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Abstract

Automating the reassembly of fragmented objects is a
complex task with applications in cultural heritage preser-
vation, paleontology, and medicine. However, the matching
subtask of the reassembly process has received limited at-
tention, despite its crucial role in reducing the alignment
search space. To address this gap, we propose Match-
MakerNet, a network architecture designed to automate
the pairing of object fragments for reassembly. By taking
two point clouds as input and leveraging graph convolution
alongside a simplified version of DGCNN, MatchMakerNet
achieves remarkable results. After training on the Artifact
(synthetic) dataset, we achieve an accuracy of 87.31% in
all-to-all comparisons between the fragments. In addition,
it demonstrates robust generalization capabilities, achiev-
ing 86.93% accuracy on the Everyday (synthetic) dataset
and 83.03% on the Puzzles 3D (real-world) dataset. These
findings highlight the effectiveness and versatility of Match-
MakerNet in solving the matching subtask.

1. Introduction
Preserving our cultural heritage involves reassembling

together fragmented artifacts to create a meaningful rep-

resentation of the past. However, this task is often com-

plex and time-consuming. The challenge of reassem-

bling broken objects is not exclusive to cultural heritage

[24, 34, 3, 20, 36, 10, 40]; it extends to fields like paleontol-

ogy [19, 16, 28] and medicine [13, 35, 14, 1, 31], where the

reconstruction of fractured bones is essential for accurate

diagnosis and effective treatment planning. Advancements

in 3D object scanning [7, 8, 4] have motivated researchers

to explore computer vision and machine learning for au-

tomating the process of 3D object reassembly. This shift

has revolutionized the way objects are reconstructed across

various domains [19, 16, 35].

Reassembly involves various subtasks depending on the

specific adopted approach. These subtasks include point

cloud feature extraction [25, 37, 22, 9, 26], sampling

[18, 17, 21, 23, 38], matching [39, 34, 11, 44, 2], and align-

ment [19, 5, 13, 15, 3]. In some cases, the matching step

may be optional if the method is capable of handling the

alignment of all fragments simultaneously. However, the

efficacy of this approach is constrained when dealing with

intricate fracture patterns characterized by high levels of de-

tail, commonly referred to as complex fractures [11, 43]. As

a result, reassembling high detailed fracture faces can expo-

nentially increase the search space, posing computational

challenges and potentially compromising the accuracy.

Therefore, a matching step is crucial for effectively re-

ducing the alignment search space. Considering that the

matching step requires the evaluation of all potential pairs

of fragments, we need to devise an efficient approach for

this task. This becomes particularly important when work-

ing with real-world datasets that contain complex fracture

patterns, such as the Puzzles 3D dataset [12]. By incorpo-

rating a matching step, the reassembly process can achieve a

focused search, leading to improved efficiency and accurate

alignment.

To the best of our knowledge, previous methods have not

thoroughly explored the matching subtask. Some methods

consider matching to be a trivial process, focusing solely on

the final reassembly result [15, 20, 44, 2, 10, 40]. However,

this assumption overlooks the challenges posed by 3D ob-

jects with complex fractures, as seen in the Breaking Bad

dataset [29]. Furthermore, the evaluation of matching is of-

ten limited to small and private datasets [39, 34], making it

difficult to compare results with newer matching methods.

In this work, we focus on thick fragments, which have

more complex fracture surfaces and have received less at-

tention in the state-of-the-art literature. Drawing inspira-

tion from graph convolution [37] and vector neurons [6], we

propose a simplified version of DGCNN as our feature ex-

tractor. Additionally, we introduce MatchMakerNet to dis-

criminate between pairs of thick fragments sharing at least

one fractured face. By leveraging the properties of graph

convolution, MatchMakerNet addresses the challenges of
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reassembly with complex fracture patterns.

We evaluate our simplified DGCNN alongside other

state-of-the-art methods in terms of accuracy, memory

usage, and inference time for classification on ModelNet40

[27]. Besides, we assess the performance of MatchMak-

erNet on both synthetic data from Breaking Bad [29] and

real fragmented 3D objects from Puzzles 3D [12]. In

these experiments, we compared the loss, accuracy and F1

score, providing an analysis of our method’s effectiveness

in handling different scenarios involving fragmented 3D

objects.

