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Abstract

It has been observed that deep neural networks (DNNs)
often use both genuine as well as spurious features. In
this work, we propose “Amending Inherent Interpretabil-
ity via Self-Supervised Masking” (AIM), a simple yet inter-
estingly effective method that promotes the network’s uti-
lization of genuine features over spurious alternatives with-
out requiring additional annotations. In particular, AIM
uses features at multiple encoding stages to guide a self-
supervised, sample-specific feature-masking process. As a
result, AIM enables the training of well-performing and in-
herently interpretable models that faithfully summarize the
decision process. We validate AIM across a diverse range of
challenging datasets that test both out-of-distribution gen-
eralization and fine-grained visual understanding. These
include general-purpose classification benchmarks such
as ImageNet100, HardlmageNet, and ImageWoof, as well
as fine-grained classification datasets such as Waterbirds,
TravelingBirds, and CUB-200. AIM demonstrates signifi-
cant dual benefits: interpretability improvements, as mea-
sured by the Energy Pointing Game (EPG) score, and ac-
curacy gains over strong baselines. These consistent gains
across domains and architectures provide compelling evi-
dence that AIM promotes the use of genuine and meaningful
features that directly contribute to improved generalization
and human-aligned interpretability.

1. Introduction

Modern deep neural networks (DNNs) have achieved re-
markable success across domains such as Natural Lan-
guage Processing and Computer Vision. Despite their
impressive performance metrics, these models often use
spurious features that happen to correlate with target la-
bels in training data but lack causal relevance to the task.
This phenomenon, sometimes called ‘Clever Hans’ behav-
ior [20, 35]. A classic example is classification mod-
els trained to distinguish between ‘land birds’ and ‘wa-
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Figure 1. AIM uses self-supervised masking for precise object
localization relying only on the image label. As shown, it out-
performs baseline methods, even in challenging scenarios like the
WaterBirds dataset.

ter birds’ for the WaterBirds dataset [28, 33] that often
learn to classify the background environment rather than
the birds themselves, resulting in poor generalization when
birds appear in atypical habitats. It is therefore desired
that models leverage genuine features, that are distinctive,
class specific, and are localized on the object. Recent re-
search has shown that, while DNNs exhibit dependence on
spurious features, they simultaneously acquire some gen-
uine features [18]. This key insight suggests an opportu-
nity: How can we promote the models’ utilization of gen-
uine features while suppressing spurious ones? Prior works
proposed using extra annotations in the form of bound-



ing boxes, segmentation masks, or other guiding mecha-
nisms [9, 11, 12, 22, 26, 28, 30, 34, 38, 43, 46, 53]. These
mechanisms help focus the model on genuine features while
ignoring spurious ones during training. However, getting
these extra annotations is often nonviable.

Thus, we propose AIM (Amending Inherent Inter-
pretability via Self-Supervised Masking), a method that en-
courages the model to focus on genuine features and ignore
spurious ones without needing annotations beyond image
labels. AIM employs a self-supervised masking mechanism
that systematically identifies and prioritizes dependable fea-
ture maps of convolutional neural networks by masking
out spurious features and retaining only dependable ones.
Unlike previous approaches that rely on external attribu-
tion methods or require expensive additional annotations,
AIM operates by applying learnable binary masks to feature
maps, allowing the model itself to determine which regions
to retain or discard based on task performance. Our conjec-
ture is that, when forced to select a subset of spatial features
prior to making a classification decision, a model will con-
sider those features most dependable that generalize best,
i.e., that are genuine. We confirm this hypothesis using
various analyses, including Energy Pointing Game (EPG)
scores and evaluations using challenging datasets that pro-
vide many spurious cues.

The AIM mechanism involves both a bottom-up process-
ing of visual information through convolutional layers and
a top-down pathway that refines feature selection. This fea-
ture refinement progressively identifies and filters out spu-
rious features while preserving dependable ones. Impor-
tantly, this masking mechanism makes the model’s decision
process transparent: what is visible in the final feature rep-
resentations directly causes the classification outcome, cre-
ating inherently interpretable models rather than relying on
post-hoc interpretability methods.

