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Figure 1. Given input speech signal, GaussianSpeech can synthesize photorealistic 3D-consistent talking human head avatars. Our method
can generate realistic and high-quality animations, including mouth interiors such as teeth, wrinkles, and specularities in the eyes. We
handle diverse facial geometry, including hair buns and mustaches/beards, while effectively synchronizing to the audio signal.

Abstract

We introduce GaussianSpeech', a novel approach that
synthesizes high-fidelity animation sequences of photo-
realistic, personalized 3D human head avatars from spo-
ken audio. To capture the expressive, detailed nature of
human heads, including skin furrowing and finer-scale fa-
cial movements, we propose to couple speech signal with
3D Gaussian splatting to create realistic, temporally co-
herent motion sequences. We propose a compact and ef-
ficient 3DGS-based avatar representation that generates
expression-dependent color and leverages wrinkle- and
perceptually-based losses to synthesize facial details. To
enable sequence modeling of 3D Gaussian splats with au-
dio, we devise an audio-conditioned transformer model ca-
pable of extracting lip and expression features directly from
audio input. Due to the absence of high-quality dataset
of talking humans in correspondence with audio, we cap-
tured a new large-scale multi-view dataset of audio-visual
sequences of talking humans with native English accents
and diverse facial geometry. GaussianSpeech consistently
achieves state-of-the-art quality with visually natural mo-
tion, while encompassing diverse facial expressions and
styles.

'Project Page: https://shivangi-aneja.github.io/
projects/gaussianspeech

1. Introduction

Generating animated sequences of photorealistic 3D head
avatars from spoken audio is important for many graph-
ics applications, including immersive telepresence, movies,
and virtual assistants. In particular, rendering photorealistic
views of such animated avatars from various viewpoints is
crucial for realistic, immersive digital media, for instance,
telepresence to a meeting room requires a photorealistic ap-
pearance for all viewpoints of the people in the room, or
AR/VR where users can freely change their viewpoint.

Creating such photorealistic animated 3D avatars from
audio remains challenging, as it requires maintaining pho-
torealistic fidelity throughout the animation sequence, as
well as from various viewpoints. Existing work thus fo-
cuses on addressing these objectives independently; vari-
ous works focus on re-enacting videos in the 2D domain
[3, 8, 18, 29, 30, 37, 42, 44, 65, 66, 68], creating front-
view video animations, while others focus on animating 3D
face geometry from audio [15, 40, 51, 63]. In contrast, we
aim to create innately 3D audio-driven avatars enabling 3D-
consistent, free-viewpoint photorealistic synthesis needed
for immersive digital communication.

In order to characterize audio-driven 3D animation of a
person from multi-view input, we propose to represent an-
imated head sequences with explicit 3D Gaussian points,
leveraging the detailed and expressive representation space
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of 3D Gaussian Splatting (3DGS) [27]. 3DGS offers a flex-
ible representation capable of handling complex and irreg-
ular facial geometry and appearance (e.g., different skin
tones, beard, skin creasing) and real-time rendering, mak-
ing it a well-suited choice for facial animation.

Thus, we design an efficient, personalized 3D Gaussian
avatar representation from multi-view input observations
of a person, containing relatively few Gaussian splats in
order to make sequence modeling of photorealistic 3DGS
tractable and allowing us to operate at real-time rendering
rates. This is achieved through learning expression- and
view-dependent color, and our losses focusing on percep-
tual face quality using a face recognition network, as well
as focusing on fine-scale details through wrinkle detection.

Our efficient, high-quality avatar can handle the nuances
of the facial geometry, like skin tone variation and dynamic
wrinkles. We then use this person-specific avatar to guide
audio-driven head animation, enabled by our transformer-
based sequence model. We learn lip motion features and
wrinkle features directly from audio to obtain expression
input to train our transformer model, enabling photorealistic
generation of a coherent animation sequence.

