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Abstract

Generative models have rapidly evolved to generate re-
alistic outputs. However, their synthetic outputs increas-
ingly challenge the clear distinction between natural and
AI-generated content, necessitating robust watermarking
techniques to mark synthetic images. Watermarks are typi-
cally expected to preserve the integrity of the target image,
withstand removal attempts, and prevent unauthorized in-
sertion of the watermark pattern onto unrelated images. To
address this need, recent methods embed persistent water-
marks into images produced by diffusion models using the
initial noise of the diffusion process. Yet, to do so, they ei-
ther distort the distribution of generated images or require
searching a large dictionary of candidate noise patterns for
detection.

In this paper, we propose a novel watermarking method
that embeds semantic information about the generated im-
age into the noise pattern, enabling a distortion-free water-
mark that can be verified without requiring a database of
key patterns. Instead, the key pattern can be inferred from
the semantic embedding of the image using locality-sensitive
hashing. Furthermore, conditioning the watermark detection
on the original image content improves its robustness against
forgery attacks. To demonstrate that, we consider two largely
overlooked attack strategies: (i) an attacker extracting the
initial noise and generating a novel image with the same
pattern; (ii) an attacker inserting an unrelated (potentially
harmful) object into a watermarked image, while preserv-
ing the watermark. We empirically validate our method’s
increased robustness to these attacks. Taken together, our
results suggest that content-aware watermarks can mitigate
risks arising from image-generative models. Our code is
available at https://github.com/Kasraarabi/
SEAL.

1. Introduction
The growing capabilities of generative models pose risks to
society, including misleading public opinion, violating pri-
vacy or intellectual property, and fabricating legal evidence
[5, 16, 28]. Watermarking methods aim to mitigate such

Figure 1. Illustration of different watermarking frameworks using
the initial noise of diffusion models. No Watermark: A diffusion
model maps pure Gaussian noise to an image. Tree-Ring: A pattern
is added to the initial noise, modifying the distribution of generated
images in a detectable way. Key-Based Watermarking: A key is
sampled to generate distortion-free images linked to the key. Ours
(SEAL): The initial noise is conditioned on multiple keys derived
from the image’s semantic embedding, with each key influencing a
different patch.

risks by allowing the detection of synthetically generated
content.

Yet, many conventional watermarking techniques lack
robustness against adversaries who attempt to remove them
using regeneration attacks powered by recent generative
models [2, 12, 36]. To address this, new watermarking tech-
niques leveraging similar advances in generative models
offer an increased robustness against such attacks [4, 31, 34].
Namely, these methods embed a watermarking pattern in
the initial noise used by a diffusion model. These patterns
have been shown to be more robust against existing removal
attacks.

However, existing watermarks that utilize the diffusion
model initial noise tend to be vulnerable to other attacks aim-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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ing to “steal” the watermark and apply it to images unrelated
to the watermark owners [17, 22, 32]. Some of these water-
mark forgery attacks can be evaded by using a distortion-free
watermark - generating watermarked images from a similar
distribution to the distribution of non-watermarked images;
therefore exposing less information about the watermark
identity. Even so, keeping track of a very large number of
watermark identities requires maintaining a database of used
noises, and might still be forgeable by other attacks [17, 22].

To address these challenges, we introduce SEAL - Se-
mantic Embedding for AI Lineage, a method that embeds
watermark patterns directly tied to image semantics. Our ap-
proach enables direct watermark detection from image sam-
ples and offers the following key properties: (i) Distortion-
free: As in previous works, we utilize pseudo-random hash
functions to generate an initial noise that is similar to the
noise used by non-watermarked models, ensuring a similar
distribution of generated images. (ii) Robust to regenera-
tion attacks: Similar to prior watermarking methods based
on DDIM inversion, our approach demonstrates resilience
against regeneration-based removal attempts [36]. (iii) Cor-
related with image semantics: The applied watermark en-
codes semantic information from the image. (iv) Indepen-
dent of a historical database: Our approach embeds water-
marks without requiring access to a database of used noise
patterns.

Our key insight is that we can encode semantic informa-
tion about the image content in a distortion-free watermark
by embedding a semantic encoding of the generation directly
into the initial noise. Namely, we may use an encoding of the
requested image semantics to seed different pseudo-random
patches that compose the initial noise. We ensure the en-
coded embedding correlates strongly with the resulting im-
age content, and not just with the prompt, which is important
since the prompt is not available during detection. At detec-
tion time, our approach identifies an image as watermarked
only when the watermark pattern is both present and prop-
erly correlated with the semantics of the given image. We
describe in detail our watermarking technique in Section 3.

