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Abstract

We introduce a novel approach for simultaneous self-
supervised video alignment and action segmentation based
on a unified optimal transport framework. In particular,
we first tackle self-supervised video alignment by develop-
ing a fused Gromov-Wasserstein optimal transport formu-
lation with a structural prior, which trains efficiently on
GPUs and needs only a few iterations for solving the opti-
mal transport problem. Our single-task method achieves the
state-of-the-art performance on multiple video alignment
benchmarks and outperforms VAVA, which relies on a tra-
ditional Kantorovich optimal transport formulation with an
optimality prior. Furthermore, we extend our approach by
proposing a unified optimal transport framework for joint
self-supervised video alignment and action segmentation,
which requires training and storing a single model and
saves both time and memory consumption as compared to
two different single-task models. Extensive evaluations on
several video alignment and action segmentation datasets
demonstrate that our multi-task method achieves compara-
ble video alignment yet superior action segmentation results
over previous methods in video alignment and action seg-
mentation respectively. Finally, to the best of our knowl-
edge, this is the first work to unify video alignment and ac-
tion segmentation into a single model.

1. Introduction

Though the past decade has witnessed remarkable progress
in human activity understanding in videos, the majority
of the research efforts have been invested in action recog-
nition [8, 20, 67, 74], which categorizes simple actions
in short videos. In this paper, we study the two less-
explored problems, i.e., temporal video alignment (frame-
to-frame assignment), which establishes framewise corre-
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Figure 1. (a) Our self-supervised video alignment method (VAOT)
based on a fused Gromov-Wasserstein optimal transport with
structural priors {Cx,Cy}. (b) Our joint self-supervised video
alignment and action segmentation method (VASOT) based on a
unified optimal transport with structural priors {Cx,Cy} for video
alignment and {Cx,Ca} and {Cy,Ca} for action segmentation.

spondences between long videos recording a complex activ-
ity, and temporal action segmentation (frame-to-action as-
signment), which assigns frames of long videos capturing a
multi-phase activity to phase/action labels. Since acquiring
per-frame annotations for supervised training is generally
difficult and costly, we are interested in self-supervised ap-
proaches for video alignment and action segmentation.

One popular group of self-supervised video alignment
methods rely on global alignment techniques widely used
in time series literature. For example, LAV [25] utilizes
dynamic time warping [12] by assuming monotonic order-
ings and no background/redundant frames. VAVA [44] re-
laxes the above assumptions by incorporating an optimality
prior into a standard Kantorovich optimal transport frame-
work [11], along with an inter-video contrastive term and
an intra-video contrastive term. However, it is challenging
to balance multiple losses as well as handle repeated ac-
tions. Similarly, self-supervised action segmentation meth-
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ods based on optimal transport have been introduced, in-
cluding TOT [34] and UFSA [69] which may suffer in cases
of order variations, unbalanced segmentation, and repeated
actions. ASOT [78] addresses these drawbacks via a fused
Gromov-Wasserstein optimal transport framework with a
structural prior, which outperforms previous works in self-
supervised action segmentation. Lastly, though both self-
supervised video align and action segmentation require fine-
grained temporal understanding of videos, their interaction
in a multi-task learning setup has not been explored.

Motivated by the above observations, we first propose
VAOT (see Fig. 1(a)), a novel self-supervised video align-
ment approach based on a fused Gromov-Wasserstein op-
timal transport formulation with a structural prior, which
tackles order variations, background/redundant frames, and
repeated actions in a single global alignment framework.
Our single-task model trains efficiently on GPUs and re-
quires few iterations to derive the optimal transport so-
lution, while outperforming previous methods, including
VAVA [44], on video alignment datasets. Moreover, we de-
velop VASOT (see Fig. 1(b)), a joint self-supervised video
alignment and action segmentation approach by exploring
the relationship between self-supervised video alignment
and action segmentation via a unified optimal transport
framework. Our multi-task model performs on par with
prior works on video alignment benchmarks yet establishes
the new state of the art on action segmentation benchmarks.
In addition, our joint model requires training and storing a
single model and saves both time and memory consumption
as compared to two separate single-task models. Lastly, we
observe in Sec. 4.3 that, in a multi-task learning setting, ac-
tion segmentation provides little boost to video alignment
results, whereas video alignment increases action segmen-
tation performance significantly.

In summary, our contributions include:
• We propose a fused Gromov-Wasserstein optimal trans-

port formulation with a structural prior for self-supervised
video alignment, outperforming previous methods. Our
single-task method learns efficiently on GPUs, needing
few iterations to obtain the optimal transport solution.

• We develop a unified optimal transport-based approach
for simultaneous self-supervised video alignment and ac-
tion segmentation, yielding comparable video alignment
but superior action segmentation results over previous
methods. Our joint approach requires training and stor-
ing a single model, saving both time and memory usage.