To create high-fidelity, audio-driven animated 3D head
avatars, we require high-resolution multi-view data paired
with high-quality audio recordings. Existing multiview
datasets [28, 58] unfortunately lack either high-quality
video or high-quality audio captures. In the absence of
large-scale and high-quality paired audio-multiview data of
people speaking, we collected a new multiview dataset with
16 cameras for 6 native English participants captured at 30
fps and 3208x2200 resolution with overall recordings of
~3.5 hours, an order of magnitude larger than the exist-
ing datasets. We will make the dataset and the correspond-
ing 3D face trackings publicly available for research pur-
poses. To summarize, this paper makes the following con-
tributions:

* The first transformer-based sequence model for audio-
driven head animation synthesis of a lightweight 3DGS
based avatar. By animating our optimized 3DGS avatar
directly with our transformer model, we achieve tempo-
rally coherent animation sequences while characterizing
fine-scale face details and speaker-specific style.

* A new high-quality audio-video dataset, comprising high-
resolution 16-view dataset of 6 native English speakers
(Standard American & British). The dataset has a total of
2500 sequences, with overall recordings of ~3.5 hours.

2. Related Work

Audio-driven facial animation plays an important role in
digital media. Here we discuss audio-driven animation
methods generating different output representations.

2.1. 2D-Based Methods.

There is a large corpus of works in the field of 2D
audio-driven facial animation operating on monocular RGB
videos, synthesizing 2D sequences directly [4-7, 9, 12,
17, 19, 20, 23, 25, 35, 38, 43, 46, 47, 53, 55-57, 59,
60, 62, 64, 69, 70]. However, these methods operate in
pixel space and can produce very limited side views. An-
other line of work also operating on frontal RGB videos
but using intermediate 3D representations are based on
3DMMs [14, 22, 45, 48, 52, 67]. Although these meth-
ods generate photorealistic results, they use 3DMMs as a
proxy to improve the animation quality and are still limited
to frontal and limited side views. In contrast, we model
head avatars with explicit 3D Gaussian points, thus, en-
abling simultaneous free-viewpoint rendering for different
viewpoints which is critical for telepresence applications.

2.2. Parametric Model Based Methods.

Another promising line of work is to animate 3D facial
geometry directly. A vast majority of these works model
speech-conditioned animation for either artist-designed
template meshes [10, 11, 15, 26, 40, 50, 51, 63] or blend-
shapes for 3D parametric head model [1, 36]. While these
methods can faithfully match facial motion with the speech
signal and can be rendered from different viewpoints, they
do not model any appearance or texture information and
cannot handle complex and irregular facial geometry. The
synthesized animations, therefore, do not look realistic.
Compared to these, our method optimizes a 3DGS-based
avatar and models appearance using expression and view-
dependent color, generating photorealistic results.

2.3. Radiance Fields Based Methods.

Recent speech-driven animation methods based on radi-
ance fields [18, 29, 32, 37, 42, 65, 66] have gained pop-
ularity due to their ability to model directly from images.
Neural Radiance Fields (NeRF) [34] possess the capabil-
ity to render a scene from arbitrary viewpoints, however,
existing audio-driven methods utilizing NeRF are designed
for monocular videos. Concurrent to ours, few recent
works [8, 21, 30] leverage 3DGS [27] for generating audio-
driven talking heads. GaussianTalker [8] and Talking-
Gaussian [30] focus on improving the rendering speed for
monocular videos. EmoTalk3D [21] can synthesize multi-
view renders, however these methods generate sequences
frame-by-frame, thus suffer from jitter and scaling artefacts.
In contrast, our method synthesizes multi-view consistent
and temporally smooth results, including fine-scale details
like dynamic wrinkles, by leveraging a transformer-based
sequence model and an efficient 3DGS-based avatar.
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Figure 2. Random frames selected for each participant (top) from
the dataset and corresponding zoom-in for the mouth region (bot-
tom). We captured a gender-balanced dataset of native speakers
with different English accents and diverse facial geometry includ-
ing different skin tones, beard and glasses to maximize diversity.