Correlating our watermarking algorithm to the image se-
mantics also allows us to resist forgery attempts that are
challenging for many existing approaches. An attacker at-
tempting to forge our watermark onto unauthorized content
would alter the image’s semantic embedding, breaking its
correlation with the embedded pattern and rendering the
watermark invalid.

One mostly overlooked attack involves an adversary alter-
ing only small portions of a watermarked image while pre-
serving the rest of its content. In such cases, the attacker can
manipulate the image to be offensive, illegal, or damaging
to the watermark owner’s reputation, all while the original
watermark remains detectable. We term this attack the CAT
ATTACK, as the attacker may add an object to the image

(e.g., a cat) and expect the watermark to persist. We evaluate
the potential damage of such tamperings and demonstrate
that our method provides robustness against both the CAT
ATTACK and other forgery attempts, even by adversaries
who obtain accurate copies of our initial noise. Our experi-
ments confirm our method’s effectiveness against these novel
threats as well as previously studied attack vectors.
Our contributions are as follows:
• We propose SEAL, a semantic-aware database-free wa-

termarking method that integrates image semantics into
the watermark, ensuring it becomes invalid under severe
semantic changes.

• We investigate the CAT ATTACK, highlighting the risks
of local edits to watermark owners and assessing their
potential impact.

• We empirically demonstrate the effectiveness of our wa-
termark against various attacks, including its resistance to
adversarial edits.

2. Related Works
Recent research on image watermarking can be broadly cat-
egorized into post-processing and in-processing approaches,
each offering distinct trade-offs between quality, robust-
ness, and deployment practicality [2]. We cover here In-
Processing Methods, and for Post-Processing Methods refer
to Section 7.

In-Processing Watermarking Methods. In-processing
approaches integrate the watermark directly within the image
generation process. Some methods modify the generative
model by fine-tuning specific components, as demonstrated
in Stable Signature [12, 26, 35]. An alternative class of
techniques manipulates the initial noise of the generation
process, thereby embedding the watermark without extensive
model retraining. For example, Tree-Ring [31] embeds a
Fourier-domain pattern into the initial noise, which can be
detected through DDIM inversion [29], while RingID [8]
extends this idea to support multiple keys. Other notable
methods include Gaussian Shading, which produces a unique
key for each watermark owner [34], PRC that leverages
pseudo-random error-correcting codes for computational
undetectability [14], and WIND, which employs a two-stage
detection process to enables a very large number of keys [4].

Locally Sensitive Hashing in High-Dimensional Spaces.
Recent advances in approximate nearest neighbor (ANN)
search have increasingly relied on the power of Locally Sen-
sitive Hashing (LSH) to address the challenges of dealing
with high-dimensional data. Originally introduced by Indyk
and Motwani [15] and further refined by Gionis et al. [13],
LSH employs randomized hash functions that ensure similar
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Figure 2. Illustration of the SEAL watermarking framework for diffusion models using semantic-aware noise patterns. Watermark
Generation: A textual prompt (e.g., “Beach at sunset.”) is first embedded into a semantic space. The embedding is then processed using
SimHash to generate discrete keys, which are used in Encrypted Sampling to choose the initial noise z ⇠ N (0, I). The watermarked noise
then undergoes standard diffusion to generate the final image. Watermark Detection: The image is captioned to obtain an embedding, which
is then processed by SimHash to generate a reference noise, similarly to watermark generation. This noise remains correlated with the
initial noise used during generation as long as the image semantics remain unchanged. The initial noise is also estimated directly through
Inverse Diffusion to approximate the actual initial noise used during its generation. If there are insufficient matches between the reference
noise and the noise obtained from inversion, the watermarking framework flags the image as non-watermarked. If a key match is found but
the image is still deemed suspicious, a detailed inspection of the patches can be performed to identify local edits.

data points are mapped to the same bucket with high proba-
bility. For a hash family H, the collision probability is given
by

P (h(x) = h(y)) ⇡ similarity(x, y), h 2 H.

Subsequent improvements by Datar et al. [9] and Andoni and
Indyk [3] have enhanced both the efficiency and robustness
of LSH methods, making them key for large-scale, high-
dimensional search tasks.

