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Figure 1.

Abstract

Cameras rely on auto white balance (AWB) to correct un-
desirable color casts caused by scene illumination and the
camera’s spectral sensitivity. This is typically achieved us-
ing an illuminant estimator that determines the global color
cast solely from the color information in the camera’s raw
sensor image. Mobile devices provide valuable additional
metadata—such as capture timestamp and geolocation—
that offers strong contextual clues to help narrow down
the possible illumination solutions. This paper proposes a
lightweight illuminant estimation method that incorporates
such contextual metadata, along with additional capture in-
formation and image colors, into a lightweight model (~5K
parameters), achieving promising results, matching or sur-
passing larger models. To validate our method, we intro-
duce a dataset of 3,224 smartphone images with contex-
tual metadata collected at various times of day and under
diverse lighting conditions. The dataset includes ground-
truth illuminant colors, determined using a color chart, and
user-preferred illuminants validated through a user study,
providing a comprehensive benchmark for AWB evaluation.
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The time of day influences scene illumination, making it a valuable cue for improving illuminant estimation. Shown are
white-balanced results (gamma-corrected for visualization) using our method with (1) colors only, (2) colors plus contextual (timestamp
and geolocation) and capture data, and (3) ground truth (from a color chart). Angular errors show improvements when time-capture
information is used.

@ 0O

1. Introduction and related work

Color constancy refers to the ability of the human visual
system to maintain stable object colors despite variations
in lighting conditions by leveraging contextual cues within
the scene [27, 33, 51]. Cameras approximate this effect us-
ing auto white balance (AWB) correction, which aims to
partially neutralize color casts introduced by scene illumi-
nation and the camera’s spectral sensitivity [3]. AWB first
estimates the illumination color as an RGB vector in the
camera’s raw color space. The raw image is then corrected
by scaling its color channels according to the estimated illu-
mination, typically under the assumption of a single global
light source [8, 31].

Conventional illuminant estimation methods primarily
rely on image colors, either by directly processing the raw
image (e.g., [13, 32, 41, 49, 53, 58, 62, 66]) or by analyz-
ing color histograms (e.g., [2, 6, 7, 10]). These methods
can be broadly categorized into two groups: (1) classical
statistical-based methods (e.g., [15, 26, 32, 56, 57, 62]),
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Figure 2. The time of day at which an image is captured pro-
vides valuable information about the possible range of illuminant
colors in outdoor scenes. The figure presents the correlated color
temperature (CCT) of illuminant colors in our dataset (Sec. 3) for
images captured at various times throughout the day and night. As
shown, excluding images taken under artificial light, those cap-
tured at noon, for example, exhibit a different range of illuminant
CCTs compared to images captured during sunset or sunrise.

which estimate the illuminant color based on image statis-
tics, and (2) learning-based methods (e.g., [6, 10, 30, 42,
59]), which map image colors to their corresponding scene
illuminant through data-driven models.

While image colors are a key cue for estimating the
scene’s illuminant, mobile devices provide an opportunity
to integrate additional contextual information. For instance,
the device’s location, along with the date and time, offer
valuable cues about outdoor lighting conditions (e.g., sun-
rise, noon, sunset), thereby improving illuminant estimation
for outdoor scenes (see Fig. 1).

Intuitively, knowing the time of day when an outdoor
scene is captured can help estimate the lighting conditions.
Figure 2 further illustrates that the time of day, derived from
contextual metadata (i.e., timestamp and geolocation) read-
ily available on mobile devices, provides valuable insights
into the likely range of illuminant correlated color temper-
ature (CCT) in outdoor scenes. This information serves to
narrow the range of possible illuminant colors. For instance,
images taken at noon exhibit a different CCT range than
those captured at sunrise or sunset. When combined with
additional capture information to distinguish between envi-
ronments (e.g., indoors vs. outdoors), such metadata can
complement image colors to improve illuminant estimation
accuracy.

Despite its potential, only a few attempts have explored
leveraging additional information available to the camera’s
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image signal processor (ISP) for illuminant estimation, such
as metadata-based model control [11] or data augmenta-
tion to enhance generalization [6]. However, to our knowl-
edge, no previous work has investigated using contextual
information—specifically, mobile device timestamps and
geolocation—to refine illuminant estimation.

We introduce a method that leverages contextual meta-
data from mobile phones, along with additional capture in-
formation available in camera ISPs, to train a lightweight il-
luminant estimator model with ~5K parameters. Our model
delivers promising results, matching or surpassing that of
larger models, while maintaining efficiency. Our model
runs on a typical flagship mobile digital signal processor
(DSP) and CPU in 0.25 ms and 0.80 ms, respectively. This
compact and efficient design is especially advantageous for
mobile devices, where minimizing power consumption and
memory usage is critical [1, 7, 11].