3. Multi-View Audio-Visual Dataset

We collected a novel dataset consisting of six native English
speakers captured using a multiview rig of 16 cameras (see
Supp.). We record sequences at 30 FPS at 3208 x 2200 res-
olution. To achieve quality and diversity, we specifically
capture native English speakers with different accents, in-
cluding American, British, and Canadian. We selected par-
ticipants aged 20-50 with different genders and facial geom-
etry including beard and glasses to increase the diversity,
see Fig. 2. We collected 415 sequences for every subject,
leading to an overall recording time of 30-35 minutes for
each of the 16 cameras. The spoken sentences are chosen
from the TIMIT [16] corpus to maximize the phonetic di-
versity. Our dataset stands out from the existing datasets in
terms of quality and quantity.

While certain datasets with audio-visual talking faces ex-
ist, they are limited in quality. The RAVDESS dataset [33]
contains a set of native speakers, but it has only 2 unique se-
quences per participant with North American accent, while
we captured three different English accents and 415 unique
sentences. The MEAD dataset [58] captured the partici-
pants with 250 unique sentences per participant. However,
they focus on emotional speech synthesis due to which they
capture only 40 unique natural expression/emotion per par-
ticipant at a relatively lower resolution. The Nersemble [28]
dataset captures the participants at high resolution, but it
only contains 10 audio sequences per participant. Closest
to ours is MultiFace [61], which captured participants in a
spherical rig of 150 cameras; however, it captured only 50
audio sequences per participant. Our dataset contains 415
sequences for every subject at high resolution, an order of
magnitude larger than existing datasets, see Tab. 1. We plan
to release our entire dataset to the research community.

4. Method

Our method operates in two stages. First, we develop a
lightweight and high-quality avatar initialization based on
GaussianAvatars (Sec. 4.1). Next, we train a transformer-
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Figure 3. Person-specific 3D Avatar: We compute 3D face track-
ing and bind 3D Gaussians to the triangles of the tracked FLAME
mesh. We apply volume-based pruning to prevent optimization
to generate large amount of Gaussians, and apply subdivision of
mesh triangles in the mouth region. We train color MLP Oojor to
synthesize expression & view dependent color. We apply wrinkle
regularization and perceptual losses to improve photorealism.

Dataset #Cam #Unique  Resolution Duration Native
Sentences (in minutes/camera)
RAVDESS [33] 1 2 1920 x 1080 0.1 min v
MEAD [58] 8 250 1920 x 1080 20 min X
EmoTalk3D [21] 11 N/A 512x 512 20 min X
Nersemble [28] 16 10 3208 x 2200 1 min X
MultiFace [61] 150 50 2048 x 1334 4 min X
Ours 16 415 3208 x 2200 35 min v
Table 1. Existing Audio-Video Dataset Comparison per partic-

ipant in the datasets. Compared to existing datasets, ours is an
order of magnitude larger and higher resolution. All datasets are
captured at standard 30 fps.

based sequence model to animate our initialized avatar con-
ditioned on personalized audio features (Sec. 4.2). Since
our method requires 3D face tracking, we compute them
from our multiview sequence dataset, similar to [39].

4.1. Avatar Initialization

We propose an efficient optimization strategy to compute a
3DGS-based Gaussian avatar representation. We found that
naively training GaussianAvatar [39] generates blurred/low-
quality textures, especially, for scenarios with rapid facial
movement like faster talking speed/head motion. In addi-
tion, GaussianAvatar can not effectively handle dynamic
wrinkles. Therefore, we introduce expression-dependent
colors and propose several regularizations to improve qual-
ity of our avatars described below and shown in Fig. 3.
Volume-Based Pruning. We modify the pruning strat-
egy used by GaussianAvatar. Instead of pruning 3D Gaus-
sian splats based on a given opacity threshold €qpacity, We
select top 25,000 Gaussians with maximum opacity and 3D
Gaussian’s scale volume combined at every pruning step
as G; = o - (85 - sy - 5.), where o, refers to it" Gaus-
sian’s opacity and s, s, s, refers to its scale along X, y,
and z axis. Even when the optimization generates excessive
splats during densification, this top-k pruning ensures that
the optimized avatar does not contain too many 3D Gaus-
sian splats. However, this leads to degradation in quality by
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removing small transparent 3D splats and generates blurry
results. We, thus, propose to add additional regularizations
to improve quality.