3. SEAL: Semantic Aware Watermarking
3.1. Motivation
Watermarking methods suffer from an inherent trade-off: a
watermark that is harder to remove is also easier to attach to
unrelated generations, compromising the reputation of the
watermark owner [5]. One suggested solution to overcome
this trade-off, might be maintaining a database of past gen-
erations, such that the owner could compare a seemingly
watermarked image to the actual past generations. Yet, this
solution is not without its problems. First, maintaining and

searching a rapidly growing database, which expands with
each new generation, can be challenging. Second, safeguard-
ing the database itself may pose security risks. Finally, in
various use cases, the watermark owner may not only wish
to detect if an image is watermarked but also provide to a
third party evidence that it was. We therefore turn to sug-
gest a watermarking scheme that is hard to remove, hard to
forge, and does not rely on maintaining a database of past
generations.

Our core idea is to use a distortion-free initial noise pat-
tern not only to indicate the origin of the image but also to en-
code which semantic information the image may contain. We
do so in three stages (see also Figure 2): (i) Semantic Embed-
ding – we obtain a vector representing the expected semantic
content in each generated image (ii) SimHash Encoding – we
encode the semantic vector using a set of multi-bit hash func-
tions (iii) Encrypted Sampling – The pseudo-random outputs
of the hash functions are combined to produce the initial
noise for the diffusion denoising process. Taken together,
these steps set an initial noise that is both distortion-free
with respect to standard random initialization and correlated
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(a) (b)

Figure 3. Effect of the Cat Attack on SEAL. (Left) A cat image is
pasted onto a watermarked image at a random position and scale.
(Right) Our method detects this modification by identifying elevated
`2 norms in affected patches. Note that the displayed norms are
rounded to the nearest integer.

with the semantics of the input prompt (see Section 3.3). We
describe our watermarking method in detail below.

3.2. Method
Formally, our method first creates a semantic vector v and
uses it to sample the initial noise z for the watermarked
image. During detection, we aim to verify the connection
between the used initial noise z and the semantic embedding
of the image. When approximating z from the generated
image during detection and verifying it, we consider the
following error sources:
• We do not have access to v at detection time; instead, we

must use an approximate version ṽ derived from the image
we are analyzing. Using ṽ, we produce an approximate
version of the used initial noise z̃.

• Because of the randomness in the diffusion process and
its inversion, we cannot estimate z accurately; instead, we
get an approximation of the inverted noise zinv.
Ideally, a watemarked image would yield a perfect match

between the noisese derived from the image semantics zinv

and the inverted z̃ but this is not guaranteed because both
differ from z due to the error sources mentioned above. Yet,
we can mitigate this by independently embedding the image
semantics across multiple patches. Therefore, our method
provides a high likelihood that even if some patches do
not match because of the challenges discussed above, many
of the patches will match as long as the suspect image is
watermarked.

Watermark Generation
The first step of the generation process is to find a semantic
vector v describing the image that will be generated. Ide-
ally, the semantic vector depends only on the prompt and
correlates exclusively with images generated from it. Yet, in
practice, predicting the final image semantics based on the
user prompt is difficult.

Algorithm 1 Watermark Generation
1: Input: prompt: text prompt, n: number of patches, b:

number of bits per patch, salt: secret salt
2: Output: Watermarked image of prompt
3: zpre

⇠ N (0, I)
4: xpre

 Diffusion(zpre,prompt)
5: v Embed(Caption(xpre))
6: for i = 1, . . . , n do
7: zi  SimHash(v, i,salt)
8: end for
9: return Diffusion(z,prompt)

Algorithm 2 SimHash
1: Input: v: semantic vector, i: patch index, salt: se-

cret salt, b: number of bits, hash: cryptographic hash
function

2: Output: Semantic, secure, normally distributed noise
3: bits 0 // Initialize hash input
4: for j = 1, . . . , b do
5: // Reproducibly sample random vector
6: s hash(i, j,salt)

7: Sample r(i)j
s
⇠ N (0, I)

8: bits[j] sign(hv, r(i)j i) // Random projection
9: end for

10: si  hash(bits, i,salt)

11: return zi
si
⇠ N (0, I)

To approximate the generated image semantics, our solu-
tion begins by generating a proxy image xpre. We first cap-
tion the image using BLIP-2 model [19]. Then, the caption is
embedded into a latent semantic space using the Paraphrase
Mpnet Base V2 model [24], resulting in a semantic vector
v which captures the high-level semantics of the generated
image by the prompt (a similar concept also explored in the
concurrent work of SWIFT [10]).

Semantic Embedding Optimization. During detection,
the generated image will be captioned to obtain a semantic
vector ṽ, approximating the semantic vector v that was used
to seed the random noise. To ensure a similarity between
v and ṽ, it is not enough only to generate the proxy image
xpre with the same prompt (a qualitative comparison of the
captioned proxy image and the final generated image can be
found at Figure 9). Therefore, to encourage the embedding v
to correlate to ṽ and not to unrelated vectors, we fine-tuned
the embedding model using 10k pairs of related captions,
leading to additional improvements (Figure 5). The full
implementation details of the fine-tuning process can be
found in Section 9.4.