Contribution. We propose a simplified version of DGCNN

that maintains a performance of approximately 87% ac-

curacy while significantly reducing the inference time by

around 2.82 times and minimizing memory costs by approx-

imately 8.69 times. Additionally, we introduce MatchMak-

erNet, a network architecture that effectively handles the

matching subtask and achieves an accuracy of 87% on the

Artifact subset. We also analyze the generalization capabil-

ities of our approach on diverse datasets, obtaining accuracy

rates of 87% and 83% on Everyday subset and Puzzles 3D,

respectively.

2. Related Work
In this section, we provide a concise review of reassem-

bly methods with different approaches, with a special focus

on matching subtask, and datasets related to 3D fragmented

objects.

3D object reassembly. Existing methods for 3D object

reassembly focus on using either fractured faces [39, 19, 34]

or complete fragments [3, 11, 43] as inputs. When the input

is a fracture face, an additional step is required to extract

these faces from the objects. In addition, some reassembly

methods handle objects consisting of only two fragments

[19, 13, 15, 3, 30], while others are capable of handling

scenarios involving multiple fragments [39, 34, 10, 43]. In

the latter case, both two-step [39, 34, 44, 10, 40] and single-

step [11, 43] approaches can be employed for the reassem-

bly process.

The two-step approach divides the reassembly process

into two subtasks. First, the matching step identifies pairs of

fragments that should be reassembled together [39, 34, 10].

Second, the alignment step is carried out to reassemble the

fragments pairwise, based on the pairs identified during the

matching step [19, 15, 3]. Ensuring efficient performance

of the matching step is crucial for the successful completion

of the assembly process, particularly in scenarios involving

complex fracture patterns [39].

In contrast, the single-step approach directly performs

the alignment process [11, 43]. It combines the fragments

by incorporating local information from each fragment into

the others, allowing the integration of both local and global

contextual information. This approach has gained popular-

ity, especially with the advancements in powerful network

architectures like transformers [33]. However, it has lim-

itations in handling objects with complex fractures, and it

relies on the assumption of prior knowledge that the frag-

ments belong to the same object [43, 32].

3D object matching. As far as we know, previous works

in the field of 3D object reassembly have not specifically

focused on the matching subtask as a specific problem. In-

stead, many existing methods incorporate matching as part

of their pipeline, with the primary emphasis being on the

final reassembly result [44, 10, 40]. While some methods

do provide partial analysis of the accuracy in the matching

step, these evaluations are often limited in scope and con-

ducted on small, proprietary datasets [39, 34].

The Terracotta Warriors dataset mentioned by Yao et al.
[39] comprises only 1800 matching pairs and 1560 non-

matching pairs, but unfortunately, it is not publicly acces-

sible. Similarly, Wang et al. [34] provide a dataset consist-

ing of 4 objects with a total of 12 thin fragments, yet this

dataset is also not publicly available. The unavailability of

these datasets hampers comprehensive analysis and inhibits

meaningful comparisons between previous methods, which

limits our understanding of 3D object matching.

3. Background
In this section, we provide a concise background to make

it easier to understand our proposal. We formally state the

problem we aim to address and describe the concept of

graph convolution and its properties.

3.1. Matching problem

Consider a set S = {S1, · · · , Sn} of multiple point

clouds, where each point cloud Si represents a distinct

fragment and n is the total number of point clouds in S.

The goal is to determine the matching relationships be-

tween pairs of point clouds (Si, Sj). We define a function

f : S × S → {0, 1}, which takes two point clouds as input

and outputs a binary value indicating whether the pair is a

match (1) or not (0). The function f is applied to all possi-

ble pairs (Si, Sj), satisfying the condition i �= j. The goal

is to find a suitable function f that accurately determines the

point cloud pairs in S that should be reassembled together

[39].

