], and the spectral re-
flectance at the position Ry, (p) € R" as the network in-
puts, where A represents the number of bands. Our network
generates the following outputs: the estimated thickness of
the pigment layer X € R, the probability of each pigment
class C" € [0,1],(n = 1,2,..., N), and the probability of
each substrate class B™ € [0,1],(m =1,2,..., M).

Please note that Zﬁlzl C" =1 and Z%Zl B™ = 1.
For ensuring non-negative output, we use a ReLLU as the ac-
tivation function for X, and for achieving maximally sparse
outputs, we apply Sparsemax [16] to C™ and B™.

Based on the above, the MLP model Fg can be defined
as follows:

Fo : (p, Rpm(p)) — (X,C™, B™), (5)

where O represents the parameters of the network.

By using this defined deep learning model Fg, we can
estimate the parameters of the pigment simultaneously ac-
counting for the substrate.

4.3. Positional encoding

According to NeRF [17], mapping inputs to a higher-
dimensional space with a high-frequency function before
inputting them into the network improves the fit for high-
frequency data. We adhere to this principle by embedding
p within a high-frequency function as

PE(p) = (sin(2°7p), cos(2°mp), - - - , sin(2F~1p), cos(2E L wp)).

©6)

This formula enables embedding a 2-dimensional vector

p into a 2 x 2L space. For this study, we expand to 24
dimensions with L = 6.

4.4. Hidden layer

We combine the two kinds of inputs into a single vec-
tor and pass this combined vector through seven fully con-
nected layers with ReLU activation (comprising 300 per-
ceptrons). Additionally, we implement a skip connection
linking the input p, embedded in a 2 x 2L space, to the ac-
tivation of the fourth layer, as suggested by NeRF [17] and
DeepSDF [19].

4.5. Loss using the Kubelka-Munk model

We calculate our loss as the mean squared error between
the estimated ka and the actual Ry, used as input, fol-
lowing the method by Shitomi et al. [22]. Using the model
outputs, we determine the estimated Rim. During the learn-
ing step, the model computes S, R, and R}, as a weighted
sum with the probability of each pigment C"™ to maintain
differentiability:

S(C) = Y cnse 7
Roo(C) = Yo C"Ry" ®)
Ry(B) S BTR,™, ©)

where S € R and R,,” € R are the scattering co-
efficient and the reflectance of n-th pigment class, and
Ry™ € RA is the spectral reflectance of m-th substrate
class. Substituting Eqgs. (7)—(9) to Eq. (3), we obtain I:ka
as

ka = KM(Xvs(é)aRoo(é)aRb(B)) (10)

The mean squared error function is

1 ,
L=+ > Bk (Fo(p, Rim(p))) — Rim(p)[I3, (1)
PER

where R represents the set of coordinates in each batch. By
back-propagating the error through the KM model, we can
calculate the gradients of the weights.
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Figure 3: An overview of our deep learning model: We input the position of a reflectance image and its corresponding
reflectance (R, in the KM model) into the MLP. The MLP’s output is used to determine the variables of the KM model. As
the KM model is differentiable, we can conduct learning by minimizing the error between the estimated reflectance (Ry,,,)

and the input reflectance (Ry,,) used in the process.

4.6. Pigment mapping

In the testing phase, we define pigment mapping as the
product of the pigment class and its thickness, calculated
for each region. We select the pigment class as argmax C™.
Even though the restriction of EnN:]_ C™ =1 leads to esti-
mating the pigment class in the area without pigment, this
doesn’t cause any issues if the thickness estimation cor-
rectly results in zero.

5. Experiment results of simulation data

We conducted a simulation experiment to validate our
pigment mapping method on heterogeneous substrates. Due
to the challenge of obtaining a sample with a known thick-
ness, we initially synthesized a spectral image for verifica-
tion purposes.

5.1. Dataset and settings

Figure 4(a) displays an RGB visualization of the synthe-
sized spectral data, encompassing 65 bands within the 430—
760nm range. With an image resolution of 200 x 200, we
utilized 40,000 pixels for training. The experiment was con-
figured with N = 2 pigment classes and M = 3 substrate
classes.