• We conduct extensive experiments on several video align-
ment and action segmentation datasets, i.e., Pouring,
Penn Action, IKEA ASM, 50 Salads, YouTube Instruc-
tions, Breakfast, and Desktop Assembly, to validate the
advantages of our single-task and multi-task methods. To
our best knowledge, our work is the first to combine video
alignment with action segmentation.

2. Related Work
Self-Supervised Learning. Early self-supervised learning
methods focus on designing image-based pretext tasks with
pseudo-labels as supervision signals for learning represen-
tations such as image colorization [36, 37], object count-
ing [45, 49], predicting rotations [23], solving puzzles [5,
30], image inpainting [27], and image clustering [6, 7].
The above image-based approaches mostly extract spatial
cues from the image content. Recently, significant efforts
have been invested in video-based self-supervised learn-
ing methods, which exploit both spatial and temporal in-
formation. Examples of video-based pretext tasks include
forecasting future frames [1, 15, 59, 72], enforcing tempo-
ral coherence [24, 48, 82], predicting temporal order [22,
38, 47, 76], arrow of time [52, 75], and pace [4, 73, 79],
and utilizing contrastive learning [13, 21, 26, 53]. More
recently, skeleton-based self-supervised learning methods
with skeleton-based pretext tasks, e.g., skeleton inpaint-
ing [81], motion prediction [61], skeleton sequence align-
ment [35, 68], and utilizing neighborhood consistency [57],
motion continuity [62], and multiple pretext tasks [43], have
been introduced. These skeleton-based approaches may
suffer from human pose estimation errors and missing con-
text details. Here, we leverage video alignment and/or ac-
tion segmentation as our video-based pretext tasks.
Video Alignment. Self-supervised video alignment has at-
tracted a great amount of research interest in recent years.
TCC [18] enforces cycle consistencies between correspond-
ing frames across videos for learning representations. Re-
cently, GTCC [17] extends TCC [18] by proposing multi-
cycle consistencies for tackling repeated actions. Both
TCC [18] and GTCC [17] perform local alignment by align-
ing each frame separately. Motivated by global alignment
techniques for time series, methods which align the video
as a whole have been introduced. LAV [25] which as-
sumes monotonic orderings and no background/redundant
frames relies on dynamic time warping [12]. To han-
dle non-monotonic orderings and background/redundant
frames, VAVA [44] employs a traditional Kantorovich op-
timal transport formulation [11] with an optimality prior. In
this work, we propose a fused Gromov-Wasserstein opti-
mal transport formulation with a structural prior which han-
dles order variations, background/redundant frames, and re-
peated actions in a single global alignment framework. In
addition, we develop a unified optimal transport-based ap-
proach for joint video alignment and action segmentation.
Action Segmentation. Initial works in self-supervised ac-
tion segmentation perform representation learning and of-
fline clustering as disjoint steps. Please see Ding et al. [16]
for a recent survey. CTE [33] trains a temporal embed-
ding first and then employs K-Means to cluster the em-
bedded representations. To enhance CTE [33], VTE [71]
and ASAL [42] introduce a visual embedding and an ac-
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tion embedding respectively. The above methods sepa-
rate representation learning and offline clustering, prohibit-
ing effective communications between the two modules.
Recently, methods which jointly conduct representation
learning and online clustering have been developed, e.g.,
UDE [63], TOT [34], and UFSA [69]. However, their per-
formance may deteriorate in cases of order variations, un-
balanced segmentation, and repeated actions. To overcome
these limitations, ASOT [78] introduces a fused Gromov-
Wasserstein optimal transport formulation with a structural
prior. Here, we propose a similar optimal transport formula-
tion for video alignment, outperforming previous methods
on video alignment datasets, and extend it to a joint video
alignment and action segmentation model, establishing the
new state of the art on action segmentation benchmarks.

Optimal Transport with Structured Data. Optimal trans-
port underpins several computer vision and machine learn-
ing applications. A comprehensive review of optimal trans-
port and its applications in machine learning is presented in
Khamis et al. [29]. Optimal transport applications in com-
puter vision include keypoint matching [46, 54], point set
registration [56], object detection [14], object tracking [39],
video alignment [44], and procedure learning [10]. For
problems with structured data, a Gromov-Wasserstein opti-
mal transport with a structural prior is frequently employed,
e.g., graph matching [77], brain image registration [65],
and action segmentation [78]. In this paper, we develop
a Gromov-Wasserstein optimal transport with a structural
prior for video alignment and extend it to joint video align-
ment and action segmentation. To our best knowledge, our
work is the first to incorporate video alignment and action
segmentation into a unified optimal transport framework.

3. Our Approach

We describe in this section our main contributions, namely
a self-supervised video alignment approach (VAOT) in
Sec. 3.1 and a joint self-supervised video alignment and ac-
tion segmentation approach (VASOT) in Sec. 3.2.