Expression-dependent Color. Instead of learning SH
Color for 3D Gaussians, our method generates color with
a lightweight two-layer color MLP 8, to faithfully syn-
thesize dynamic wrinkles. Given a FLAME [31] expres-
sion code ) and viewing direction v, we synthesize view-
and expression-dependent color ¢; as ¢; = Ocoior (V; 213 V).
Note that we additionally learn per Gaussian latent features
z; for sharper colors.

Perceptual Losses. To improve the sharpness of the
color generated by 6.0, We add a global and patch-based
perceptual loss. The global perceptual loss Lgjobal 1S based
on the content and style features of the pre-trained face
recognition model ArcFace [13]. The content 10ss Lcontent
and style loss Ly are defined as:

K
Lcontent = Z Hgbk(lrender) - ¢k(lgt)||1a (1)
k=1

K
£sty1e = Z Hgk (Irender) — Gk (Igt)‘ 1 2
k=1

where ¢y, and Gy, refer to the feature maps and Gram matri-
ces [24] for the layer k respectively. Irender and Iy refer to
the rendered and ground-truth multiview image.

‘Cglobal = Leontent + £slyle~ (3)

Lylobal improves the quality of the texture globally, how-
ever, it shows limited improvements for fine-scale skin ar-
eas and less observed regions like the mouth interior. We,
therefore, employ a VGG-based loss on local image patches
based on content features of the pre-trained VGG backbone:

AL . ‘
Epatch = j Z Z HCk (Ifjender) - Ck (Igjt)‘

j=1k=1

Y

cender and I gl refer to the j'" local patch regions from
the rendered and ground-truth multiview images. We use
128 x 128 patches and sample 16 local patches uniformly
for the facial area by employing alpha matting.

Wrinkle Regularization. Naive optimization of Gaus-
sianAvatar [39] cannot represent skin creasing and fine-
scale wrinkles, since it learns a constant color for the avatar,
irrespective of facial expression. To overcome this, we in-
troduce a lightweight color MLP 6,,;,, that can generate
expression-dependent wrinkles. We employ a novel wrin-
kle feature loss Lyinke Which focuses on refining dynamic
wrinkles. Specifically, we run an off-the-shelf wrinkle de-
tector [41] to extract wrinkle features and apply a content
loss on its feature detection backbone during optimization:

where I’

K
Lusinke = O ||V (Trender) = Vi (Ig)|],- ()
k=1

Note that our method synthesizes wrinkles faithfully for
avatars whose captured data includes dynamic wrinkles
when speaking; if the avatar did not display wrinkles during
speech, our method will not generate them.

Mouth Region Subdivision. Since the mouth interior
(especially teeth) is less frequently observed compared to
other facial regions, the standard 3DGS-based densifica-
tion cannot generate sufficient Gaussians for the mouth to
synthesize high quality results. To address this, before op-
timization, we subdivide the triangles which are used to
initialize the Gaussians corresponding to the teeth in the
FLAME mesh using a uniform four-way subdivision. By
doing so, we begin with a high density of Gaussians for the
teeth, compensating for low gradient magnitude in this area,
ensuring that teeth appear detailed and realistic.

To summarize, we optimize our 3DGS-based avatar us-
ing Ly loss as:

Etotal = Lrgb + Aposﬁposition + Asﬁscaling

+ /\nglobal + Apﬁpatch + /\wﬁwrinklm

where Ligh, Lposition, Lscaling are defined in [39] (also ex-
plained in Supp. doc).