Existing white-balance datasets (e.g., [19, 23, 28, 43])
lack the contextual information needed to validate our
method. The absence of contextual information is because
most available datasets (e.g., [19, 23]) used DSLR cameras,
which typically lack built-in GPS functionality or accurate
timestamps. To address this, we captured a new dataset of
3,224 images using a consumer smartphone camera, accom-
panied by contextual and capture information. The ground
truth for the dataset was established using two approaches:
(1) the conventional approach, selecting gray patches from
a calibration color chart, and (2) a manually selected user-
preference white-balance target, which enhances the im-
age’s aesthetic appeal and accounts for incomplete chro-
matic adaptation [60]. The user-preference white-balance
“ground truth” was validated through a user study. The
dataset spans a variety of lighting conditions, including
non-standard artificial illuminants [61], and covers differ-
ent times of day—sunrise, noon, sunset, and night.

Contribution: We propose an AWB method that utilizes
smartphone contextual metadata (i.e., timestamp and geolo-
cation) alongside capture information to enhance illuminant
estimation. We demonstrate that integrating this additional
data with conventional color information into a lightweight
neural model leads to significant improvements in accuracy.
Additionally, we introduce a large-scale dataset captured
with a consumer smartphone at various times of day, with
ground truth derived from both a calibration color chart and
user-preference-based white balance. Benchmarking results
show that our method achieves state-of-the-art results in
most standard metrics (i.e., angular error statistics [19]),
while maintaining computational efficiency on mobile de-
vices.
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Figure 3. Our method includes a lightweight model consisting
of a convolutional network that processes the histogram feature
(derived from raw image colors and edge histograms concatenated
with the u/v coordinates) to produce a latent feature v, € R1°.
This is then concatenated with the latent feature of the processed
time-capture feature, v; € R'. The combined feature, v € R3?,
is passed through a lightweight MLP to produce the chromaticity
of the scene illuminant, ¢, € R2, which is finally converted into
normalized RGB illuminant color.

2. Method

An overview of our method is shown in Fig. 3. Our method
employs a learnable model that processes two distinct in-
puts: (1) the time-capture feature (Sec. 2.1), which com-
bines the contextual and capture information available on
mobile devices and accessible by their camera ISPs, and (2)
the histogram feature (Sec. 2.2), which represents the im-
age’s R/G and B/G chromaticity values. The time-capture
feature is first processed to project it into a latent space,
producing the time-capture latent feature vector, v, € R16,
The model processes the histogram feature to produce the
histogram’s latent feature vector, v;, € R'®. Both the his-
togram and time-capture latent feature vectors are concate-
nated and processed by a set of learnable layers to output
an R/G, B/G chromaticity vector, /. € R?, representing the
scene illuminant. This 2D vector is then converted into the
illuminant RGB color used to perform white balancing.

2.1. Time-capture feature

Our model incorporates contextual metadata, available on
mobile devices, as one of its input features. Specifically,
we use the geolocation and timestamp of image capture to
compute the “probability” of the time of day (e.g., sunset,
noon, etc.). Our approach converts conventional clock time
(hour::minutes) to its corresponding time of day condition
based on the date and geolocation of the scene. This ap-
proach allows the model to generalize across different time
zones and prevents it from being influenced by the capturing
location. The time probability vector represents the likeli-
hood that the captured image corresponds to one of the solar
event times (i.e., dawn, sunrise, noon, sunset, dusk, or mid-
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night) and is computed as follows:

‘tc _tg|

py=1-

ey
where t. is the capture time in seconds (adjusted to the
local time zone based on geolocation information), and
tq is the local time in seconds of the solar event, g €
{dawn, sunrise,noon, sunset,dusk,midnight},
computed using geolocation-based standard algorithms
[52, 63, 64]. The scalar ts represents the total number of
seconds in a day (i.e., 86,400).

We pre-process the probability of each solar event, pg,
in our time probability vector by computing the square root
to enhance feature representation—compressing high prob-
abilities and amplifying lower ones, which is intended to
help create a more balanced and smooth distribution for the
model to leverage. We then augment this time probability
vector with a one-hot vector, b, that indicates whether the
capture time t. occurs before each solar event. This dis-
tinction helps the model account for expected variations in
CCT, as illuminant colors can differ before and after certain
solar events, such as sunset and sunrise. The value of this
one-hot vector for a given solar event g is computed as:

, ift. < 'tg @)
otherwise,

where b, corresponds to the entry in the one-hot vector for
the solar event, g. Both the time probability vector and the
one-hot vector together form our time feature, p € R'2.