We evaluate AIM on challenging datasets specifically
designed to test models’ resilience to spurious features, in-
cluding Waterbirds and TravelingBirds [19]. These datasets
present scenarios where background features strongly cor-
relate with class labels during training but not during test-
ing, challenging the models’ out-of-distribution (OOD)
generalization capabilities. We also validate our approach
on standard fine-grained classification benchmarks such as
CUB-200 [50]. Across these evaluations, AIM demon-
strates significant improvements in localization accuracy
(measured by the Energy Pointing Game score). It also im-
proves classification performance in OOD scenarios, show-
casing improved generalization through the use of genuine
features. Our results demonstrate that by encouraging the
model to narrow its selection of spatial features for clas-
sification, it improves its focus on dependable ones. AIM
achieves this through a masking mechanism that produces
inherently interpretable models without compromising task
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performance. The spatial masks learned by AIM provide

clear visual evidence of the features driving the model’s de-

cisions, establishing a “what you see causes what you get”
relationship between the used features and predictions.
The primary contributions of this work are threefold:

* We propose a simple yet effective self-supervised mask-
ing mechanism that guides DNNs to utilize dependable
features over spurious alternatives, yielding inherently in-
terpretable decisions while requiring only image labels.

* We demonstrate that our approach significantly improves
the models’ ability to localize genuine features, as quan-
tified by Energy Pointing Game scores across multiple
datasets.

* We show through extensive experiments that AIM yields
improvements in challenging out-of-distribution general-
ization scenarios where spurious features typically cause
models to fail.

2. Related Work

The prevalence of spurious correlations in DNNs, coupled
with their increasing deployment in critical applications,
has prompted extensive research in interpretability.

Model Guidance and Attribution Methods. Attribution
methods generate attention maps [3, 4, 17, 29, 36, 39, 41,
51] that highlight important input regions contributing to
the final decision, aiding in the identification of erroneous
reasoning by the model. Model guidance builds on these
methods to align vision systems with ground truth guid-
ance sources [11, 12, 31, 38, 44, 45], ensuring models
are ‘right for the right reasons’ [31]. This strategy relies
on extra annotations, such as bounding boxes or attention
maps [9, 11, 12,22, 28, 30, 43, 53], which can be expensive
and imperfect [11]. Several methods aim to reduce the de-
pendency on extra annotations. For instance, cost-effective
model guidance can be achieved using only a small frac-
tion of annotated images [30]. When no extra annotations
are available, approaches like [3 1] iteratively generate mod-
els with different reasoning but still require expert selection.
Others improve explanations annotation-free simply by tun-
ing the classification head’s loss function (e.g., using binary
cross-entropy) [10]. Alternatively, [2] fine-tunes the model
by masking discriminative features identified by the trained
model. Recent work [18] observed that DNNs, while re-
lying on spurious correlations, still learn genuine features.
However, their method assumes prior knowledge of the spu-
rious correlation.

Content-Based Conditional Operations. Methods in this
domain [14, 42, 49] constrain the model to prioritize rele-
vant spatial regions within the input features without requir-
ing additional annotations. Some apply masking in the fea-
ture maps during the forward pass [14, 49], pushing learned
features to focus on ‘regions of interest’. Others apply



masking in the input image domain [42]. For example, [14]
uses mask estimators with the Gumbel-softmax trick to pre-
dict binary masks that identify crucial areas and preserve
them in higher resolutions. Similarly, [49] employs mask
estimators with the Gumbel-softmax trick to select and pro-
cess only important spatial regions, accelerating inference.
Both works [14, 49] achieve spatial selection by progres-
sively applying the masking strategy as the input moves
through the network, from the initial layers all the way to
the final layers, in a bottom-up fashion. A common problem
reported by both works is that the generated masks tend to
be fully active, requiring additional loss functions to push
them to be sparse. We hypothesize that the issue of fully
active masks stems from the bottom-up approach itself. In
contrast, AIM allows the network to reassess the generated
feature maps across the entire architecture, utilizing the top-
down approach. This naturally produces sparse masks and
enables the model to use spatially sparse feature maps, en-
hancing explainability.