The spectral data was synthesized based on actual mea-
surements. For pigments, we used red (Bengara) and green
(Terre Verte), both frequently found in ancient tomb paint-
ings. We derived the S and R, values (Figure 4(c),(d)) or
these pigments using the method detailed in [14], which in-

volved measuring the reflectance of each pigment painted
on both a white and a black substrate. Moreover, we de-
termined the X value (Figure 4(b)) by solving the inverse
problem of the KM model from paint applied to a single-
color substrate with constant substrate parameters. This
process was executed using the technique described in [22],

(a) Synthesized dataset (b) Pigment thickness
1.0 1.0
— GRed RE —— RRed
gGreen —— Rz —— RGreen
R Rg
0.51 0.5 1

S —
0.0+
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(c) Scattering coefficient (d) Substrate and R

Figure 4: Overviews of synthesized data.
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Figure 5: Estimation results of simulation data, presented under both a heterogeneous (M = 3) and homogeneous (M = 1)

assumption.
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Figure 6: Estimation results of simulation data.

in which we analyzed the thickness of the pattern painted
on white paper. For the substrate, we measured the spectral
reflectance of a bare rock surface. Using k-means cluster-
ing, we identified patterns within the substrate. The spectral
component of each class, representing the centroid of its re-
spective cluster in k-means, was used as the reflectance of
each class (Figure 4(d)). With the obtained S, R, Ry, and
X values for each region, we synthesized a spectral image
using the KM model.

For our training regimen, we used the Adam optimizer
with CosineAnnealingLR serving as a scheduler to adjust
the learning rate. The learning rate started at 5 x 10~* and
gradually decreased to 5 x 10~7 during the optimization
process. The training was conducted over 1,200 iterations,
with CosineAnnealingL.R completing one cycle every 25 it-
erations.

5.2. Results

Figure 5 displays the estimates produced by our pig-
ment mapping. The pigment classification performs well,
slightly underestimating the thickness but nonetheless ac-
curately capturing the original thickness distribution. We
computed the SSIM and PSNR between the ground truth

and estimated values for each pigment mapping. Our model
achieved SSIM= 0.998, PSNR= 48.6 for the red pigment,
and SSIM= 0.997, PSNR= 46.9 for the green pigment.

On the other hand, when the substrate was assumed to
be homogeneous (M = 1), the effects of the substrate’s
pattern were reflected, causing significant errors in the es-
timation. In this case, SSIM= 0.278, PSNR= 21.1 for the
red pigment, and SSIM= 0.359, PSNR= 23.1 for the green
pigment.

Figure 6 presents the results of the substrate estimation.
In Figure 6(c), we use white to denote pixels where the class
has been correctly estimated, and red to denote pixels where
the class has been incorrectly estimated. This model suc-
ceeds in classifying the class correctly for all pixels.

5.3. Ablation study

Our model has Ry, (p), PE(p) as inputs to the first
layer, and PE(p) as an input to the hidden layer. We have
conducted an ablation study to validate our design choices.
Table 1 shows each ablation design.

The accuracy was compared using SSIM and PSNR. Ta-
ble 2 shows the result of the ablation study. Our method

Table 1: Design of ablation study.

Input | Rim(p) | PE(p) | PE(p)
Layer First First | Hidden
Abs-1 — v v
Abs-2 v v —
Abs-3 v — v
Abs-4 v — —
Ours v v v
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Table 2: Result of ablation study.

Red pigment map | Green pigment map
SSIM?T  PSNRT | SSIMT  PSNR?
Abs-1 | 0.897 26.1 0.767 20.9
Abs-2 | 0.981 42.5 0.986 43.8
Abs-3 | 0.988 43.1 0.923 32.8
Abs-4 | 0.785 19.8 0.778 22.0
Ours | 0.998 48.6 0.997 46.9

performed the best score for both SSIM and PSNR. This re-
sult shows it is essential to input both reflectance Ry, (p)
and its position PE(p). Furthermore, by comparing Ours
with Abs-2 and Abs-3, the effectiveness of including coor-
dinates twice has been confirmed as presented in previous
studies [17, 19].

Figure 7 compares the original and Abs-4 errors. Abs-4
is a pixel-by-pixel method with no position input, and the
substrate pattern tends to show up more as an error. The
position input allows spatial continuity to be taken into ac-
count, and the influence of the substrate pattern can be elim-
inated more. These results indicate that a model based on a
neural representation is valid.