Notations. First of all, ⟨A,B⟩ =
∑

i,j AijBij denotes the
dot product of A,B ∈ Rn×m, 1n ∈ Rn models a vec-
tor of ones, and [n] = {1, . . . , n} represents a discrete set
of n elements. Next, ∆m ⊂ Rm denotes the (m − 1) di-
mensional probability simplex, while ∆n

m ⊂ Rm×n models
the Cartesian product space consisting of n such simplexes.
Furthermore, X = {x1, . . . , xN} and Y = {y1, . . . , yM}
denote two input videos of N and M frames respectively.
Let fθ with learnable parameters θ be the embedding func-
tion, frame-level embeddings of X and Y are expressed as
X = fθ(X) ∈ RN×D and Y = fθ(Y ) ∈ RM×D, where D
is the embedding vector length. Lastly, K learnable action
centroids are expressed by A = [a1, . . . ,aK ] ∈ RD×K .

3.1. Self-Supervised Video Alignment
3.1.1. Optimal Transport with Structured Data
Kantorovich Optimal Transport. We briefly describe the
conventional optimal transport formulation, also known as
Kantorovich optiomal transport (KOT) [64], in the discrete
setting. The KOT problem aims to find the minimum-cost
coupling T⋆ between histograms p ∈ ∆n and q ∈ ∆m

with a ground cost C ∈ Rn×m
+ and is written as:

argmin
T∈Tp,q

FKOT(C,T) = ⟨C,T⟩, (1)

with Tp,q = {T ∈ Rn×m
+ | T1m = p,T⊤1n = q}.

The coupling T is regarded as the soft assignment between
elements in the supports of p and q, i.e., discrete sets [n]
and [m]. For video alignment, T ∈ RN×M

+ represents the
assignment between frames of X and Y .
Gromov-Wasserstein Optimal Transport. For histograms
defined over incomparable spaces, Gromov-Wasserstein
(GW) optimal transport [51] is typically employed as:

argmin
T∈Tp,q

FGW(Cx,Cy,T) =
∑

i,k∈[n]
j,l∈[m]

L(Cx
ik,C

y
jl)TijTkl.

(2)
Here, (Cx,p) ∈ Rn×n ×∆n and (Cy,q) ∈ Rm×m ×∆m

represent two (metric, measure) pairs respectively, while
distance matrices Cx and Cy describe metrics defined over
supports [n] and [m] respectively. Note that there is no met-
ric defined between supports [n] and [m] in the GW setting.
L : R × R → R denotes a cost function minimizing dis-
crepancies between distance matrix elements. We utilize the
GW formulation to impose structural priors Cx and Cy on
the transport map for video alignment (i.e., temporal con-
sistency), which we will describe in the next section.
Fused Gromov-Wasserstein Optimal Transport. Fused
Gromov-Wasserstein (FGW) optimal transport [66, 70]
which merges KOT and GW formulations is often used for
problems with known ground cost and structural prior. Let
α ∈ [0, 1], the FGW problem is expressed as:

argmin
T∈Tp,q

FFGW(C,Cx,Cy,T) = (1−α)FKOT(C,T)+

αFGW(Cx,Cy,T). (3)

For video alignment, the KOT objective encourages visual
similarity between corresponding frames of X and Y , while
the GW objective enforces structural properties on the re-
sulting alignment (i.e., temporal consistency).
Balanced Optimal Transport. The above optimal trans-
port problems impose balanced assignment constraints T ∈
Tp,q = {T ∈ Rn×m

+ | T1m = p,T⊤1n = q}. Recent
works have relaxed these constraints by replacing (one [78]
or both [65]) marginal constraints on T with penalty terms
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in the objective, yielding (partial [78] or full [65]) unbal-
anced assignment constraints. For video alignment, we
adopt the full unbalanced formulation [65] but the results
are worse than those of the balanced formulation, as we will
show later in Sec. 4.1. This is likely because it is difficult
to balance multiple losses (the full unbalanced formulation
yields two extra penalty terms) and video alignment is gen-
erally more balanced than action segmentation (the number
of frames is much larger than the number of actions).

3.1.2. Video Alignment Optimal Transport
Here, we adapt the above balanced FGW optimal transport
in Eq. 3 for video alignment, yielding our proposed video
alignment optimal transport (VAOT). Let us denote p =
1
N 1N and q = 1

M 1M as histograms defined over the sets
of N frames in X and M frames in Y , represented by [N ]
and [M ] respectively. The solution T⋆ ∈ RN×M

+ between
[N ] and [M ] represents the soft assignment between frames
of X and Y . For a frame xi in X , the corresponding frame
yj⋆ in Y is specified by j⋆ = argmaxj T