3. Proposed AIM Method

Our method comprises two main pathways: a convolutional
neural network (CNN) for the bottom-up pathway with mul-
tiple encoding stages, and a top-down pathway with corre-
sponding self-supervised masking modules. Our work pro-
poses a novel top-down pathway that helps the CNN focus
on genuine features and ignore the spurious ones learned by
the encoding stages of the bottom-up pathway. It achieves
this using two main components: first, a mask estimator that
sparsifies the feature maps from the encoding stages, and
second, a pathway that combines the sparse feature maps
from different encoding stages. The following describes
these main components of our method in detail. Please
note, we address the task of image classification involving
C classes, given a dataset {(z;,y;)}, of size n, where
x; € RM*®w*3 represents input images and v; their corre-
sponding labels. Our approach does not require any addi-
tional annotations.

Overall Architecture. Our architecture builds on the Fea-
ture Pyramid Network (FPN) framework [21], adopting its
top-down pathway structure. As illustrated in Figure 2, the
model operates through two distinct pathways: a bottom-up
pathway for hierarchical feature extraction and a top-down
pathway for multi-scale feature integration. The bottom-
up pathway employs a backbone network to generate hi-
erarchical feature representations from input images. The
top-down pathway iteratively combines these multi-scale
features, propagating semantic information from the final
high-level feature maps backward to earlier stages. Un-
like the original FPN, which extends the top-down pathway
to the highest-resolution initial feature map, we introduce
a hyperparameter to control the termination depth of this
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pathway. This modification enables systematic analysis of
how varying degrees of semantic detail from intermediate
layers affect both the guidance mechanism and overall net-
work performance. For example in our baseline ConvNeXt-
Tiny backbone [24], comprising four convolutional stages
{80, 51, 52,53} (where S3 marks the final stage) with spa-
tial resolutions {562, 282,142, 72}, the top-down pathway
stages {To, T, T, T5} mirror these resolutions. We study
how integrating intermediate top-down features (e.g. 11,
T5) to the final stage T3 enhances the model’s self-guiding
capability. In the top-down pathway, shown in Figure 2,
each stage receives the output of the corresponding stage
in the bottom-up pathway, processes it, and prepares it for
integration with outputs from the subsequent stage in the
top-down sequence. This involves passing the feature maps
through: 1) a 1 x 1 convolutional layer to align channel di-
mensions across stages, 2) a 3 x 3 convolutional layer for
spatial refinement and 4) Layer Normalization and GELU
activation. The computational overhead and the increase in
the number of parameters are moderate, as summarized in
Appendix A.2 in the appendix.

Mask Estimation. To enable spatial selection of depend-
able feature regions, we incorporate a learnable mask es-
timator at every stage of the top-down pathway. Each es-
timator consists of a lightweight convolutional neural net-
work (CNN) that predicts a binary mask using the Gumbel-
Softmax trick [49]. While prior work by Verelst and Tuyte-
laars [49] and Hesse et al. [14] employs a bottom-up mask-
ing strategy (where binary masks iteratively select spatial
regions at each stage) we adapt this concept to our top-
down framework. Our empirical results demonstrate that
this adaptation inherently produces spatially sparse and fo-
cused masks, enabling the network to prioritize salient re-
gions without an additional supervision signal. As shown
in Figure 2, the architecture of the mask estimators used
in our method begins with a 3 x 3 convolutional layer, fol-
lowed by three residual blocks that each utilize 3 x 3 convo-
lutional layers. The output is then split into two branches:
an identity branch and a global average pooling operation
to capture global context information. The global context
vector is expanded and concatenated with the output of the
identity branch. Finally, a 1 x 1 convolutional layer is ap-
plied to generate the final single-channel feature maps. This
single layer is passed through the Gumbel-softmax mod-
ule adapted from [49] to generate the final binary mask.
Each mask estimator uses the output from the correspond-
ing stage of the backbone network as its input and generates
a binary mask B with the same spatial resolution as the in-
put feature maps. These masks highlight model-regarded
dependable features in the feature maps generated by the
corresponding convolutional stage. Formally, at each stage
¢ in the architecture, the bottom-up stage Sy processes its
input x4, producing feature maps Sy(z¢). These feature
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Figure 2. Abstract Diagram of the [backbone]+AIM Architecture. The architecture consists of a bottom-up backbone and a top-down
masking pathway. The bottom-up pathway has four encoding stages (L. = 0 to L = 3). The top-down pathway mirrors this structure,
with each stage 1" corresponding to a bottom-up stage L. Each top-down stage has two parallel branches: one estimates a binary mask via
a convolutional network with Gumbel-softmax, and the other processes features using a structure inspired by [21]. The estimated binary
mask is element-wise multiplied with the processed features to create a spatially sparse feature map. These sparse maps are then iteratively
combined with the output of the subsequent top-down stage through element-wise summation.