(6)

4.2. Sequence Model Training

GaussianSpeech performs high-fidelity and temporally-
consistent generative synthesis of avatar motion sequences,
conditioned on audio signal. To characterize complex face
motions and fine-scale movements like dynamic wrinkles,
we employ a transformer-based sequence model. We pre-
dict mesh animations with our sequence model and refine
the dynamic motion attributes of the 3D Gaussian Splats of
our optimized avatar to be consistent with audio features.
An overview of our approach is illustrated in Fig. 4.

Audio Encoding. We employ the state-of-the-art pre-
trained speech model Wav2Vec 2.0 [2] to encode the audio
signal. Specifically, we use the audio feature extractor made
up of temporal convolution layers (TCN) to extract audio
feature vectors {a;}2* from the raw waveform, followed
by a Frequency Interpolation layer to align the input audio
signal {a;} Y, (captured at frequency f, = 16kHz) with our
dataset {a;} N, (captures at framerate f. = 30FPS).

Lip Features. A stacked multi-layer Lip Transformer
Encoder processes these resampled audio features and pre-
dicts personalized lip content feature vectors 7. To avoid
learning spurious correlation between upper face motion
and audio, the Lip Transformer Encoder is trained with only
lip vertices from the FLAME mesh with L2-reconstruction
loss autoregressively as:

T

=3 (DIl ~tall,) - D
n=1 t=1

where T refers to the number of frames per sequence and

N total sequences, Iy and lpq refer to the ground truth and

predicted lip vertices, respectively.
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Figure 4. Method Overview. From the given speech signal, GaussianSpeech uses Wav2Vec 2.0 [2] encoder to extract generic audio
features and maps them to personalized lip feature embeddings ¢**7 with Lip Transformer Encoder and wrinkle features w'*? with Wrinkle
Transformer Encoder. Next, the Expression Encoder synthesizes FLAME expressions e**T which are then projected via Expression2Latent
MLP and concatenated with ¢*7 for input to the motion decoder. The motion decoder employs a multi-head transformer decoder [54]
consisting of Multihead Self-Attention, Cross-Attention, and Feed Forward layers. The concatenated lip-expression features are fused into
the decoder via cross-attention layers with alignment mask M. The decoder then predicts FLAME vertex offsets {Voffse[}le which gets
added to the template mesh T' to generate vertex animation in canonical space. During training, these are then fed to our optimized 3DGS
avatar (Sec. 4.1) and the color MLP 0.1,r and gaussian latents z are further refined via re-rendering losses [27].

Wrinkle Features. Similarly, our Wrinkle Transformer
Encoder conditioned on audio and lip features predicts per-
sonalized wrinkle feature vectors w"”. The Wrinkle Trans-
former Encoder is trained with wrinkle features extracted
using a wrinkle detector [41] from the RGB frames as:

N T
Lyrinkte = Z (Z [y — Whrea ’2)

n=1 t=1

; (®)
n
where wg and wpeq refer to the ground truth and predicted
wrinkle vertices respectively.

Expression Features. Using personalized lip features
T and wrinkle features w T obtained above, we train
the Expression Encoder E.,. Specifically, we concate-
nate lip and wrinkle features to obtain combined features
cw'T = [e"T;whT]. These combined features are fed
to our Expression Encoder which predicts FLAME expres-

sions as e}/l = Eexp(cw’ ™) and is trained with:
N T
¢ t
ﬁexpr - Z (Z Hegt — epred‘ |2> 5 (9)
n
n=1 t=1

where ey and epq refers to the ground truth and predicted
FLAME expression parameters, respectively.