⋆
ij . Below we

will discuss our cost matrices {C,Cx,Cy} for the FGW
problem in Eq. 3, deriving the solution T⋆ efficiently, and
handling background/redundant frames.
Visual Cue. The KOT subproblem in Eq. 3 includes the
cost matrix C which measures the difference in visual con-
tent of X and Y and is defined as Cij = 1 − x⊤

i yj

∥xi∥2∥yj∥2
,

with frame embeddings xi = fθ(xi) and yj = fθ(yj).
Structural Prior. For the GW subproblem in Eq. 3, we
define L(a, b) = ab and cost matrices Cx ∈ RN×N

+ over
frames of X and Cy ∈ RM×M

+ over frames of Y as:

Cx
ik =

{
1
r 1 ≤ δik ≤ Nr

0 otherwise
,Cy

jl =

{
0 1 ≤ δjl ≤ Mr

1 otherwise
.

(4)
Here, δik = |i − k|, δjl = |j − l|, and a radius parameter
r ∈ (0, 1]. The GW component encourages temporal con-
sistency over T. In particular, assigning temporally nearby
frames in X (δik ≤ Nr) to temporally distant frames in Y
(δjl > Mr) incurs a cost (L(Cx

ik,C
y
jl) =

1
r ), whereas map-

ping temporally nearby frames in X (δik ≤ Nr) to tempo-
rally adjacent frames in Y (δjl ≤ Mr) or mapping tempo-
rally distant frames in X (δik > Nr) to temporally remote
frames in Y (δjl > Mr) incurs no cost (L(Cx

ik,C
y
jl) = 0).

The GW component is capable of handling order variations
and repeated actions, as shown in ASOT [78].
Fast Numerical Solver for VAOT. The GW component in
Eq. 3 can be computed efficiently as FGW(Cx,Cy,T) =
⟨CxTCy,T⟩ since the cost function L(a, b) = ab can be
factorized [51]. In addition, by adding an entropy regu-
larization term −ϵH(T), with H(T) = −

∑
i,j Tij log Tij

and ϵ > 0, to the FGW formulation in Eq. 3, we can obtain
the solution T⋆ efficiently via projected mirror descent [51],
which can be run on GPUs. Our solver often converges in
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Figure 2. (a) Our self-supervised video alignment method
(VAOT). (b) Our joint self-supervised video alignment and action
segmentation method (VASOT). Learnable parameters are shown
in red. Arrows denote computation/gradient flows (blue and green
represent video alignment and action segmentation respectively).

less than 25 iterations. By exploiting the sparse structures
of Cx and Cy , each iteration has O(NM) time complexity.
Background/Redundant Frame Handling. To tackle
background/redundant frames, we follow VAVA [44] to add
a virtual frame to X and Y so that background/redundant
frames are explicitly assigned to it. Specifically, we append
an extra row and column to T and expand other variables
accordingly. If the assignment probability of xi (i ≤ N )
with every yj (j ≤ M ) is smaller than a threshold parame-
ter ζ, we match xi with the virtual frame yM+1. Similarly,
if the assignment probability of yj (j ≤ M ) with every xi

(i ≤ N ) is smaller than ζ, we match yj with xN+1. Note
that virtual frames and their associated frames are excluded
from computing the losses. As shown in Sec. 4.1, handling
background/redundant frames leads to performance gain.

3.1.3. Self-Supervised Learning
We now present our self-supervised learning framework for
video alignment in Fig. 2(a). We utilize the above VAOT
module to compute pseudo-labels as supervision signals for
training the frame encoder. We learn the parameters θ of
the frame encoder by minimizing the cross-entropy loss be-
tween normalized similarities P (computed based on frame
embeddings X and Y) and pseudo-labels T⋆ (obtained by
VAOT). We first define normalized similarities P ∈ ∆N

M as:

Pij =
exp(XY⊤/τ)ij∑
l exp(XY⊤/τ)il

, (5)

with τ > 0 denoting a temperature scaling parameter. In
addition, pseudo-labels T⋆ are obtained by solving the bal-
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anced FGW problem in Eq. 3 but with the augmented KOT
cost matrix C̃ = C + ρR, with ρ ≥ 0. Here, we fol-
low VAVA [44] to impose the temporal prior R, defined as
Rij = |i/N − j/M |, which encourages the coupling T to
have a banded diagonal shape and temporally nearby frames
in X to be matched with temporally adjacent frames in Y ,
yielding improved performance as seen in Sec. 4.1. Finally,
our self-supervised learning loss is written as:

L = −
N∑
i=1

M∑
j=1

T⋆
ij logPij . (6)

Note we do not back-propagate gradients through T⋆.