To enrich our feature set with additional capture infor-
mation available from the camera ISP and help distinguish
the capturing environment (e.g., indoor vs. outdoor), we
include the following features in our final time-capture fea-
ture, c:

* ISO (¢): The sensitivity of the camera’s image sensor to
light, where lower values indicate good lighting condi-
tions (e.g., bright scenes) and higher values suggest low-
light environments, such as poorly lit indoor scenes.
Shutter speed (s): The amount of time the camera’s shut-
ter remains open, allowing light to hit the image sensor.
It provides an indication of lighting conditions, alongside
the ISO value, 1.

Flash status (f): A binary value indicating whether flash
light was used during capturing.

Noise information (optional): Since image denoising is
typically applied before or in parallel with illuminant es-
timation in camera ISPs [22, 34, 45], we also explore the
optional use of explicit noise information from the cap-
tured scene. More noise typically indicates low-light con-
ditions, which can provide clues about the lighting color
range of the scene. Unfortunately, while noise informa-
tion is accessible within camera ISPs, obtaining accurate



noise information for public use is challenging, as the
noise profiles in DNG files are not always reliable [68].
To address this, we simulate the noise information using
two approaches: noise statistics (stats) and/or signal-to-
noise ratio (SNR) stats, which are described below.

Noise stats (n): This represents the noise statistics in the
captured raw image. We simulate this by denoising each
raw image using Adobe Lightroom and computing the noise
stats as the mean and standard deviation of each color chan-
nel of the absolute difference between the denoised and
noisy raw images. This approach provides a simplified
method for estimating noise stats, as the denoised images
are typically available within the camera ISPs, but difficult
to extract from the DNG files.

SNR stats (r): This alternative approach measures the noise
information in the captured image without the need of a
denoised reference. The SNR is computed by applying a
15 x 15 sliding window over the raw image and calculated

ULJFE), where p represents the mean RGB of
the 15x15 patch, o is the standard deviation, and € is a small
value added for numerical stability.

Note that while these two approaches—namely, comput-
ing noise stats and SNR stats—yield satisfactory results,
there is a wide body of research on noise estimation (e.g.,
[47, 54, 55]), which is beyond the scope of this paper.

Our complete time-capture feature is the combination of
these inputs and can be expressed as follows:

as: 10log;q (

c= [p",log (i) log (s), f,w"] ", 3)
where w represents optional noise-related features, which
can include either noise stats n, SNR stats r, or both. Alter-
natively, w can be omitted if noise information is not con-
sidered.

Our time-capture feature is first normalized using min-
max normalization (with the min and max values computed
from the training data), and then processed through a learn-
able function, f, as follows:

vi = fi(c), “4)

where f; is a learnable linear layer that transforms the time-
capture feature, c, into its latent representation, v; € R16
(see Fig. 3).

2.2. Histogram feature

In addition to the time-capture feature, c, we provide our
neural model with a histogram feature, H, which repre-
sents the colors of the raw image. Inspired by prior work
[6, 10, 11], we use a 2D histogram to represent the R/G
and B/G chromaticities of the input raw image, I € REX3,
where K denotes the total number of pixels in the raw im-
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age. Specifically, we compute the 2D chromaticity his-
togram, H, € R"*" as follows:

H = 37 IO, -5
k

m,n?

&)

(k)

6m,n =

[t < rg®) < Um+1] A [vn < bg™ < Uny1], (6)

where rg*) and bg(*) are the R/G and B/G chromaticity
values of pixel % in I, and ||[I*)||, represents the intensity
of pixel £ (i.e., Euclidean norm of the pixel’s RGB values).
The notation A denotes the logical AND operator, and [-] is
the Iverson bracket, which evaluates to 1 when the condition
is true and O otherwise. The histogram bins are defined by
the edges {u,,} and {v, }, where w,, and v,, are the lower
edges of the bins, and u,, 1 and v, are the correspond-
ing upper edges. The histogram accumulates the brightness
values of pixels whose chromaticity values fall within the
range [tm, Um+1) along the R/G axis (i.e., the u-axis) and
[Un, Up41) along the B/G axis (i.e., the v-axis). The number
of histogram bins along each axis is denoted as h. Follow-
ing [10], we compute the square root of the histogram to
enhance the utility of the histogram feature [9].

Note that this histogram differs from the log-uv his-
togram used in prior work [6, 10, 11], which operates in
the logarithmic space of G/R and G/B [25]. We found that
the R/G, B/G chromaticity histogram performs better, as it
aligns with our model’s output space. See the supplemental
material for an ablation study.