Audio-Conditioned Animation. We train a transformer
decoder [54] network to synthesize mesh Vertex Offsets

{Voffse[}l:T, where T refers to the number of frames in a
sequence. During training, we first project the predicted ex-
pression parameters e;r:er via the Expression2Latent MLP
€ to the latent space of our model and concatenate it with

lip features ¢*” to obtain combined lip-expression motion
features m*7 = [¢"T; E(elT)].

These motion features m 7 are then processed through
transformer decoder, and the Vertex Mapper MLP to syn-

thesize Vertex Offsets {Voffset}lzT in canonical space. We
leverage a look-ahead binary target mask 7~ € RV X" in the
multi-head self-attention layer to prevent the model from
peeking into the future frames. The (i, ) element of the
matrix with 1 < 14,5 < N is:

True ifi<j

False else

Tij = (10)

Input motion features m” are fused into the trans-

former with the multi-head audio expression cross-attention
layer via the alignment mask M. The binary mask M €
RN*N s a Kronecker delta function d;; such that the mo-
tion features for i timestamp attend to vertex features at
the j*" timestamp if and only if i = j:

T i
M=g;=4 " 1= 7 (11)
False ifi#j
The vertex offsets are obtained as:
1T 1:T
Vora} " =D(m""| T, M), (12)

where D refers to the transfloqrwmer decoder network. These
predicted offsets {Voffset} " are added to the template
mesh T to obtain mesh animation in canonical space as

{Vpred}LT =T+ {Voffset}1:T~
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The Expression2Latent MLP £ and the transformer de-
coder D are jointly trained with an L2-reconstruction loss:

N T
Locnics = Y (D NIVa=Viwall,) . (13)
n=1 t=1

The predicted vertices {Vpred}l:T are fed to our Opti-
mized 3DGS avatar (Sec. 4.1) and color related attributes
of the avatar are further refined. We propose an alternating
training strategy for the task as explained below.

(a) In the first step, we predict vertex displacements
(from the rest pose) in the canonical space for the entire
sequence (Eq. 12). This learns the optimal parameters for
transformer D and Expression2Latent MLP £ as:

8*7 D" = arg min Lertices (14)
E,D

(b) In the second step, we predict the 3D Gaussian at-
tributes with our Optimized 3DGS avatar (Sec. 4.1) and ren-
der the full animation sequence.

The color MLP 6., of our optimized avatar is condi-
tioned on predicted FLAME expression epq and per Gaus-
sian latent z;, in addition to view direction v, and pre-
dicts the view- and expression-dependent color as ¢; =
Ocolor (€pred; Zi; v). The predicted image Ipreq is obtained
with the differentiable renderer R from Kerbl et al. [27] as:

Ired = R({1ti, 81, a3, €: } 7, [R ] 1]), (15)

where p;, s;, q; refers to the optimized avatar’s position,
scale, and rotations, respectively, and G defines the total
number of Gaussians. The predictions are supervised with
the photometric loss Lphoto fOr the sequence:
T
ﬁphoto = Z (Acrgb + Agﬂglobal + Apﬁpatch)t ) (16)

t=1

In this step, we refine per-Gaussian latents z; and Color
MLP 8, With audio-conditioned expressions:

1:G :
0o {2i 17 = argmin  Lphowo a7
Ocolor, {zi }1°C

Overall, we optimize two losses in the alternating fash-
ion: (a) Lyerices Which learns audio-conditioned facial mo-
tion and (b) Lppero Which refines the optimized avatar for
more accurate and photorealistic appearance. We do not re-
fine the position, scale, rotation, and opacity; empirically,
we found that they did not make a noticeable difference in
the overall quality.

5. Results

We evaluate GaussianSpeech on the tasks of (a) Avatar Rep-
resentation and (b) Audio-Driven Animation. For (a), we
evaluate standard perceptual image quality metrics SSIM,
PSNR and LPIPS. For audio-driven animation, we evaluate

lip synchronization LSE-D [38] as well as perceptual qual-
ity metrics. We train personalized avatars for different iden-
tities. Following GaussianAvatars [39], we train on all 15
cameras except the frontal and report results on the frontal
camera for all our experiments. All images are resized to
1604 x 1100 during training. For avatar reconstruction, we
use 30 short sequences. For audio-driven animation, we use
300 sequences for training and 50 for val and test set each.
We encourage readers to watch the Supplementary Video
for visual comparison of all results.