3.2. Joint Self-Supervised Video Alignment and Ac-
tion Segmentation

3.2.1. Self-Supervised Video Alignment vs. Action Seg-
mentation

Sec. 3.1 presents our self-supervised video alignment ap-
proach (VAOT) developed based on an FGW optimal trans-
port formulation with a structural prior, which has pre-
viously been adopted for self-supervised action segmen-
tation by ASOT [78]. Below we discuss differences be-
tween self-supervised video alignment and action segmen-
tation, which lead to distinct design choices for VAOT and
ASOT [78]. Firstly, as illustrated in Fig. 1, video align-
ment performs finer-grained frame-to-frame assignment, as
compared to coarser-grained frame-to-action assignment in
action segmentation, which causes our removal of A and
our cost matrices {C,Cx,Cy} in Sec. 3.1 to be different
from ASOT [78]. Secondly, video alignment generally has
a more balanced assignment than action segmentation (the
number of frames is much larger than the number of ac-
tions) and it is hard to balance multiple losses (the full un-
balanced formulation adds two extra penalty terms). Thus,
a balanced FGW formulation performs the best for VAOT,
whereas a partial unbalanced FGW formulation is preferred
in ASOT [78]. Thirdly, a background action class, to which
background/redundant frames are assigned, is typically in-
cluded in the K actions for action segmentation, whereas
it is not already defined for video alignment. Thus, VAOT
adds a virtual frame to tackle background/redundant frames.

3.2.2. Self-Supervised Multi-Task Learning
Since both self-supervised video alignment and action
segmentation exploit fine-grained temporal information in
videos, we propose a self-supervised multi-task learning
framework for joint video alignment and action segmenta-
tion. In particular, we combine our VAOT module for video
alignment with ASOT [78] for action segmentation into a
unified optimal transport-based approach (VASOT), which
is illustrated in Fig. 2(b). Here, we update variable names
in VAOT from {C,P,T⋆,L} to {Cxy,Pxy,Txy⋆,Lxy}

respectively for video alignment between X and Y ,
while introducing new variables {Cxa,Pxa,Txa⋆,Lxa}
and {Cya,Pya,Tya⋆,Lya} for action segmentation on X
and Y respectively. The parameters θ of the frame encoder
and the action embeddings A are trained by using the below
combination of self-supervised learning losses:

Ljoint = walignLxy + wseg(Lxa + Lya), (7)

where walign ≥ 0 and wseg ≥ 0 denote the weights
for the video alignment loss Lxy and the action segmen-
tation losses Lxa and Lya respectively, Lxy is the cross-
entropy loss between normalized similarities Pxy (com-
puted between X and Y) and pseudo-labels Txy⋆ (obtained
by VAOT), while Lxa is the cross-entropy loss between
normalized similarities Pxa (computed based on X and
A) and pseudo-labels Txa⋆ (derived by ASOT [78]) and
Lya is the cross-entropy loss between normalized similari-
ties Pya (computed between Y and A) and pseudo-labels
Tya⋆ (obtained by ASOT [78]). This is in contrast with
VAOT or ASOT [78], where θ is solely learned by using
either Lxy or Lxa and Lya respectively. We find balancing
walign = wseg = 1 yields good results for both video align-
ment and action segmentation, as seen in Sec. 4.2. Our joint
model requires training and storing a single model, saving
both time and memory usage as compared to two single-
task models. As we observe in Sec. 4.3, in a multi-task
learning setting, action segmentation offers little benefit to
video alignment performance, while video alignment boosts
action segmentation results substantially.

4. Experiments

Datasets. We benchmark our VAOT and VASOT ap-
proaches for video alignment using three datasets, including
monotonic datasets, i.e., Pouring [55] and Penn Action [80],
and in-the-wild dataset, i.e., IKEA ASM [3]. Pouring in-
cludes videos of humans pouring liquids and Penn Ac-
tion comprises of videos of humans playing sports, while
IKEA ASM videos capture humans assembling furniture.
All methods have the same training and validation splits.
Moreover, for action segmentation evaluation, we use four
datasets, including in-the-wild datasets, i.e., Breakfast [32],
50 Salads [60], and YouTube Instructions [2], and mono-
tonic dataset, i.e., Desktop Assembly [34]. Breakfast and 50
Salads videos show cooking activities, while YouTube In-
structions consists of instructional videos and Desktop As-
sembly includes videos of an assembly activity. All meth-
ods are trained and tested on the same set of videos. For
50 Salads, we evaluate at two action granularity levels, i.e.,
Mid with 19 actions and Eval with 12 actions. Finally, for
datasets with many activities, i.e., Penn Action, Breakfast,
and YouTube Instructions, we train and test the methods per
activity and report the average results.

10811



Method Acc@0.1 Acc@0.5 Acc@1.0 Progress τ AP@5 AP@10 AP@15

IK
E

A
A

SM

w/o Structural Prior 30.29 35.52 37.81 - - 27.54 27.33 27.15
w/o Temporal Prior 17.84 17.84 17.84 - - 15.63 15.64 15.56

w/o Balanced Assignment 17.84 20.71 25.24 - - 15.49 15.69 15.78
w/o Virtual Frame 30.16 34.49 36.10 - - 29.57 29.24 28.87

All 33.73 36.42 38.64 - - 31.49 31.92 32.01

Table 1. Ablation analysis results. Bold and underline denote the best and second best respectively.