In addition to the chromaticity histogram, H, of the im-
age colors, and building on prior work [6, 11], we augment
it with the square-rooted chromaticity histogram of the im-
age’s edges, H., where the image edges are computed as
follows:

Eey) _ 1 S |pew _peraseran
8 b

Az, Ay

(M

where E represents the image edges, I’ refers to the raw
image in 3D tensor form (height, width, channels), and
Az, Ay € {-1,0,1} with (Az, Ay) # (0,0). The edge
histogram, H,, is computed from E using Eqs. 5 and 6.
Our histogram feature is constructed by concatenating
these two histograms, H. and H.. Since this histogram
feature is first processed by convolutional (conv) layers, as
shown in Fig. 3, we follow [6] by appending additional
channels that encode the positional information of the u/v
coordinates in histogram space, which helps capture spatial
relationships within the histogram feature. Consequently,
our final histogram feature, H € RM*Ax4 - consists of 2
channels representing the chromaticity of the image and its
edges, along with the additional w/v coordinate channels.



This feature is processed through a series of conv layers
with ELU activation [21]. The resulting latent represen-
tation undergoes adaptive average pooling before passing
through a linear layer to produce the histogram’s latent fea-
ture vector, v;, € R16, as follows:

vy = fu(H), (8)

where f;, denotes the sub-model (i.e., conv layers, ELU ac-
tivation, pooling, and linear layer) that maps the histogram
feature into its latent space, as shown in Fig. 3.

2.3. Illuminant estimation
Both feature vectors, v, and vy, are concatenated to pro-
duce the latent vector v and processed by an illuminant es-
timation sub-model as follows:

€))

v = [V vy,

le = fo(v), (10)

where fy consists of a set of linear layers, with batch nor-
malization applied to the first layer, followed by activation
functions—except for the final layer, which outputs £, the
chromaticity vector of the scene illuminant. This vector
is then transformed into an unnormalized RGB illuminant
color by mapping [R/G, B/G]T — [R/G, 1, B/G]?, followed
by normalization via division by its L2 norm to produce the
final illuminant color. We optimize f;, fx, and f; to mini-
mize the angular error [36] between the predicted RGB il-
luminant color and the ground-truth RGB illuminant color.

3. Dataset

To train and validate our method, we require a dataset that
includes contextual information (i.e., timestamp and geolo-
cation) h h image. Existing datasets (e.g., [17, 19, 23, 28,
43, 447) lack this essential information, motivating us to col-
lect a new dataset using a smartphone camera that provides
contextual metadata for each image. Specifically, we cap-
tured 3,224 linear raw images with the Samsung S24 Ultra’s
main camera, covering a wide range of scenes both indoors
and outdoors, at various times of day (e.g., sunset, sunrise,
noon, night). Our dataset includes images captured under
various light sources (e.g., sunlight, incandescent, LED), as
well as non-standard illuminant colors (e.g., colored LED
light), which are not present in existing datasets [01]; see
Fig. 4. Additionally, our dataset captures scenes under dif-
ferent weather conditions (sunny, cloudy, rain, snow, etc.).
Example scenes can be found in the supplemental material.

We follow prior work [7, 43] in collecting ground-truth
illuminant colors for each scene. Specifically, for each
scene, we first capture an image with a calibration color
chart, which is used to extract the illuminant color from the
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Figure 4. A plot of the rg chromaticity distribution of ground-truth
illuminant colors for neutral white balance in our dataset. Exam-
ple images in raw and sRGB spaces are shown (raw images are
gamma-corrected for visualization). See supplemental material
the rg chromaticity distribution of user-preference illuminants.

gray patches. Next, we capture an image of the same scene
without the color chart (see Fig. 5), resulting in ~6K im-
ages. After obtaining the ground-truth illuminant color, we
discard all color chart images, leaving us with 3,224 images
in our dataset. This approach allows us to test with natural
images that mimic real-world scenarios, without the need to
mask out the color chart patch.

Since our dataset includes a wide variety of lighting con-
ditions, such as sunset/sunrise, night scenes, and artificial
light, we generate a “user-preference” ground truth in ad-
dition to the neutral ground truth obtained from the color
chart for each scene in our dataset. This is to account
for human incomplete chromatic adaptation in such scenes
[50, 60] and user preference [20, 24]. Specifically, an expert
photographer was asked to assign a ground truth illuminant
to each scene to make it appear more natural, reflect real-
world observations, and enhance the aesthetics of the im-
age. Notably, the same person who captured the scene also
performed the annotation, ensuring that the user-preference
selection was based on real-world observations of how the
scene should appear.