5.1. Avatar Reconstruction

Compared to GaussianAvatars [39], our proposed avatar ini-
tialization can generate high-quality results with as few as
30-35k points (see Fig. 5 and Tab. 2). The perceptual loss
helps increase the sharpness in the texture with fewer points.
The wrinkle regularization helps to model dynamic wrin-
kles. Teeth subdivision helps with the better mouth inte-
rior. Color MLP helps synthesize sharper texture. Our full
avatar initialization with all regularization achieves the best
results. We train our method on all except frontal camera
and report results for the frontal camera. For these experi-
ments, we show results for the most expressive actor from
our dataset (Subject 4) and refer to Suppl. doc for others.

Method PSNR1 SSIMT LPIPS| # Gaussians |
GaussianAvatar [39] 26.53 0.9087  0.1487 98083
Ours (w/o perceptual) 27.03 09116  0.1447 31875
Ours (w/o wrinkle reg.) 28.10 0.9216  0.1312 33998
Ours (w/o mouth subdivision) 28.35 0.9321 0.1244 34917
Ours (w/o Color MLP) 28.93 0.9366  0.1235 32792
Ours (Full) 29.90 0.9495  0.1104 32379

Table 2. Avatar Reconstruction: With fewer Gaussian points, our
method achieves superior quality compared to the alternate ap-
proaches. Perceptual loss increases the sharpness, wrinkle reg-
ularization models dynamic wrinkles, mouth subdivision learns
better mouth interior, Color MLP synthesizes sharper colors and
accurate dynamic wrinkles. The full avatar initialization with all
regularizations achieves the best results.

Method LSE-D| PSNRT SSIM?T LPIPS|
. [ RAD-NeRF [49] 13.17 13.15 0.8007  0.2741
%{ ER-NeRF [29] 13.08 15.94 0.8269  0.2512
& SyncTalk [37] 12.50 18.24 0.8759  0.1920
g{ TalkingGaussian [30] 12.38 20.29 0.8890  0.1745
21 GaussianTalker [8] 12.19 20.32 0.8984  0.1724
@ ( Faceformer [15] + G.A. 11.86 22.18 09105  0.1608
Z ¢ CodeTalker [63] + G.A. 11.68 22.23 09118  0.1595
) { Imitator [51] + G.A. 11.61 22.83 0.9207  0.1519

Ours 11.25 24.73 0.9362  0.1286

Table 3. Baseline Comparisons: we compare with NeRF-based,
3DGS-based and mesh-based (FLAME [31]) baselines. We com-
bine FLAME-based methods with 3DGS via GaussianAvatars
(G.A.) [39]. Our method achieves superior results in both in per-
ceptual quality as well as lip synchronization (LSE-D).
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Figure 5. Avatar Reconstruction: GaussianAvatars [39] produces blurry results and cannot handle dynamic wrinkles. For our method,
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and accurate dynamic wrinkles. Our full avatar initialization technique with all regularization achieves the best results.

Faceformer
+G.A

RAD-NeRF

ER-NeRF
CodeTalker
+G.A

Imitator
+G.A

Ours

Ground Truth

RPRRR
1212121212
1313131313
PRRPP
33337
PR

GaussianTalker TalkingGaussian

=
]
=
)
=)