maps are then passed through the two branches at the cor-
responding top-down stage. The first branch, denoted as
Ty, is responsible for unifying the number of channels and
post-processing the feature maps to prepare them for merg-
ing. It takes Sy(x;) as input and produces the transformed
feature maps Ty(S¢(x¢)). The second branch is responsible
for generating the binary mask, which highlights depend-
able features identified by the model. This process involves
two steps. First, a soft attention decision map 4, € Rw¢*h«
is computed by a simple mask estimating module M :

Ap = M(S(2r)) ¢))

Next, and following [14], to obtain the binary mask, a bi-
nary Gumbel-softmax module G is applied element-wise to
Ay, resulting in By € {0, 1}wexhe:

2

Finally, the spatially sparse output of the top-down stage £ is
then computed by element-wise multiplying the processed
feature maps from the feature processing branch with the
binary mask from the mask estimator:

By = G(Ay)

O¢ = Ty(Se(xy)) © By (3)

where ©® denotes element-wise multiplication. This opera-
tion results in Op, which retains only the dependable fea-
tures as determined by the binary mask, effectively filtering
out spatial regions with spurious features.

Top-Down Sparse Feature Fusion Along the top-down
pathway, the output of each stage is up-sampled through
nearest-neighbor interpolation to match the resolution of
the next lower stage and then merged with its feature maps
through element-wise summation. This continues down
the pathway, progressively integrating multi-scale informa-
tion. The final aggregated feature maps, containing reliable
multi-scale features, are used for classification.
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Supervising The Mask Estimators. Since our method
does not rely on additional annotations, we supervise the
mask estimators indirectly using the classification loss com-
puted on the masked feature maps O,. At each stage of the
top-down pathway, this loss is applied before merging with
higher-stage feature maps. This strategy ensures that each
stage independently identifies and learns important regions
based solely on the feature maps available up to that stage.
We pass these feature maps through a classifier f, to obtain
the predicted class probabilities §(*):

79 = f,(0) 4)

And then compute the classification loss at each stage, Egl?.
At the final stage, the merged sparse feature maps, combin-
ing outputs from all previous stages, are passed through the
final classifier fi,, to obtain the final predicted class prob-
abilities ¢!

?Jﬁnal = fﬁnal(Oﬁnal) &)

During training, our model self-guides to highlight spatial
regions with dependable features within each stage’s out-
put. By enabling the network to select these regions across
all layers, we empirically show that this improves classi-
fication performance and enables the reliance on spatially
sparse maps, leading to transparent and inherently inter-
pretable decision-making.