3.2. Graph convolution

Given a point cloud P = {p1,p2, ...,pn}, where pi ∈
R

3 represents the 3-dimensional coordinates of the i-th
point, the graph convolution operation computes the fea-

tures for each point by aggregating information from its

neighboring points. Let Ni denote the set of neighboring

points for point pi. The graph convolution operation can be

expressed as equation 1 where fi represents the computed
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Figure 1: MatchMakerNet. Our proposed network architecture is designed for discriminating pairs of fragments that should

be matched together. It incorporates our simplified DGCNN (4.1) to extract features from input point clouds. The features

are subsequently processed through graph convolutions and combined using a residual connection to perform the relationship

analysis (4.2). Following that, an MLP with multiple layers is used to make the final matching decision.

feature for point pi, W is a learnable weight matrix, h is an

activation function, and b is a bias term [37].

fi = h

⎛
⎝ ∑

pj∈Ni

W(pi − pj) + b

⎞
⎠ (1)

By applying the graph convolution iteratively across

multiple layers, hierarchical representations of the point

cloud can be obtained, allowing for the extraction of ab-

stract and discriminative features that capture local and

global patterns and dependencies within the data. This op-

eration exhibits key properties that contribute to its effec-

tiveness. First, it is permutation invariant, guaranteeing that

the output features remain unchanged regardless of the or-

der of input points. Additionally, it utilizes local neighbor-

hood information, enabling each point to incorporate fea-

tures from its surrounding points. Furthermore, the opera-

tion is partially invariant to translation, given that it takes

into account the local geometry of the patches while retain-

ing global shape information [37].

4. MatchMakerNet
In this section, we introduce MatchMakerNet, a novel

network architecture designed to discriminate between pairs

of thick fragments that share at least one fractured face.

The architecture incorporates graph convolutions as the core

component to effectively capture and analyze the relation-

ships between thick fragments, thereby enhancing the pre-

cision of the matching process.

MatchMakerNet architecture is shown in Figure 1. First,

the shared network extracts features from the input point

clouds. To enhance the efficiency of feature extraction, we

propose a simplified version of the Dynamic Graph CNN

(DGCNN) [37]. This modified approach incorporates the

concept of vector neurons, inspired by Deng et al. [6] pro-

posal, which exhibit invariance to rotations. By leveraging

these vector neurons, MatchMakerNet can extract meaning-

ful features that are robust to rotation transformations, en-

suring the network’s effectiveness in various scenarios.

Second, the extracted features are concatenated to form

a joint feature matrix consisting of 64 features per point.

This matrix, denoted as FJ , serves as the input for the sub-

sequent relationship analysis step. This step focuses on as-

sessing the presence of at least one shared fractured face

between the fragments. Finally, to make the matching de-

cision, MatchMakerNet employs a multi-layer perceptron

(MLP). The MLP consists of concatenated layers with out-

put sizes of 256, 64, and 1, incorporating RELU activation

functions in the hidden layers and a sigmoid activation func-

tion in the output layer. Through the integration of these

steps, MatchMakerNet effectively combines feature extrac-

tion, relationship analysis, and decision-making processes.

In Section 4.1, we provide a description of our simplified

DGCNN architecture, highlighting the specific adaptations

we made to enhance its efficiency. Subsequently, in Section

4.2, we introduce a proposed subnetwork that analyzes the

relationship between the fragments.

4.1. Simplified DGCNN

To perform feature extraction for the matching subtask,

we employ a simplified version of the DGCNN network,
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Figure 2: Simplified DGCNN architecture for feature extraction. The last graph convolution layer (highlighted in blue)

is modified to reduce the number of output channels, while an additional convolution layer (highlighted in green) is added to

capture the relationships between the previous layers’ representations and further reduce the network.

as illustrated in Figure 2. This customized architecture is

specifically designed to achieve two main objectives: re-

ducing its overall size and ensuring invariance to random

rotations, enhancing the network’s resilience in handling the

variations encountered in the matching problem.

The original DGCNN network is composed of four graph

convolution layers, with each layer having an output chan-

nel size of 64, 64, 64, and 128 respectively. In our approach,

we modify the last graph convolutional layer to reduce the

number of output channels to 64 instead of 128 (shown in

blue in Fig. 2). We also add a convolutional layer with 64

output channels (shown in green in Fig. 2). This supple-

mentary layer facilitates the capture of interlayer relation-

ships within representations while further refining the net-

work’s complexity. Finally, we remove the last part of the

network, since we do not need to modify the features to fit

a classification or segmentation task.