well [silence] two [silencel

Figure 6. Baseline Comparison: We show comparisons against NeRF-based, 3DGS-based and FLAME animation methods combined with
GaussianAvatars (G.A.) [39]. NeRF-based methods (RAD-NeRF [49], ER-NeRF [29] and SyncTalk [37]) produce artifacts in texture as
well as incorrect mouth articulations. 3DGS-based methods (TalkingGaussian [30] & GaussianTalker [8]) can synthesize better lip-sync but
produces blurry texture especially for mouth interior. Generalized FLAME animation methods (Faceformer [15], CodeTalker [63]) show
blurred mouth interiors, personalized methods (Imitator [51]) produce better mouth interiors, however, the lip closures and synchronization
is inaccurate. Our method outperforms all baselines both in lip-sync and photorealism.
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Figure 7. Ablation Study. Left-to-right: (1) Alignment mask is critical to properly infuse audio information into the sequence model. (2)
Audio fine-tuning helps the method generate better lip sync. (3) Without wrinkle features, the model can not produce dynamic wrinkles.
(4) Without fine-tuning Color MLP and latent features, the model produces bad mouth interiors and inaccurate dynamic wrinkles. Our full

model with all the components achieves best results.

5.2. Audio-Driven Animation

Baseline Comparisons. We compare our method against
recent state-of-the-art methods. For NeRF- and 3DGS-
based methods, we train on frontal camera since these meth-
ods are designed for monocular settings. There are no
sequence models for audio-driven animation of 3D head
avatars, thus, we combine audio-to-mesh animation meth-
ods [15, 51, 63] with current state-of-the-art mesh-to-3D
avatar creation method [39]. We report results on the front
camera for fairness, since some methods are designed only
for front/single camera only. We report results averaged
over all subjects, see Fig. 6 and Tab. 3. Our method con-
sistently achieves better results than baselines both in terms
of perceptual quality and lip synchronization.

Method LSE-D]| PSNR?T SSIM?T LPIPS |
w/o alignment 12.66 21.02 0.9104  0.1855
w/o audio finetune 11.78 22.73 0.9355 0.1198
w/o wrinkle features 11.28 23.14 0.9311 0.1162
w/o color MLP & latent finetune 11.32 23.96 0.9367 0.1133
Ours (Full) 11.15 24.97 0.9470  0.1101

Table 4. Ablation study. Without alignment mask, the model ig-
nores the audio signal. Audio fine-tuning helps to improve lip
sync. Wrinkle features help with dynamic wrinkles and overall
realism. Finetuning Color MLP and latents rectifies the inaccurate
mouth interior. Our full model achieves the best results.

Ablation Study. Finally, we ablate different design
choices of our method on most expressive actor from our
dataset (Subject 4) in Fig. 7 and Tab. 4. Alignment mask
is critical for accurately infusing audio features into the se-

quence model. Without audio fine-tuning refers to using
generic audio features without any personalization of lip
encoder, without audio model fine-tuning the model pro-
duces incorrect lip synchronization. Without wrinkle fea-
tures refers to setting without using wrinkle features for pro-
ducing FLAME expressions. Without wrinkle features the
method cannot produce dynamic wrinkles. Without fine-
tuning Color MLP & latent features with predicted expres-
sions from our Expression encoder, the method produces
bad mouth interiors and inaccurate dynamic wrinkles. Our
full model with all components achieves best results. We
refer readers to supplemental video for visual comparison.

6. Conclusion

In this work, we propose a novel approach to create high-
fidelity and photorealistic 3D head avatars that can be ani-
mated from audio input. We designed the first transformer-
based sequence model for audio-driven head animation of
3DGS based avatar. Our sequence model is made possi-
ble by a lightweight and compact avatar initialization based
on 3D Gaussian Splatting. We proposed several regular-
ization techniques to handle dynamic wrinkles, skin creas-
ing and sharpness of the texture. Our method produces (a)
photorealistic and high-quality 3D head avatars that can be
rendered from arbitrary viewpoints (b) visually natural ani-
mations like skin creasing during talking. We believe this
is an important first step towards enabling the animation
of detailed and lightweight 3D head avatar, which can en-
able many new possibilities for content creation and digital
avatars for immersive telepresence.
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