We validated the user-preference ground truth through a
study with 20 participants, who selected the most natural
image from pairs of white-balanced images corresponding
to the user-preference ground truth and the neutral ground
truth (obtained from the color chart). The user-preference
ground truth was selected in 71.95% of the trials, con-
firming its preference. See the supplemental material for
additional details. In our experiments, both ground-truth
types—neutral and user-preference—were used for training
and evaluation (Sec. 4).



Figure 5. For each scene in our dataset, an image with a color chart placed in the scene was captured. The gray patches on the color chart
were used to measure the ground-truth illuminant. These color-chart images were discarded, and only the images of the scenes without the
color chart were used for the training, validation, and testing sets. For each example, we show both raw and sRGB images, with the raw

images gamma-corrected to enhance visualization.

Additionally, we created a mask for regions illuminated
by non-dominant illuminants in each scene. These masks
ensure that all scenes have only one dominant illuminant,
matching the color of the neutral ground truth, without con-
founding effects from other illuminants. We applied these
masks to the training images when training our method and
others. To preserve privacy, sensitive information, such as
car plates and faces, has been blurred.

In addition to raw images, both ground-truth illuminant
types, and contextual and capture information, we provide
additional valuable auxiliary data to broaden the impact of
our dataset. This includes locally tone-mapped sSRGB im-
ages rendered by an expert, that can serve as ground-truth
for applications beyond white-balance correction, such as
neural ISPs [35, 38, 39, 65]. More information about the
dataset can be found in the supplemental material. We or-
ganize our dataset into 2,619 raw images for training, 205
raw images for validation, and 400 raw images for testing.

4. Experiments

Implementation details: We train the model using the
Adam optimizer [40], for 400 epochs with betas set to (0.9,
0.999) and a weight decay factor of 10~7. A warm-up strat-
egy is applied to gradually increase the learning rate from
1076 to 1073 over the first 5 epochs. After this, we use a
cosine annealing schedule [48]. Following [6], we employ a
batch-size increment strategy during training, starting with
a batch size of 8 and doubling it every 100 epochs. Follow-
ing prior work [6, 7], we use images of size 384 x256 pix-
els in all experiments, which is a reasonable size for cam-
era pipelines to reduce computational overhead. For our
method, we use histograms with A = 48 bins. The his-
togram boundaries are determined by computing the 10th
and 95th percentiles of the chromaticity values along each
chromaticity axis from the training set. We report the re-
sults of our method both with and without the inclusion of
noise stats, n, and SNR stats, r.

Results: We report the results of our method along-
side several others benchmarked on the proposed dataset.
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Our method is compared with various statistical-based ap-
proaches [12, 14, 15, 18, 19, 26, 32, 56, 57, 62], camera-
specific learning-based methods [4, 5, 11, 16, 29, 30, 37,
41,42,53,59, 66, 67], and camera-independent techniques
[2, 6, 13]. For the camera-specific learning-based ap-
proaches, including our method, all models were trained on
our training set.

For the camera-independent methods [2, 6], we present
results from models trained on the NUS [19] and Cube++
[23] datasets. Additionally, we report results from fine-
tuned versions of these models [2, 6], incorporating our pro-
posed dataset. We also evaluate camera-specific (CS) mod-
els of these methods [2, 6], which were trained exclusively
on our training data, without any additional datasets. For
further details, refer to the supplemental material.

Table 1 shows the results on the testing set of our dataset.
We report the mean, median, best 25%, worst 25%, worst
5%, tri-mean, and maximum angular errors between the es-
timated illuminant colors and the ground truth colors for
each method. Results are provided for both neutral and
user-preference ground truth, with two models, one trained
for each ground-truth type, except for the models SIIE [2],
SIIE (tuned) [2], C5 [6], and C5 (tuned) [6], which were
trained on images from the NUS [19] and Cube++ [23]
datasets that do not include user-preference ground truth.

Additionally, we report the total number of parameters
for methods that involve tunable or learnable parameters.
The results in Table 1 are based on images without masking
regions illuminated by a light source other than the dom-
inant one used to obtain the ground truth, reflecting real-
world scenarios where scenes with a single light source are
not always guaranteed. For completeness, additional results
are provided in the supplementary material, where regions
illuminated by light sources different from the ground-truth
illuminant color are masked out.

To further demonstrate the effectiveness of our method
on existing DSLR datasets, where contextual metadata is
typically unavailable, we report our results on the Simple
Cube++ dataset [23]. Although geolocation metadata is ab-
sent, the dataset provides capture settings such as ISO and
exposure time from the DSLR camera ISP.