4.2. Relationship Analysis

The relationship analysis subnetwork (shown in yellow

in Fig. 1) plays a crucial role in evaluating the relationship

between the fragments. By leveraging graph convolution,

this subnetwork extracts the features from the joint matrix.

This feature matrix undergoes a series of graph convolu-

tion layers. Firstly, it passes through a layer with an output

of 128 channels, enabling the extraction of rich and infor-

mative features. Subsequently, a second graph convolution

layer with 64 output channels is applied, further refining the

extracted features.

To promote the flow of information and mitigate the is-

sue of diminishing gradients, we adopt a strategy involving

the concatenation of outputs from the first and second graph

convolution layers. This operation yields a composite ma-

trix, denoted as FJ , which establishes a residual connec-

tion, thereby ensuring the joint influence of both represen-

tation sets on the output. Following this, a 1D convolu-

tional generates the feature vector FV , signifying the inter-

action among fragments. Through the amalgamation of in-

sights garnered from diverse convolutions, the subnetwork

captures and assimilates pertinent attributes for evaluating

inter-fragment relationships.

5. Experiments

In this section, we evaluate the effectiveness of our pro-

posed feature extractor and matching network, we conduct a

set of experiments on various scenarios and datasets. First,

we compare our simplified DGCNN with both the origi-

nal DGCNN version and other state-of-the-art methods in

Section 5.1. Specifically, we assess the performance of the

methods on 3D objects augmented with random rotations

to evaluate their robustness in handling the matching sub-

task under real-world scenarios where fragment orientations

lack a canonical direction. Subsequently, in Section 5.2, we

delve into the analysis and evaluation of our MatchMaker-

Net, with a particular focus on its performance in both real-

world and synthetic fractured objects. These experiments

allow us to assess the generalization and versatility of our

proposed method.

Datasets. Both synthetic and real-world datasets are

available for working on 3D object reassembly. Real-world

datasets often involve scanned fragmented objects, but can

be limited in size and ground truth information. In our

experiments, we utilize three datasets: ModelNet40 [41],

comprising 12,311 CAD models from 40 categories; Break-

ing Bad [29], with 10,000 synthetic fractured objects, in-

cluding cultural artifacts and everyday items; and Puzzles

3D [12], consists of 6 real-world fragmented cultural her-
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Method Overall Accuracy Class Accuracy Inference Time (ms) Model Size (MB) Parameters (M)

PointNet [25] 50.32 % 41.68 % 6.65 6.28 0.82

PointNet++ [26] 86.18 % 81.71 % 39.11 11.32 1.48

DGCNN [37] 88.57 % 84.27 % 8.94 13.85 1.81

VN-PointNet [6] 87.40 % 83.53 % 9.03 15.12 1.97

VN-DGCNN [6] 90.56 % 87.51 % 18.08 22.17 2.90

Ours 89.91 % 83.43 % 4.58 1.63 0.21
VN-Ours 91.02 % 87.07 % 6.41 2.55 0.33

Table 1: Classification on ModelNet40. Performance comparison of different methods on various evaluation metrics, in-

cluding overall accuracy, class accuracy, inference time, model size, and number of parameters. Methods evaluated include

PointNet [25], PointNet++ [26], DGCNN [37], VN-PointNet [6], VN-DGCNN [6], our proposed method, and VN-Ours.

itage artifacts, providing a representative sample of practi-

cal fracture scenarios with 81 total fragments.

5.1. Simplified DGCNN

Experimental Setup. We train two versions of our sim-

plified DGCNN, one based on the original DGCNN and the

other based on VN-DGCNN, which utilizes vector neurons

for rotation invariance. The training and validation are per-

formed on the train and test partition of the ModelNet40

dataset [42] using the cross-entropy loss function over 400

epochs. For evaluation, we utilize the weights of the model

that achieved the highest accuracy during training, and as-

sess its performance on objects with random rotations. The

evaluation metrics includes overall accuracy, class accuracy,

inference time, model size, and the number of parameters.

To ensure consistent evaluation, we employ the default train

and test split defined in the ModelNet40 dataset.