Optional Mask Annealing. Our approach naturally gener-
ates sparse masks, but enforcing additional sparsity during
training on challenging out-of-distribution datasets, such as
Waterbirds and TravelingBirds, improved performance and
produced more focused masks. This is done by applying a
mean-squared loss on the number of active elements in the
generated masks using a threshold 7; as follows:

S b (B, =1)

2{3%,55, 1 ©)
2,k

2
Emasks,, = (Ti - Ti) where r; =



Where r; is the ratio of active elements in the generated bi-
nary mask B?, and 7; is a threshold hyperparameter that can
be selected for each stage’s mask estimator. We use a mask-
ing annealing technique to help the network gradually adapt
to sparsity constraints without disrupting learning. Training
begins with fully active masks (i.e. 7; = 1.0) and progres-
sively lowers the active-area loss threshold each epoch until
it reaches a target value (e.g. 7; = 0.35), which is then
held for the remainder of training. The annealing duration
is treated as a hyperparameter. This strategy improves mask
quality and stabilizes learning. (For more details, see Ap-
pendix D). Based on this setup, the final loss is defined as:

£ £
Liorar = A Z Lmasks;, + Z Eglzq)
i=L i=L

Here, L is the index of the highest stage, and ¢ denotes the
final stage we aim to reach in the top-down pathway. The
parameter ), set to 6 in all experiments, weights the mask’s
active-area loss to be on the same order of magnitude as the
classification loss. For a full list of hyperparameters, see
Appendix A.

(7

4. Experiments

In this section we show that AIM helps to retain in-domain
performance while significantly boosting out-of-domain
performance. First, however, we describe some important
implementation details (more details in Appendix A).

AIM Architectural Variants. As detailed in Section 3, we
parameterize the top-down pathway’s depth by the num-
ber of stages traversed, denoting these variants as “Back-
bone+AIM [index]”, where index signifies the stage T
where propagation ceases. For instance, with ResNet50,
which has five convolutional stages, including the stem cell,
we implement two main variants: ResNetS0+AIM (2) in-
corporates feature maps from stages 4, 3, and 2, while
ResNet50+AIM (3) includes only feature maps from stages
4 and 3.

Baselines. To evaluate our approach, we tested the ef-
fect of applying AIM across various backbone architectures
by comparing the performance of each backbone with and
without AIM integration. We utilized ConvNeXt-tiny [24],
ResNet-50 [13], and ResNet-101 [13]. All of these models
are pre-trained on ImageNet-1k [5].

Evaluation Metrics. To assess how effectively AIM
promotes dependable feature learning, we evaluate spa-
tial localization using the Energy Pointing Game (EPG)
score [51]. This metric, based on attribution maps (e.g.,
GradCAM [36], Guided GradCAM [37], or other attribu-
tion methods) and ground-truth binary masks, calculates
the ratio of attribution within the mask’s active region to
the total attribution. For implementation details, see Ap-
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pendix A.5. In addition, we show that our method not only
preserves but also improves classification accuracy.

Mask Annealing via Active-Area Loss. As detailed in
Section 3, in addition to the stage 7' parameterization, we
employ progressive mask sparsification via threshold an-
nealing during training, reducing the initial 100% active
area to either 35% or 25%. This introduces a new parameter,
T, representing the final mask retention. Consequently, our
models are denoted as “backbone+AIM [stage T, threshold
7]”. For example, ResNet50+AIM [2, 25%] signifies oper-
ation through stage 7' = 2 with 25% mask retention.

Datasets. We evaluate our method on two categories of
datasets. First, to test its robustness to spurious correla-
tions, we use the synthetic Waterbirds (95% and 100% ver-
sions) [28, 33] and Travelingbirds [19] datasets. Second,
to assess the broader adaptability and effectiveness of AIM,
we use standard benchmarks including ImageNet100 [47],
Hard-ImageNet [27], and the fine-grained Caltech-UCSD
Birds-200-2011 (CUB-200-2011) [50]. Further details are
provided in Appendix A.4.