Implementation Details. For fair comparison purposes,
our VAOT and VASOT approaches for video alignment uti-
lize the same ResNet-50 encoder as recent self-supervised
video alignment methods [17, 18, 25, 44]. Similarly,
our VASOT approach for action segmentation employs the
same MLP encoder as state-of-the-art self-supervised action
segmentation methods [33, 34, 78]. Action embeddings A
are initialized via K-Means, while the number of clusters K
is set to the ground truth value. We implement our methods
in PyTorch [50] and use ADAM optimization [31]. Please
refer to our supplementary material for more details.
Competing Methods. We compare our VAOT and VA-
SOT approaches against prior self-supervised video align-
ment methods, namely SAL [47], TCN [55], TCC [18],
LAV [25], VAVA [44], and GTCC [17]. VAVA [44], which
integrates an optimality prior into a classical Kantorovich
optimal transport, is the closest to our VAOT approach.
Also, we test our VASOT approach against previous self-
supervised action segmentation methods, namely CTE [33],
VTE [71], UDE [63], ASAL [42], TOT [34], UFSA [69],
ASOT [78], and HVQ [58]. ASOT [78] is the single-
task baseline for action segmentation, which we adopt in
Sec. 3.2 for our multi-task VASOT approach.
Evaluation Metrics. To evaluate our VAOT and VA-
SOT approaches for video alignment, we compute four
metrics on the validation set, i.e., phase classifica-
tion (Acc@{0.1,0.5,1.0}), phase progression (Progress),
video alignment (τ ), and fine-grained frame retrieval
(AP@{5,10,15}). Prior to that, we train the model on the
training set and freeze it, and then train an SVM classifier
or linear regressor on top of frozen features. Note that as
mentioned in [17, 18, 25, 44], Progress and τ are only de-
fined for monotonic datasets and hence are not computed for
IKEA ASM. Also, to test our VASOT approach for action
segmentation, we calculate three metrics, i.e., mean over
frames (MoF), F1 score (F1), and mean intersection over
union (mIoU). Before that, we train the model, obtain pre-
dicted action segments, and perform Hungarian matching
between predicted and ground truth action clusters.

4.1. Ablation Analysis Results

We first study the impacts of design choices in VAOT in
Sec. 3.1. We show the IKEA ASM results in Tab. 1. Please
see our supplementary material for the Pouring results.

Effect of Structural Prior. The structural priors {Cx,Cy}
defined in Eq. 4 are used to encourage temporal consistency
on the transport map T. We analyze the impact of the struc-
tural priors by removing the GW subproblem in Eq. 3 (via
setting α = 0), yields worse results, as reported in Tab. 1.
This demonstrates the importance of the structural priors
and temporal consistency in our VAOT approach.
Effect of Temporal Prior. Removing the temporal prior R
described in Sec. 3.1.3 (by setting ρ = 0), leading to notable
performance drops in Tab. 1. This validates the contribution
of the temporal prior in our VAOT approach.
Effect of Balanced Assignment. When the balanced as-
signment formulation is replaced by the full unbalanced
assignment formulation, the performance degrades signif-
icantly, as shown in Tab. 1. This indicates that the balanced
assignment formulation is preferred for the video alignment
problem, as we discussed previously in Sec. 3.1.1.
Effect of Virtual Frame. Virtual frames (described in
Sec. 3.1.2) are used to tackle background/redundant frames.
From Tab. 1, removing virtual frames negatively affects the
robustness and hence performance of our VAOT approach.

4.2. Sensitivity Analysis Results
Here, we conduct sensitivity analyses on hyperparameters
of VAOT and VASOT. Fig. 3 shows the results. We use
Pouring in Figs. 3(a-e) and Desktop Assembly in Fig. 3(f).
The results of ϵ are provided in our supplementary material.
Effect of r and α. From Fig. 3(a), Acc@1.0 remains stable
and Progress shows small variation across all studied values
of r, whereas τ is the most sensitive metric, peaking at r =
0.02 and decreasing as r increases. Similar observations can
be made for α in Fig. 3(b), where Acc@1.0 and Progress are
mostly stable, whereas τ fluctuates the most, performing the
best with α = 0.3. Furthermore, we find that r = 0.02 and
α = 0.3 also work the best for the remaining datasets.
Effect of ρ and ζ. For ρ in Fig. 3(c), it can be seen that
Acc@1.0 and Progress remain mostly stable, whereas τ
varies the most, performing the best at ρ = 0.35. Similarly,
for ζ in Fig. 3(d), we observe that τ is the most sensitive
metric, peaking at ζ = 0.5, whereas Acc@1.0 and Progress
remain steady across the analyzed value range of ζ. More-
over, we notice that ρ = 0.35 and ζ = 0.5 also yield the
best results for the remaining datasets.
Effect of wseg and walign. We study the relationship
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Figure 3. Sensitivity analysis results. Note that (a-d) are for VAOT,
while (e-f) are for VASOT.