Table 1. Results on the testing set. We report the mean, median, best 25%, worst 25%, tri-mean, and maximum angular errors for each
method on neutral and user-preference white-balance ground-truth illuminants, presented in the format (neutral / user-preference). Symbols

n and r represent noise stats and SNR stats, respectively. The best and second-best results are highlighted.

Method Mean Med. f Se ,57: ‘;/;) ;:t “;(:;:t Tri. Max #pz(llr(a)ms
GW [15] 6.23/5.54 6.01/4.52 1.02/1.00 12.43/1191 18.05/19.81 5.76/4.65 28.09/31.70 -

SoG [26] 4.45/3.59 3.54/2.17 0.74 1 0.67 9.61/8.81 14.94/15.61 3.77/2.62 23.22/29.36 -
GE-1st [62] 4.21/3.33 3.29/2.12 0.71/0.55 9.34/8.29 15.34/15.19 3.49/2.36 27.81/28.80 -
GE-2nd [62] 4.11/3.18 3.17/1.89 0.70/0.58 9.09/7.79 14.90/14.85 3.35/2.18 25.09/29.42 -
Max-RGB [14] 4.01/2.61 2.92/1.88 1.06/0.97 8.57/5.69 14.01/11.07 3.30/1.94 34.22/23.63 -
wGE [32] 3.96/3.07 2.96/191 0.62/0.49 8.95/7.79 14.94/15.08 3.21/2.10 31.33/30.54 -
PCA [19] 4.42/3.63 3.54/1.95 0.70/0.61 9.59/9.19 14.46/16.16 3.76/2.52 22.87/31.58 -
MSGP [57] 6.39/5.69 5.72/4.38 0.94/0.98 13.39/12.73  20.97/22.33 5.64/4.68 37.25/36.92 -

GI [56] 4.70/4.93 3.19/2.97 0.44/0.78 11.63/12.22 20.48/21.35 3.48/3.53 36.34/36.02 -
TECC [12] 4.12/3.17 3.23/1.91 0.74/0.55 9.10/7.83 14.73/14.48 3.46/2.17 27.08 /28.87 -
Gamut (pixels) [30] 3.771/2.40 2.81/1.49 0.77/0.63 8.31/5.84 1293/11.18 3.16/1.63 21.53/23.31 0.636
Gamut (edges) [30] 4.45/3.94 3.52/3.04 1.08/1.01 9.51/8.50 15.00/15.25 3.70/3.18 28.55/29.46 324
Gamut (1st) [30] 4.10/3.65 3.08/2.67 0.72/0.90 9.26/8.25 14.75/14.69 3.28/2.91 21.38/26.35 279
NIS [29] 4.58/3.90 3.76 /12.57 0.77/0.75 9.81/9.10 14.70/15.66  3.87/2.97 20.76 /31.80 0.078
Classification-CC [53] 2.73/1.61 1.98/1.16 0.61/0.36 6.03/3.60 9.37/6.07 2.18/1.27 19.34/9.53 58,384
FFCC[11] 2.62/1.50 1.46/0.81 0.37/0.24 6.89/3.99 16.59/8.43 1.66/0.95 48.97/ 18.60 12
FFCC (capture info) [11] | 2.31/1.35 1.38/0.80 0.34 /0.23 5.82/3.51 12.44/7.36 1.60/0.88 47.67/16.96 36.9
FC4 [37] 3.80/2.65 2.78/2.25 0.85/0.85 8.61/5.14 15.06/7.52 2.86/2.37 25.74/11.42 1,705
APAP (GW) [5] 3.74/2.09 3.14/1.67 0.93/0.49 7.72/4.44 11.09/6.89 3.26/1.76 16.43 / 9.02 | 0.289
SIIE [2] 4.09/ - 325/- 091/- 8.97/- 15.96/ - 337/- 4324 /- 1,008
SIIE (tuned) [2] 3.15/- 2.22/- 0.51/- 7.28 /- 12.14 /- 246/ - 3452/- 1,008
SIIE (tuned-CS) [2] 3.14/1.74 2.20/1.20 0.50/0.32 7.39/4.06 13.61/6.73 2.41/1.30 38.96/9.44 1,008
KNN (raw) [4] 244 /141 1.51/0.83 0.36/ 0.20 6.13/3.66 11.64/7.01 1.66/0.93 28.95/13.49 757
Quasi-U-CC [13] 3.85/3.26 2.97/1.81 0.55/0.58 8.47/8.24 13.30/15.78 3.25/2.21 24.74132.17 54,421
Quasi-U-CC (tuned) [13] | 3.11/2.54 2.27/143 0.49/0.44 7.14/6.57 11.53/13.62 2.44/1.63 22.67/33.74 54,421
BoCF [41] 3.54/2.14 2.68/1.59 0.96/0.48 7.31/4.74 11.40/7.85 2.96/1.72 22.31/19.68 59