Baseline Methods. In order to assess the performance

of our approach, we compare it against several state-of-

the-art methods, including PointNet [25], PointNet++ [26],

DGCNN [37], VN-PointNet [6], and VN-DGCNN [6]. We

retrain each method using the publicly available code from

the original papers and evaluate all models under similar

point cloud transformations as our proposed model.

Results. Table 1 compares the performance of various

methods based on evaluation metrics. PointNet achieves an

overall accuracy of 50.32% and class accuracy of 41.68%,

while PointNet++ improves the results with an overall ac-

curacy of 86.18% and class accuracy of 81.71%. DGCNN

achieves further enhancement with an overall accuracy of

88.57% and class accuracy of 84.27%. VN-PointNet and

VN-DGCNN, utilizing the vector neuron approach, achieve

overall accuracies of 87.40% and 90.56%, and class accu-

racies of 83.53% and 87.51%, respectively.

Our method surpasses these results, achieving an over-

all accuracy of 89.91% and class accuracy of 83.43%, with

improved efficiency in terms of inference time (3.56 ms),

model size (1.63 MB), and parameters (0.21 million). In-

corporating the vector neuron approach in our method (VN-

Ours) further improves the overall accuracy to 91.02% and

class accuracy to 87.07%, with slightly increased inference

time (6.41 ms), model size (2.55 MB), and parameters (0.33

million).

The results presented in Table 1 demonstrate the effec-

tiveness of our method with the vector neuron approach

in maintaining the accuracy and maintaining the efficiency

compared to existing state-of-the-art methods. On one

hand, our simplified version of DGCNN compared with the

original DGCNN offers significant improvements in effi-

ciency, reducing the inference time by 1.95 times and mem-

ory usage by 8.50 times. Although there is a slight loss

of 0.87% in class accuracy, it compensates with a gain of

1.34% in overall accuracy. On the other hand, our simpli-

fied DGCNN with the vector neuron approach compared

with VN-DGCNN provides even greater efficiency, reduc-

ing the inference time by 2.82 times and memory usage by

8.69 times. It experiences a slight decrease of 0.44% in

class accuracy, but achieves a commendable 0.46% increase

in overall accuracy.

Considering these results, the choice of method depends

on the specific requirements of the task at hand. If efficiency

is paramount, our simplified DGCNN is the preferred op-

tion. For a balance between high overall accuracy and effi-

ciency, our simplified DGCNN with vector neurons (Ours-

VN) stands out as the optimal choice. However, if preserv-

ing the best possible class accuracy is crucial, VN-DGCNN

should be considered. In our case, where both speed and

accuracy are important, we have chosen to utilize Ours-VN

as the feature extractor for MatchMakerNet.

5.2. MatchMakerNet

Experimental Setup. We train MatchMakerNet on the

Artifact subset of Breaking Bad [29]. We utilized the binary

cross-entropy (BCE) loss function and implemented 5-fold

cross-validation for training. Each fold undergo a maximum

of 100 epochs, with Early Stopping to stop the training if the

validation loss failed to decrease for 20 consecutive epochs.

In addition, we balanced the train subset to have 70% pos-

itive examples and 30% negative examples. This improved

pattern identification and classification, given that the origi-
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Loss Accuracy F1 score
Fold 70/30 all/all 70/30 all/all 70/30 all/all

1 0.2109 0.2475 86.31 % 87.55 % 86.71 % 89.78 %

2 0.2243 0.2240 81.73 % 88.21 % 83.74 % 90.35 %

3 0.2359 0.2398 80.53 % 86.33 % 81.24 % 88.61 %

4 0.2140 0.2268 83.85 % 87.34 % 85.23 % 90.41 %

5 0.2184 0.2132 81.90 % 87.12% 84.12 % 91.06 %

Mean 0.2207 0.2303 82.86 % 87.31 % 84.21 % 90.04 %

Std 0.0088 0.0121 2.05 % 0.61 % 1.81 % 0.82 %

Table 2: Evaluation on Artifact (Breaking Bad). We show the performance metrics (loss, accuracy, and F1 score) of the

model trained and evaluated with different distributions and folds. The model is trained with a distribution of 70% positive

and 30% negative examples, and evaluated using both the 70/30 and original distributions. The evaluation is conducted over

5 folds, and the reported mean and standard deviation of the metrics demonstrate the consistency of the model.