(c) Substrate

(a) Error of Ours (b) Error of Abs-4

Figure 7: Comparison of pigment mapping error between
Ours and Abs-4. Abs-4 is affected by the substrate pattern.

6. Experimental results of real tomb data
6.1. Dataset and settings

We used a spectral image of the Mezurashiduka tomb,
located in western Japan. The tomb’s visual representa-
tion combines two kinds of pigments (N = 2), red (Ben-
gara) and gray (Hekikaimatsu), applied over a granite-rock
surface (Figure 9(a)). This tombs’ dataset is a collection
of spectral images with 81 bands, ranging from 400nm to
720nm. With an image resolution of 420 x 700, we used
294,000 pixels for training. Since granite is composed
mainly of six minerals, the substrate class was set as M = 6
in this study.

In real data, it is difficult to prepare pigments identical to
those used in ancient murals. Therefore, S and R, values
for each pigment were determined by annotating the pixels

0.5 0.5
SRed . ) RRed
0.4 0.4 ©
—— GGray RGray
0.3 1 0.3 1
0.2 0.2 1 pal
P
0.14 o1y S
0.0 = , , , 0.0+ . . .
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(a) Scattering coefficient (b) Reo
—— mean R} R
RE — Rj
0] RZ — RS
1.0
0.5 A
0.51 /
0.0+, . . . 0.0 . . .
400 500 600 700 400 500 600 700

(c) Substrates data (d) Substrates class

Figure 8: Optical parameters of Mezurashizuka tomb.

where the pigment is applied, and subsequently optimizing
using the KM model. We used the reflectance of annotated
pixels for the initial value for R,. Also, we used the Adam
optimizer to update S and R, to minimize the discrepancy
between the measured and modeled reflectance. The opti-
mized S and R, are shown in Figure 8(a) and (b), respec-
tively.

For substrate, R;, was obtained by annotating re-
gions without pigment, clustering approximately 3,000 re-
flectance data points (seen in Figure 8(c)) using K-means.
We adopt the centroid as the reflectance of each substrate
class (Figure 8(d)).

In training sessions, we employed the Optuna [2] hyper-
parameter optimization framework. The parameters we fo-
cused on were the batch size and the learning rate. The
batch size was selected from 512, 1024, 2048, and 4096.
On the other hand, the learning rate was searched within a
range from 1 x 107% to 5 x 10~%. The number of training
sessions was set to 500, with CosineAnnealingL.R complet-
ing one cycle every 25 iterations.

6.2. Results

We applied our proposed model to actual spectral data
obtained from tomb murals, assessing its ability to esti-
mate. For validation purposes, we referred to the restora-
tion sketches produced by Hakkou Kusaka, a noted Nihonga
artist (Figure 9(e)). Furthermore, Figure 9(d) and (h) rep-
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Figure 9: Estimation results for the Mezurashizuka tomb, presented under both a heterogeneous (M = 6) and homogeneous
(M = 1) assumption. The entries marked with an (*) are derived from the restoration reproductions carried out by Hakkou
Kusaka in the 1950s. Please note that these reproductions were a subjective task and should not be strictly considered ground

truth.

resent the segmentation of Hakkou’s reference image using
the K-means method, displaying the regions of each pig-
ment. Commissioned by the Agency for Cultural Affairs
between 1953 and 1955, Kusaka created these sketches.
Although his artwork is based on subjectivity, it is a valid
benchmark against which we can evaluate the accuracy of
our model estimates.

The estimation results are included in the Figure 9 (b)
and (f). It can be seen that our method captures the tendency
of pigment distribution well.

Our model estimates that pigment is applied even in ar-
eas not painted on the reference image, and there are three
possible interpretations for this. The first factor is that the
model might have detected the presence of pigment that has
deteriorated and washed away over time. The second one
could be a drawback associated with the fact that our re-
search is based on spectral information. Depending on the
combination of the substrate and the pigment, it is possi-
ble that a spectrum similar to another substrate class could
have been reproduced. The third factor pertains to the influ-

4....}-’ ""»_. :w.,'a:*.‘-:' it }
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(a) Processed red map (b) Processed gray map

Figure 10: Results of applying the Difference of Gaussian
method to our pigment mapping estimation, which was de-
rived from Figure 9(b) and (f).

ence of the data used for estimation. This includes the error
during the optimization of S and R, the decreased expres-
siveness due to the classification of the substrate layer, the
impact of illumination variations in the spectral image, and
the noise when capturing a spectral image. It is reasonable
to view our estimation results as a combination of the three
phenomena mentioned.