4.1. Results on Out-Of-Domain Datasets

The Waterbirds and TravelingBirds datasets contain syn-
thetic spurious correlations, causing models to incorrectly
rely on background cues rather than foreground objects. As
Figure 4 illustrates, our proposed AIM mechanism consis-
tently surpasses baseline backbone models. Vanilla back-
bone performance significantly degrades due to these bi-
ases; however, models integrated with AIM show notable
improvements in both EPG and accuracy across all tested
out-of-domain datasets. The primary motivation of AIM,
detailed in Section 1, is to enhance the localization of
genuine image features, thereby improving interpretability
without compromising accuracy. The improved accuracy
across various backbones emerges as an additional bene-
ficial outcome. The self-supervised masking strategy em-
ployed by AIM enables models to consistently identify and
rely on dependable features. Figure 3 visually demonstrates
this, contrasting baseline models, which are often distracted
by misleading background cues, with AIM-equipped mod-
els that reliably emphasize dependable regions. To con-
firm this visual improvement is perceived by humans, we
conducted a user study that showed participants preferred
our model’s attribution maps over the baseline in 70.7% of
cases (p < 0.00001), providing strong evidence of more
human-aligned interpretability (see Appendix D.6 for de-
tails). Quantitatively, higher EPG scores, computed using
dataset-provided binary masks, confirm this improved lo-
calization. We also evaluate other attribution methods and
observe similar EPG improvements on the Waterbirds-95%
dataset using Guided GradCAM and Guided Backprop, as
shown in Appendix B.2, further confirming the robustness
of our localization gains. These scores validate our hy-
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Figure 3. Models amended with AIM consistently exhibit enhanced localization of genuine features, effectively suppressing spurious cues in both
in-domain and out-of-domain scenarios. A qualitative visualization of Grad-CAM heatmaps comparing baseline ConvNeXt-tiny models and ConvNeXt-
tiny+AIM models across HardImagenet (classes shown: Balance Beam, Space Bar), TravelingBirds, WaterBirds-100%, and ImageNet100 datasets. The
EPG scores, with a range of 0.0 to 1.0, are indicated on each heatmap. For more qualitative results, see Appendix C.

pothesis from Sec.| regarding the dependability of features
identified by AIM. As summarized visually in Figure 4
and detailed with precise metrics in Table |, we see sub-
stantial EPG score improvements: approximately 6% for
Waterbirds-95%, 30% for Waterbirds-100%, and 10% for
TravelingBirds. Accuracy gains are equally notable, reach-
ing around 10% for Waterbirds-95%, 40% for Waterbirds-
100%, and 18% for TravelingBirds. Furthermore, Figure 5
provides a detailed per-sample analysis of EPG scores for
baseline models versus models with AIM. It demonstrates
that across all datasets, the majority of individual samples
exhibit improved EPG scores. While overall improvements
are substantial, a subset of examples maintained compara-
ble performance, particularly when baseline EPG was al-
ready high, and a minimal number of instances showed
slight EPG decreases. Additional comparisons against other
relevant methods are provided in the Appendix B.4.

4.2. Comprehensive Evaluation on Diverse Classifi-
cation Tasks

To evaluate the adaptability and effectiveness of our pro-
posed AIM mechanism, we conducted experiments on a
range of classification benchmarks, from fine-grained tasks
to broader, general-purpose datasets.
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First, we tested our method on the CUB-200 dataset,
which poses a challenging fine-grained classification task



Table 1. Average Test Accuracies for ConvNeXt+AIM Configurations. Comparison of the ConvNeXt-tiny baseline against our AIM-
enhanced models on multiple benchmarks. The method shows significant gains, especially in worst-group accuracy on Waterbirds, high-
lighting its effectiveness in mitigating spurious correlations. All values are mean accuracy (%) =+ standard deviation.

ImageNet100 Hard-ImageNet Waterbirds TravelingBirds
Model 100% 95%
Acc EPG Acc EPG WG-Acc EPG WG-Acc EPG Acc EPG
ConvNeXt-t 89.2 (£0.1) 91.4(£0.3) 96.2(£0.2) 36.6(£0.5) 39.6(£5.4) 57.2(£6.0) 81.6(£3.2) 683 (£3.2) 59.5(+0.8) 74.4(+0.6)