Correct predicted matches Incorrect predicted matches

(a) Blossom Lamp (b) Moceri Head (c) Sculpture (g) Buddha Bowl (h) Marciana Marble (i) Marble Head

(d) Pegasus (e) Sand Sculpture (f) Medallion (j) Sword Sculpture (k) Sir Occulum (l) Swedish Moose

Figure 3: Examples of pairs found by the network on the Artifact subset. On the left, we present six correct predicted

matches, while on the right, we showcase size incorrect predicted matches based on the ground truth labels.

nal imbalanced dataset approximately has 10% positive ex-

amples and 90% negative examples, with the positive in-

stances posing a greater challenge.

Following the training of each fold, we evaluated the per-

formance on the test subset, employing two different dis-

tributions. The first evaluation used a dataset with a dis-

tribution of 70% positive examples and 30% negative ex-

amples, while the second evaluation employed the original

dataset distribution. Finally, to assess the model’s general-

ization capabilities, we conducted evaluations on additional

datasets, including the Everyday subset of Breaking Bad

and Puzzles 3D. We measured the model’s performance us-

ing metrics such as loss, accuracy and F1 score.

To determine the ground truth for the matching task, we

compare each fragment Pt to the other fragments of the

same object Pi ∈ S, excluding self-comparisons (i �= t).
For each comparison, we calculate the minimum distance

between the points in Pt and Pi. If the minimum distance is

less than a threshold η and there exists at least one common

face between the selected vertices, we assign a label of 1 to

indicate a match; otherwise, a label of 0 is assigned. The

common face check ensures that there is at least one shared

face between the selected vertices, indicating a meaningful

match.

Results. Table 2 presents the loss, accuracy and F1 score

on the evaluation set for models trained in each fold. Ac-

cording to the results in this table, a superior performance is

observed in the original distribution. In this distribution, the

mean accuracy reaches approximately 87%, while the mean

F1 score approaches 90%, surpassing the performance of

the 70/30 distribution, which achieves a mean accuracy of

83% and a mean F1 score of 84%. This disparity can be at-

tributed to the prevalence of negative examples in the origi-

nal distribution, which are relatively easier to identify com-

pared to positive examples. This observation proves advan-

tageous in the real-world scenario of all-to-all comparison

between the available fragments.

Moreover, the original distribution shows a slightly
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Correct predicted matches Incorrect predicted matches

(a) Bottle (b) Toy Figure (c) Mirror (g) Cup (h) Mug (i) Vase

(d) Plate (e) Drink Bottle (f) Cookie (j) Wine Glass (k) Spoon (l) Bowl

Figure 4: Examples of pairs found by the network on the Everyday subset. On the left, we present six correct examples,

while on the right, we showcase six incorrect examples based on the ground truth labels.

Correct predicted matches Incorrect predicted matches

(a) Brick (b) Head (c) Cake (g) Gargoyle 1 (h) Sculpture 1 (i) Cake

(d) Gargoyle (e) Venus (f) Sculpture (g) Gargoyle 2 (h) Sculpture 2 (i) Head

Figure 5: Examples of pairs found by the network on the Puzzles 3D dataset. On the left, we present six correct examples,

while on the right, we showcase six incorrect examples based on the ground truth labels.

higher loss compared to 70/30 distributions. However, con-

sidering the observed standard deviation, this difference is

not substantial. Additionally, the results show low varia-

tion between folds, indicating that the model is stable and

produces consistent results when it is trained with different

training and validation sets.

Figure 3 showcases four examples of fragment pairs that

should be reassembled based on the results obtained from

the matching network. The left examples (Fig. 3a to 3f)

are correct matches, they highlight the network’s capabil-

ity to identify pairs with both complete and partially frac-

tured faces. This ability is particularly relevant in real-life

scenarios where complete face sharing is less common and

considered an idealized scenario. By successfully iden-

tifying matches with partial fractured faces, the network

demonstrates its practical applicability in handling realistic

reassembly tasks.