C4 [66] 1.92/1.49 1.30/0.90 0.36/0.24 4.64/3.82 9.08/7.53 1.40/1.03 21.55/18.09 5,116
CWCC [42] 3.65/2.30 2.71/1.72 0.82/0.67 7.96/4.95 12.52/9.65 2.99/1.81 18.66/20.81 101
C5[6] 322/- 2.51/- 0.78 / - 6.97 /- 10.54 /- 2.68/- 16.38 /- 412
C5 (tuned) [6] 191/- 1.24 /- 0.38/- 4,571 - 8.43 /- 1.38/- 17.22/- 412
C5 (tuned-CS) [6] 1.95/1.25 1.32/0.84 0.37/0.23 472/ 2.94 8.15 /498 1.44/0.93 16.78 /19.23 172
TLCC [59] 2.71/2.74 2.06/1.83 0.66/0.69 5.89/6.30 10.30/12.90 2.17/1.99 21.44/33.33 32,910
PCC [67] 3.03/1.67 2.13/1.20 0.53/0.40 7.08/3.79 11.20/6.84 2.34/1.27 16.82/12.33 0.378
RGP [18] 4.59/4.56 3.13/2.81 0.43/0.70 11.13/11.27 18.79/20.25 3.53/3.31 32.11/33.98 -
CFCC [16] 3.07/1.54 2.20/1.05 0.73/0.39 6.87/3.55 12.55/6.98 2.36/1.13 23.34/14.40 0.283
Ours (w/o n, w/o r) 1.93/1.26 1.35/0.77 0.38/0.23 4.56 /3.13 9.48/5.88 1.43/70.88 22.63/15.90 4.83
Ours (w/o n, w/ r) 1.89/ 1.23 1.18 /0.79 0.32 /0.24 4.74/3.01 10.10/5.07 1.30 /0.90 24.99/12.91 4.93
Ours (w/ n, w/o r) 1.87 / 1.20 124 / 072 0.37/0.24 4.58/2.99 9.82/5.58 1.30 / 0.82 29.46/15.12 4.93
Ours (w/ n, w/ r) 1.84 / 1.20 1.24 / 0.77 035/ 0.19 441 /295 9.17/5.12 1.32 / 0.87 35.42/12.71 5.03

We trained our model using the histogram feature H,
along with capture features including ISO (7), exposure time
(e), and SNR stats (r), deliberately excluding the contextual
metadata that is not available in the Simple Cube++ DSLR
dataset. The results of our method, both with and without
the SNR stats, are compared to other methods in Table 2. As
shown, our method outperforms competing methods across
most evaluation metrics.

Inference time: As shown in Table 1, our method performs
comparably to or outperforms prior methods, while main-
taining a compact model with only approximately 5K pa-
rameters. This lightweight design results in faster runtimes
compared to other methods that achieve competitive results,
namely C4 [66] and tuned C5 [6].
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Table 2. Results on the testing set of the ‘Simple Cube++’
dataset [23]. We report the mean, median, best 25%, worst 25%,
tri-mean, and maximum angular errors for each method. Symbols
c, i, e, and r refer to the time-capture feature, ISO, exposure time,
and SNR stats, respectively. The best and 'second-best results
are highlighted.

Best Worst Worst .
Method Mean Med. 5%  25% 59 Tri. Max
FECC [11] 138 058 0.18 4.05 1030 0.68  45.20
FC4 [37] 3.72 202 047 9.93 17.18 240 2992
C4 [66] 1.16 0.65 024 3.00 6.72 0.73 13.95
C5 (tuned-CS) [6] 1.19 0.60 0.18 3.26 7.61 0.68 15.62
TLCC [59] 1.82 1.15 039 4.49 9.63 1.20 19.02




Table 3. Processing time on an AMD Ryzen Threadripper PRO
3975WX CPU460 and an NVIDIA RTX A6000 GPU.

Method ‘ CPU (ms) GPU (@ms) FLOPs
C4 [66] 49.03 11.28 2.28G

C5[6] 8.28 4.50 103.54M
Ours 0.55 0.45 16.78M

In Table 3, we present the processing times of our model,
C4, and CS5 on an AMD Ryzen Threadripper PRO 3975WX
CPU and an NVIDIA RTX A6000 GPU. Our fast runtime
performance is particularly well-suited for mobile camera
ISPs, where limited computational latency is crucial due to
the processing demands of other modules (e.g., denoising,
local tone mapping) per frame. Our model runs in just 0.25
ms on the DSP and 0.80 ms on the CPU of the Samsung
S24 Ultra.