ConvNeXt-t+AIM[1,25%] 90.5 (£2.1) 91.5(£0.1) 97.1(£0.3) 38.8(£0.9) 73.6(+4.5) 60.1 (£1.3) 91.2(+0.8) 77.1(£5.2) 77.1(£0.3) 79.0(£0.7)
ConvNeXt-t+AIM[1, 35%] 90.5 (£0.1) 89.1(£0.2) 97.3(£+0.2) 33.2(40.5) 77.1 (+44) 572(+1.3) 90.7(+0.7) 63.0(£1.2) 71.5(£1.3) 72.6(£L.5)
ConvNeXt-t+AIM[2, 25%] 90.1 (£2.3) 92.8 (£0.8) 96.8 (£0.5) 40.1 (£1.5) 74.0(£5.0) 58.0(£1.3) 92.7(£1.2) 75.0(£6.0) 77.4(£0.2) 85.0 (£2.0)
ConvNeXt-t+AIM[2, 35%] 90.7 (£0.0) 91.8 (£0.1) 97.1(£0.1) 33.6(£1.1) 78.1(£2.3) 68.5(£3.6) 923 (+0.6) 71.7(£6.4) 71.0(£0.4) 77.7(£0.4)

Input Image  Stage#2 masks Stage#3 masks Merged Masks

requiring models to identify subtle and localized visual fea-
tures. As shown in Figure 4, incorporating our AIM mech-
anism improves localization performance significantly:
ConvNeXt-tiny+AIM achieves an approximate 6% increase
in EPG score over the baseline ConvNeXt-tiny model, while
ResNet+AIM improves localization by around 9% com-
pared to the baseline ResNet model. These localization im-
provements are accompanied by a slight accuracy increase
of about 2-3%. For full details see Appendix B.3.

Next, to validate the broader applicability beyond the
domain of bird datasets, we evaluated AIM on general-
purpose image classification benchmarks. We conducted
experiments using ConvNeXt-tiny on ImageNet100 [47]
and the challenging HardImageNet [27]. As summarized
in Table 1, our method shows consistent benefits across di-
verse domains. On ImageNet 100, it improves the EPG
score by nearly 3 points while maintaining baseline ac-

curacy, reinforcing our core claim of enhanced localiza- .. .
tion. On the more difficult HardImageNet, it boosts both 5. Inhere.nt Interpretablllty With  Self-
Supervised Masking

Figure 6. Illustration of masks learned at the two stages within the
network (using ConvNeXt-tiny+AIM [2, 25%]), along with the
final merged mask for each image. These merged masks highlight
the sparse regions within the corresponding feature maps.

accuracy and EPG, confirming its robustness as a domain-
agnostic mechanism.

CUB-200 , TravelingBirds Our AIM mechanism offers inherent interpretability, which
A we visualize by depicting input images alongside their cor-
responding masks from the top-down pathway in Figure 6.
This interpretability arises from the self-supervised mask-
ing performed by the mask estimator within AIM. Further-
more, combined masks clearly illustrate how sparse feature
maps from different stages of the top-down pathway are
merged.

Figure 7 visualizes the evolution of these masks over
epochs. The mask estimator initially starts with random val-
ues, but as training progresses, relying solely on the classi-
fication loss from image labels, it learns to focus on de-
pendable features within the feature maps. As discussed
in Section 4, these dependable features correspond to gen-
; R uine features, indicated by EPG scores. Conversely, if the
O Nexiny e e T o Nenting oG Soave model learns incorrect masking, low EPG scores reflect

non-genuine features and result in lower accuracy scores.

ConvNeXt-tiny+AIM [2, 25%]
EPG Score

10 Waterbirds-95% Waterbirds-100%

084" °

064"

EPG Score

ConvNeXt-tiny+AIM [2, 25%]

Figure 5. EPG scores per sample are plotted for baseline model (x-axis)

v/s model amended with AIM (y-axis). We observe at a per-sample level Since AIM’s self-supervised masking mechanism is part of
for each of the four datasets that majority for the samples the EPG scores the model’s forward pass, visualizing these masks directly
are improved by amending the model with our proposed AIM. reveals the basis of the model’s decisions. This establishes
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Figure 7. Visualization of the evolution of learned masks at two different
stages (Stage #2 and Stage #3) of a ConvNeXt-tiny+AIM [2, 25%] model
throughout the training epochs. As training progresses, the masks gradu-
ally become more sparse and accurately localized, highlighting the model’s
improved ability to identify and focus on regions containing genuine fea-
tures in a self-supervised manner.