In the right examples (Fig. 3g to 3i), where the network’s

outcomes were incorrect, two discernible issues come to

light. First, the network tends to experience confusion

when confronted with similar fracture patterns in fragments

that should remain separate. Second, certain fracture pat-

terns lack complex details, particularly when the fractured

faces appear nearly flat. These observations indicate poten-

tial challenges to the network in accurately discerning sub-

tle differences and capturing fine-grained information from

certain types of fractures.

Table 3 presents the results obtained by the matching net-

work trained on Artifact subset and evaluated on the Every-

day subset and Puzzles 3D dataset. According to the ta-
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ble, the network demonstrates the ability to generalize to

3D objects from other datasets without significant loss in its

performance. Furthermore, the Puzzles 3D dataset poses a

greater challenge for the network compared to the Everyday

subset. MatchMakerNet achieves an accuracy of 87% and

an F1 score of 89% on Everyday, whereas it achieves an ac-

curacy of 83% and an F1 score of 85% on Puzzles 3D. This

difference can be attributed to the fact that both Artifact and

Everyday are subsets of the synthetic dataset Breaking Bad,

whereas Puzzles 3D has more complex real-world fracture

patterns.

Test Dataset Loss Accuracy F1 score
Everyday 0.3204 86.93 % 89.27 %

Puzzles 3D 0.3599 83.03 % 85.24 %

Table 3: Comparison of results on Everyday and Puzzles
3D. The table presents the loss, accuracy, and F1 score for

the Everyday and Puzzles 3D test datasets.

In Figure 4, we observe examples of pairs on Everyday

subset that need to be reassembled based on the results ob-

tained by MatchMakerNet. The left side (Fig. 4a to 4f)

showcases correct examples, where the network success-

fully solves matching for thin fragments, despite being pri-

marily trained on thick fragments. Additionally, the net-

work exhibits the ability to identify matching pairs in frag-

ments of different sizes, as seen in the case of the Toy Fig-

ure, where the sword is much smaller than the robot.

Conversely, the incorrect examples exhibit patterns sim-

ilar to those identified in the Artifact subset. The net-

work misclassifies fragments with similar fracture patterns

as positive, even though they should not be reassembled to-

gether. Furthermore, some fractures lack detail and are al-

most flat, making it challenging to accurately identify frac-

ture details and choose the correct pair. It is important to

note that some of these limitations may be related to the

fact that we are using synthetically generated fragments.

Figure 5 presents examples of fragment pairs from the

Puzzles 3D dataset that MatchMakerNet identifies as candi-

dates for reassembly. On the left side (Fig. 5a to 5f), cor-

rect examples are shown, while on the right side (Fig. 5g

to 5i), incorrect examples are displayed. In the correct ex-

amples, we notice that fragment pieces can vary in size and

still achieve a correct matching prediction. Additionally, the

network can generalize correspondence for thin fragments.

Overall, we have reached similar observations as those ob-

tained with the Artifact and Everyday subsets.

Similarly, the analysis of incorrect examples reveals that

the network often struggles to differentiate fragment pairs

with similar fracture patterns. In the specific case of Gar-

goyle, although there are notable similarities in the fracture

patterns, subtle differences also exist. Possible factors con-

tributing to these prediction errors include preprocessing

steps that might result in the loss of certain distinguishing

features and the use of synthetic data for training, which

lacks the same level of detail as real fragments. Further-

more, it is important to highlight that some errors occur be-

cause the network identifies fragments that should be joined

if they share any common point or line, without taking into

account the presence of at least one fractured face.

6. Conclusion

In this paper, we propose a simplified DGCNN as a fea-

ture extractor and MatchMakerNet as a network to solve

the matching subtask in the reassembly problem. Both ap-

proaches leverage the power of graph convolution and its

properties to effectively represent local and global features.

The results demonstrate that our simplified DGCNN is ca-

pable of maintaining the performance of the original net-

works with minimal loss, while significantly reducing mem-

ory and time costs.

Additionally, we evaluated the performance of Match-

MakerNet after training it on the Artifact subset. The net-

work achieved an accuracy of 87.31% on the original dis-

tribution. However, when assessing its generalization ca-

pabilities, we observed that it encounters more challenges

when handling the Puzzles 3D subset, which consists of

real-world fractures. These fractures pose greater difficulty

due to their diverse and complex nature, compared to the

relatively less detailed fracture patterns found in the Break-

ing Bad dataset.