Ablation studies: We conducted ablation studies to eval-
uate the impact of each input feature on the validation set
of our dataset. Specifically, we assessed our method by ex-
cluding either the time-capture feature (c) or the histogram
feature (H). Additionally, we tested the method using only
the time feature (p) and noise stats (n), while excluding the
histogram feature (H). We also evaluated the method us-
ing the histogram feature along with the time feature and
noise stats, excluding other capture information. Further-
more, we examined the accuracy of our method using all
input features except for p. Lastly, we present the results
when all input features are used, but without the noise stats
(n) and the SNR stats (r). These results are presented in
Table 4.

As shown in Table 4, using only the time feature (p) and
noise stats (n) yields a reasonable accuracy (2.37° mean an-
gular error), compared to FFCC [11], which achieves 2.19°
mean angular error on the validation set. This validates the
usefulness of time-of-day and noise information in provid-
ing contextual clues. As expected, incorporating the his-
togram feature (H), which represents scene colors, along
with the time-of-day and noise stats, significantly boosts ac-
curacy, as demonstrated by the results in the fourth row. We
further investigate the impact of using noise information in
the last three rows: using SNR stats (r), using noise stats
(n), or both. The combination of both noise features yields
the lowest mean angular error. Additional ablation studies
are provided in the supplementary material.

5. Conclusion and limitations

We presented a method for in-camera AWB correction that
leverages contextual information. Specifically, we proposed
a lightweight model that leverages contextual metadata (no-
tably time-of-day derived from timestamp and geolocation)
to guide the illuminant estimation process. In addition to
this contextual metadata, we incorporate image colors in
the form of histogram features, as well as capture infor-
mation such as ISO, shutter speed, and noise stats, to help
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Table 4. Results of ablation studies on the validation set with
neutral white-balance ground truth. We report the mean, median,
best 25%, and worst 25% angular errors for our method with vari-
ous configurations. Symbols H, p, n, and r denote the histogram
feature, time feature, noise stats, and SNR stats, respectively. The
symbol m refers to the capture information feature, which in-
cludes ISO (2), shutter speed (s), and flash status (f), all of which
are used in our input time-capture feature c. The best results are
highlighted.

Best Worst Worst
H m p n r | Mean Med. 25% 25% 5%
v X X X x| 203 1.36 0.31 4.90 8.90
X v v v V| 229 1.81 0.50 4.95 8.58
X X v vV X | 237 1.59 0.45 5.48 9.03
v X v v X 1.75 1.17 0.29 4.13 7.26
v v X v V| 189 1.21 0.31 4.60 941
v v v X X 1.85 1.32 0.35 4.26 7.53
v v v X V| 172 1.16 0.30 4.13 8.16
v v v v X 1.67 1.07 0.29 4.04 7.90
v v Vv Vv V| 166 1.20 0.33 3.77 6.95

the model distinguish between artificial and natural scenes
and improve its final accuracy. Our method is fast and can
achieve high frame rates on modern smartphone DSPs and
CPUs, while maintaining accurate illuminant color estima-
tion.

A key contribution of this work is a large-scale dataset
of raw images captured by a consumer smartphone cam-
era, along with the necessary contextual metadata for train-
ing and evaluating our method. Beyond the traditional neu-
tral white-balance ground truth extracted from a calibration
color chart placed in each scene, we also include a user-
preference ground truth that targets the observer’s prefer-
ence, validated through a user study. Results based on both
ground truth types demonstrate that our method achieves
comparable or superior performance to existing methods,
which require larger models.

While our method represents a promising solution for
mobile camera ISPs, its dependency on contextual meta-
data limits its optimal accuracy to devices that provide
geolocation data, which may not be available on DSLR
cameras. Additionally, while the contextual metadata is
device-independent (i.e., the differences across devices are
expected to be minimal), our method relies on additional
capture information (i.e., ISO, shutter speed, noise, and
SNR stats) and image colors, making it inherently camera-
dependent in design. This dependency prevents our trained
model from generalizing to new devices without fine-tuning
or re-training. However, this issue can be mitigated through
color calibration (e.g., [46]), which can be extended to cal-
ibrate capture information as well—by performing a pre-
processing mapping from the new camera space (for both
color and capture information) to the camera space used
during training. Additional discussion on cross-camera gen-
eralization is provided in the supplementary material.
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