Table 2. Lower performance with Bottom-up Guiding Approach. Re-
sult of the bottom-up ConvNeXt-t+AIM applying the masking mechanism
in the second and third stages in the vanilla ConvNeXt-tiny, compared to
the top-down Refocs+ConvNeXt-t model.

Model CUB-200 (%)
bottom-up masking [1, 25%] ConvNeXt-t 72.79 (£8.51)
ConvNeXt-t+AIM [1, 25%] 88.82 (£0.213)
bottom-up masking [2, 25%] ConvNeXt-t 84.00 (£1.38)
ConvNeXt-t+AIM [2, 25%] 88.677 (£0.25)

a clear “what you see causes what you get” relationship be-
tween features and predictions.

6. Analysis and Ablation
The following further explores the effectiveness of AIM.

6.1. Top-down approach v/s Bottom-up approach

Inspired by [49], we initially tested a bottom-up masking
approach, utilizing the same mask estimators described in
Section 3 but without a top-down pathway. In this setup,
each convolutional stage of the backbone model had two
branches: the original convolutional path and a mask esti-
mator. The latter predicted a binary mask, applied to the
convolutional output to create spatially sparse feature maps
that proceeded to the next stage. Unlike [49], we did not
employ a skip-connection to convert sparse feature maps
back into dense ones, aiming to preserve inherent explain-
ability. However, this bottom-up guiding method performed
poorly on the CUB-200 dataset, as shown in Table 2, where
bracketed numbers indicate the used stage and annealing.
Furthermore, the generated masks tended to remain fully
active despite applying the mask active-area loss (see Ap-
pendix D.4 for further analysis), unlike the naturally fo-
cused masks produced by the top-down approach.

6.2. Does AIM have a center bias?

To investigate potential center bias [8] in our experi-
ments, we tested models on images with birds positioned
at the edges rather than center-frame. Table 3 shows

1000

Table 3. AIM does not exploit the center-bias AIM manages to detect
and focus on the bird achieving higher results compared to the
vanilla ConvNeXt-tiny model

Model

CUB-200 (%)

76.98 (40.18)
79.33 (0.45)

ConvNeXt-tiny
ConvNeXt-t+AIM [1, 25%]

that while both vanilla ConvNeXt-tiny and ConvNeXt-
tiny+AIM experienced performance decreases compared to
center-cropped images, AIM still outperformed the baseline
by approximately 2.5%. Furthermore, as depicted in Fig-
ure 8, AIM continued to generate masks focused on birds
despite partial visibility, confirming our approach does not
depend on center bias for its effectiveness.

(A
&
[ 8

Figure 8. AIM models do not have a center-bias. This illustra-

tion shows the merged masks generated by ConvNeXt-t+AIM (2,
25%) on two images from CUB-200.

7. Conclusion

In this work, we propose Amending Inherent Interpretabil-
ity via Self-Supervised Masking (AIM), a simple yet ef-
fective method that encourages networks to focus on de-
pendable rather than spurious features via a self-supervised
feature-masking process. Evaluated using the Energy Point-
ing Game (EPG) score on out-of-distribution and fine-
grained classification tasks, AIM improves localization on
dependable features without sacrificing accuracy or requir-
ing annotations beyond class labels. AIM produces inher-
ently interpretable models by integrating sparse, top-down
feature selection directly into the forward pass. It consis-
tently improves both accuracy and localization across di-
verse datasets and architectures, with minimal overhead.
These results highlight AIM’s potential as a lightweight and
scalable approach to training models that are robust, gener-
alizable, and aligned with meaningful visual cues.

Future Work. We plan to extend AIM to Vision Trans-
formers [6] by either reshaping patch embeddings into spa-
tial feature maps or leveraging the hierarchical structure of
Swin-Transformers [23] for more seamless integration.
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