These findings highlight the potential of MatchMaker-

Net and the simplified DGCNN in automating the match-

ing step of fragmented objects, particularly in the context

of cultural heritage analysis. This ability is of great impor-

tance in preserving and understanding cultural artifacts, as it

enables researchers and archaeologists to gain insights into

the original form and structure of these objects.

7. Future Work

In our future work, we plan to further enhance the

pipeline by incorporating the alignment step, which will

enable us to perform end-to-end experiments and achieve

complete object reassembly. For the simplified DGCNN,

we aim to evaluate its performance on a wider range of

datasets and tasks beyond ModelNet40, including segmen-

tation and recognition. In the case of MatchMakerNet, our

future work will be focused on improving its performance

on real-world fragments. To achieve this, we intend to ex-

plore the incorporation of more detailed fracture faces, es-

pecially for fragments with nearly flat fractures. These fu-

ture research directions will contribute to the overall ad-

vancement and applicability of our methods in practical sce-

narios.
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Šplı́chalová. The virtual approach to the assessment of skele-

tal injuries in human skeletal remains of forensic importance.

Journal of Forensic and Legal Medicine, 49:59–75, 2017.

[32] Lev Utkin, Maxim Kovalev, and Ernest Kasimov. An ex-

planation method for siamese neural networks. In Nikita

Voinov, Tobias Schreck, and Sanowar Khan, editors, Pro-
ceedings of International Scientific Conference on Telecom-
munications, Computing and Control, pages 219–230, 2021.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-

lia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, volume 30. Curran

Associates, Inc., 2017.

[34] Haiping Wang, Yufu Zang, Fuxun Liang, Zhen Dong,

Hongchao Fan, and Bisheng Yang. A probabilistic method

for fractured cultural relics automatic reassembly. J. Comput.
Cult. Herit., 14(1), 2021.

[35] Lei Wang, Junjun Pan, and Qiangqiang Yao. Virtual re-

assembly of fractured bones for orthopedic surgery. In 2018
International Conference on Virtual Reality and Visualiza-
tion (ICVRV), pages 20–27, 2018.

[36] Piao Wang, Guohua Geng, Xiaofeng Wang, and Yi Wang.

Method for splicing fragments based on constructing surface

texture and fracture boundary tuple. 2018.

[37] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 2019.

[38] Cheng Wen, Baosheng Yu, and Dacheng Tao. Learnable

skeleton-aware 3d point cloud sampling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 17671–17681, June 2023.

[39] Wenmin Yao, Tong Chu, Wenlong Tang, Jingyu Wang, Xin

Cao, Fengjun Zhao, Kang Li, Guohua Geng, and Mingquan

Zhou. Sppd: A novel reassembly method for 3d terracotta

warrior fragments based on fracture surface information. IS-
PRS International Journal of Geo-Information, 10(8), 2021.

[40] Congli Yin, Mingquan Zhou, Yachun Fan, and Wuyang

Shui. Template-guided 3d fragment reassembly using gds.

In Yongtian Wang, Zhiguo Jiang, and Yuxin Peng, editors,

Image and Graphics Technologies and Applications, pages

432–441, 2018.

[41] A. Khosla F. Yu L. Zhang X. Tang J. Xiao Z. Wu, S. Song.

3d shapenets: A deep representation for volumetric shapes.

In Computer Vision and Pattern Recognition, 2015.

[42] A. Khosla F. Yu L. Zhang X. Tang J. Xiao Z. Wu, S. Song.

3d shapenets: A deep representation for volumetric shapes.

In Computer Vision and Pattern Recognition, 2015.

[43] Rufeng Zhang, Tao Kong, Weihao Wang, Xuan Han, and

Mingyu You. 3d part assembly generation with instance en-

coded transformer. IEEE Robotics and Automation Letters,

7:9051–9058, 2022.

[44] Yuhe Zhang, Kang Li, Xiaoxue Chen, Shunli Zhang, and

Guohua Geng. A multi feature fusion method for reassem-

bly of 3d cultural heritage artifacts. Journal of Cultural Her-
itage, 33:191–200, 2018.

1641