between action segmentation and video alignment in our
multi-task VASOT approach by varying their weights wseg

and walign in Eq. 7. In particular, we report alignment re-
sults with various wseg values (while keeping walign = 1)
in Fig. 3(e), and segmentation results with various walign

values (while keeping wseg = 1) in Fig. 3(f). It can be seen
from Fig. 3(e) that alignment results drop as wseg increases
and the best overall alignment performance is obtained with
wseg = 1. In contrast, it is clear from Fig. 3(f) that seg-
mentation results improve as walign increases and become
steady after walign reaches 1. Therefore, in a multi-task
learning setup, action segmentation provides little boost to
video alignment results, whereas video alignment increases
action segmentation performance notably. Moreover, with
balancing wseg = walign = 1, VASOT achieves good re-
sults for both video alignment and action segmentation. For
the next section, we set wseg = walign = 1 for VASOT.

4.3. State-of-the-Art Comparison Results
Video Alignment Comparison Results. We now bench-
mark our VAOT and VASOT approaches against previous
self-supervised video alignment methods and present quan-
titative results in Tab. 2. Firstly, it is evident from Tab. 2 that
our VAOT approach achieves the best overall performance
across all datasets, outperforming all competing methods,
i.e., SAL [47], TCN [55], TCC [18], LAV [25], VAVA [44],

jumping jacks
✔ ✔ ✔ ✔ ✔

✔ ✔✘ ✘ ✘

VAOT

LAV

Query

Figure 4. Fine-grained frame retrieval results on Penn Action. The
query image is on the left, while on the right are the top 5 matching
images retrieved by VAOT (blue box) and LAV (red box).

Figure 5. Action segmentation results on Breakfast (top) and
YouTube Instructions (bottom).

and GTCC [17]. Especially, VAOT shows major improve-
ments over VAVA [44] on the in-the-wild IKEA ASM
dataset. The results confirm the advantage of our FGW
formulation with a structural prior over the classical Kan-
torovich formulation with an optimality prior in VAVA [44].
Next, Fig. 4 shows some qualitative results, where VAOT
retrieves all 5 correct frames with the same action (Hands
at shoulder) as the query image, while LAV [25] obtains 3
incorrect frames (Hands above head), highlighted by red
ovals. Lastly, similar to Fig. 3(e), we find that action
segmentation offers little benefit to video alignment in a
multi-task learning setup, and our multi-task VASOT ap-
proach performs mostly similarly to our single-task VAOT
approach in Tab. 2. This is likely because video alignment is
a more complex problem involving finer-grained frame-to-
frame assignment, as compared to coarser-grained frame-
to-action assignment in action segmentation. Nevertheless,
VASOT obtains mostly favorable results over prior works.
Action Segmentation Comparison Results. We test our
VASOT approach against state-of-the-art self-supervised
action segmentation methods and include quantitative re-
sults in Tab. 3. Firstly, from Tab. 3, VASOT consistently
achieves the best results across all metrics and datasets,
outperforming all competing methods, i.e., CTE [33],
VTE [71], UDE [63], ASAL [42], TOT [34], UFSA [69],
ASOT [78], and HVQ [58]. While our multi-task VA-
SOT approach shows small gains over the single-task ASOT
baseline [78] on Breakfast and YouTube Instructions, our
improvements on 50 Salads and Desktop Assembly are sub-
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Method Acc@0.1 Acc@0.5 Acc@1.0 Progress τ AP@5 AP@10 AP@15

Po
ur

in
g

SAL [47] 85.68 87.84 88.02 74.51 73.31 84.05 83.77 83.79
TCN [55] 89.19 90.39 90.35 80.57 86.69 83.56 83.31 83.01
TCC [18] 89.23 91.43 91.82 80.30 85.16 87.16 86.68 86.54
LAV [25] 91.61 92.82 92.84 80.54 85.61 89.13 89.13 89.22

VAVA [44] 91.65 91.79 92.45 83.61 87.55 90.05 89.92 90.17
GTCC [17] 71.20 89.20 93.50 85.80 88.10 - - -

VAOT (Ours) 91.80 92.88 94.63 91.63 88.28 91.34 90.56 90.29
VASOT (Ours) 91.93 92.12 93.04 91.71 88.64 91.03 90.44 90.21

Pe
nn

A
ct

io
n

SAL [47] 74.87 78.26 79.96 59.43 63.36 76.04 75.77 75.61
TCN [55] 81.99 83.67 84.04 67.62 73.28 77.84 77.51 77.28
TCC [18] 81.26 83.35 84.45 67.26 73.53 76.74 76.27 75.88
LAV [25] 83.56 83.95 84.25 66.13 80.47 79.13 78.98 78.90