Figure 10 demonstrates the outcome of applying the Dif-
ference of Gaussians (DoG) to our estimation results. Given
that red pigments are often utilized for delineation, their
corresponding values were set to accentuate the edges. Con-
versely, the grey pigments, frequently used for area-filling
expressions, had their values adjusted to encourage smooth-
ing. These processed images illustrate the potential for esti-
mating mural patterns even when past reference images are
not available. Also, referring to Hakkou’s inferred figure,
the results of this study provide a clue as to how the tumu-
lus wall paintings deteriorated.

6.3. Comparison with homogeneous substrate

The substrate of the rock on which the murals are painted
is inherently heterogeneous. However, for the sake of com-
parison, we also examined the case where we assume the
substrate to be homogeneous. When treating the substrate
as homogeneous, we adopted the average value of the sub-
strate reflectance (the blue-line in Figure 8(c)) as the sub-
strate spectrum.

The assumption of the homogeneous substrate simplified
our modeling process, removing the necessity to classify
Ry, which then becomes a constant. The results are shown
in Figure 9(c) and (g). Our analysis reveals that when we
assume the substrate to be constant, the estimation results
exhibit more errors as opposed to when we consider the
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Figure 11: Estimation results in a 200 x 200 region. We are comparing the case where the substrate is assumed to be
heterogeneous (substrate class M = 6) and the case where it is assumed to be homogeneous (M = 1).

substrate to be heterogeneous. Especially, estimation of red
pigment is getting worse.

Furthermore, we have discovered that the results can de-
teriorate depending on how the images in the dataset are
cropped, under the assumption of a homogeneous substrate.
The frequency of pattern changes in the dataset is associated
with the size of the image area. Specifically, the smaller
the image area, the higher the frequency of these pattern
changes, especially when cropping occurs in regions with
substantial pattern variations. Figure 11 shows estimation
results when cropping a 200 x 200 area from the original
dataset. The assumption of a homogeneous substrate clearly
reduces the accuracy.

This is due to the fact that assuming a constant substrate
reduces the expression of the model and due to physics-
based estimation. Figure 11(b) is a plot of the reflectance
data at the coordinates indicated by the ’x’ marker in the
right-middle of Figure 11. Despite the clear inaccuracies
in pigment estimation assuming a homogeneous substrate,
the reconstructed reflectance ka is found to be similar to
the original reflectance Ry.,,. Such errors are unavoidable
as long as reflectance is the basis for estimation, but the re-
sults indicate that assuming a heterogeneous substrate and
increasing the representational capacity of the model can
partially mitigate these issues. These observations under-
score the importance of accurately capturing the substrate’s
heterogeneity in our analyses.

7. Conclusion and Future work

This study realizes the pigment mapping for an ancient
tomb mural. Our approach uses unsupervised learning that
accounts for the unknown substrate pattern by simultane-
ously estimating the pigment class, thickness, and substrate
class. The experimental results indicate the efficacy of con-
currently estimating both the substrate and pigments with-
out disregarding the fact that the substrate is heterogeneous.
Moreover, as the ablation study shows, by inputting coor-
dinates and estimation by neural representation, the model
takes spatial continuity into account and estimates with less
influence on the substrate pattern.

However, this study presents several limitations and fu-
ture works. While many murals are depicted on relatively
smooth rocks, some are located on rocks with significant ir-
regularities. Our current estimation does not account for the
three-dimensional structure of murals, potentially resulting
in errors when mapping pigments on uneven surfaces, as our
future work. Furthermore, we have based our real data on
directly obtained pigment parameters from the mural. That
is under the assumption that the parameters of the pigments
are enough painted at some pixels. Addressing the spectral
changes in the mural sections where the pigments have sig-
nificantly washed out or faded, or have oxidized (undergone
chemical changes), is also part of our future work.
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