VAVA [44] 83.89 84.23 84.48 70.91 80.53 81.52 80.47 80.67
GTCC [17] 78.30 81.20 81.30 70.80 88.30 - - -

VAOT (Ours) 83.96 85.35 86.92 84.31 88.99 81.62 81.03 80.68
VASOT (Ours) 84.17 85.54 87.66 83.39 88.70 78.85 78.38 78.03

IK
E

A
A

SM

SAL [47] 22.94 23.43 25.46 - - 14.28 14.04 14.10
TCN [55] 22.51 25.47 25.88 - - 17.37 17.03 16.96
TCC [18] 22.70 25.04 25.63 - - 18.03 17.53 17.20
LAV [25] 23.19 25.47 25.54 - - 20.14 19.35 19.21

VAVA [44] 29.12 29.95 29.10 - - 26.42 25.73 25.80
VAOT (Ours) 33.73 36.42 38.64 - - 31.49 31.92 32.01

VASOT (Ours) 29.96 30.78 31.02 - - 30.29 30.37 30.42

Table 2. Video alignment comparison results. Bold and underline denote the best and second best respectively.

Method Breakfast YouTube Instructions 50 Salads (Mid) 50 Salads (Eval) Desktop Assembly

MoF / F1 / mIoU MoF / F1 / mIoU MoF / F1 / mIoU MoF / F1 / mIoU MoF / F1 / mIoU

Fu
ll-

D
at

as
et

E
va

lu
at

io
n

CTE* [33] 41.8 / 26.4 / - 39.0 / 28.3 / - 30.2 / - / - 35.5 / - / - 47.6 / 44.9 / -
CTE† [33] 47.2 / 27.0 / 14.9 35.9 / 28.0 / 9.9 30.1 / 25.5 / 17.9 35.0 / 35.5 / 21.6 - / - / -
VTE [71] 48.1 / - / - - / 29.9 / - 24.2 / - / - 30.6 / - / - - / - / -
UDE [63] 47.4 / 31.9 / - 43.8 / 29.6 / - - / - / - 42.2 / 34.4 / - - / - / -

ASAL [42] 52.5 / 37.9 / - 44.9 / 32.1 / - 34.4 / - / - 39.2 / - / - - / - / -
TOT [34] 47.5 / 31.0 / - 40.6 / 30.0 / - 31.8 / - / - 47.4 / 42.8 / - 56.3 / 51.7 / -

TOT+ [34] 39.0 / 30.3 / - 45.3 / 32.9 / - 34.3 / - / - 44.5 / 48.2 / - 58.1 / 53.4 / -
UFSA (M) [69] - / - / - 43.2 / 30.5 / - - / - / - 47.8 / 34.8 / - - / - / -
UFSA (T) [69] 52.1 / 38.0 / - 49.6 / 32.4 / - 36.7 / 30.4 / - 55.8 / 50.3 / - 65.4 / 63.0 / -

ASOT [78] 56.1 / 38.3 / 18.6 52.9 / 35.1 / 24.7 46.2 / 37.4 / 24.9 59.3 / 53.6 / 30.1 70.4 / 68.0 / 45.9
HVQ [58] 54.4 / 39.7 / - 50.3 / 35.1 / - - / - / - - / - / - - / - / -

VASOT (Ours) 57.5 / 39.0 / 18.8 53.2 / 35.7 / 25.2 47.2 / 41.3 / 26.1 60.6 / 57.4 / 34.5 70.9 / 75.1 / 49.3

Table 3. Action segmentation comparison results. Bold and underline denote the best and second best respectively.

stantial. The results validate the benefit of fusing video
alignment with action segmentation and demonstrate that
video alignment boosts action segmentation results notably
in a multi-task learning setup. Moreover, Fig. 5 shows some
qualitative results, where VASOT predicts segmentations
which capture action boundaries more accurately and are
more closely aligned with ground truth than ASOT [78].

5. Conclusion

This paper presents a novel approach for joint self-
supervised video alignment and action segmentation. We
first develop a fused Gromov-Wasserstein optimal transport
with a structural prior for self-supervised video alignment,

outperforming prior works. Our single-task method trains
efficiently on GPUs and needs few iterations to derive the
optimal transport solution. Next, we extend our approach
to a unified optimal transport framework for joint self-
supervised video alignment and action segmentation, yield-
ing similar video alignment yet better action segmentation
results than prior works. Our multi-task method requires
training and storing a single model and saves both time and
memory usage. To our best knowledge, our work is the first
to explore the relationship between video alignment and ac-
tion segmentation. Our future works will explore deep su-
pervision [40, 41], complex weighting in multi-task learn-
ing [9, 28], and other potential applications (e.g., joint key-
point matching and clustering [19, 54]).
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