After obtaining the desired semantic embedding, we gen-
erate the watermarked noise z using the semantic vector v
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and the SimHash algorithm described below. Finally, we
will use the diffusion mode to generate the image with the
watermarked initial noise. The generation algorithm is sum-
marized in Algorithm 1.

Semantic Patterns with SimHash
The core subroutine of our watermarking method is SimHash
[7], used to generate initial noise patches correlated to a
given vector (Algorithm 2). SimHash takes a vector v and
generates an initial noise zi for patch i, allowing a verifier
to later determine whether zi is related to v. Namely, the
semantic vector v is passed through a locality-sensitive hash-
ing method that generates representations of v in terms of
its projections onto random directions.

Specifically, SimHash projects v onto a set of random
vectors for each patch of the initial noise map. It uses b
projection vectors for each of the k noise patches. Each
noise patch is generated using a seed determined by the sign
of the projection of the semantic vector onto each of the b
projection directions. For i 2 {1, . . . , k}, the seed and the
noise for patch i are:

si = hash(sign(hv, ri1i), . . . , sign(hv, ribi), i,salt).

zi
si
⇠ N (0, I)

This ensures that similar semantic vectors would yield simi-
lar hash values.

Yet, having repetitive bit inputs (si) may result in repet-
itive patches in the initial noise, and therefre may distort
image generation. Therefore, we include the patch index in
the hash function input to ensure that si 6= sj even when the
input bits are identical (see Figure 8 for generation samples
in the case of repetitive noise patches). For cryptographic
security, we also use a user-specific secret salt.

Algorithm 3 Watermark Detection
1: Input: x̃: suspect image, ⌧ : patch distance thresh-

old, n: number of patches, mmatch: match threshold, b:
number of bits per patch, salt: secret salt

2: Output: Watermark detection (True/False)
3: ṽ Embed(Caption(x̃))
4: zinv

 InverseDiffusion(x̃)
5: m 0
6: for i = 1, . . . , n do
7: z̃i  SimHash(ṽ, i,salt)
8: if kz̃i � zinv

i k2 < ⌧ then
9: m + +

10: end if
11: end for
12: return m � mmatch

Angle ✓(v, ṽ) Detection Probability

65� 8.55 ⇥ 10�4

60� 0.053
55� 0.551
50� 0.998
45� 1.000

Figure 4. Watermark Detection vs. Semantic Similarity. We plot
the empirical probability of detecting a watermark as a function
of the angle between the semantic embedding used for watermark
generation and that of the inspected image (n = 1024, b = 7).
The table shows the analytical detection probabilities at key angles
calculated by Lemma 3.2, illustrating how sharply SimHash distin-
guishes semantically related images from unrelated ones.

Watermark Detection
For detection, we generate noise based on the semantic con-
tent of the image and check how well it corresponds to the
reconstructed noise obtained through DDIM inversion (Algo-
rithm 3). We begin by embedding the image to get a semantic
vector ṽ that captures the content of the image. SimHash is
then applied to this vector as in the watermark generation
process, generating an estimated initial noise z̃. Finally, we
use inverse diffusion (e.g., DDIM [29]) to approximately
reconstruct the initial noise zinv from the image.

Since v and ṽ may differ, the originally used noise z and
z̃ are not necessarily the same. However, by the similarity
property of SimHash, z and z̃ will be identical on some
patches with very high probability as long as v and ṽ are
close. On any patch number i where the SimHash patch
match (z̃i = zi), we get:

kz̃i � zinv
i k2 = kzi � zinv

i k2. (1)

For such patches, the only challenge in identifying the water-
mark stems from the difference between the originally used
noise and the reconstructed noise through DDIM. Empiri-
cally, we find that the `2-norm of the difference between the
inverted and expected noise patches (kz̃i � zinv

i k2) allows us
to detect whether the inverted noise patches originated from
the suspected noise patch with a > 99.9% ROC-AUC.
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Semantic Similarity Detection. Finally, in order to detect
whether an image was initially generated with our water-
mark, we count the number of patches that match (i.e., their
`2-norm distance is below a threshold ⌧ ). If the number
of matches is above a set threshold nmatch then we declare
the image is watermarked. In Section 3.3, we analyze the
probability of correctly identifying a watermarked image.

Tampering Detection with a Spatial Test. In addition
to the association between the watermark and the seman-
tic embedding, edits such as object addition, removal, or
modification are likely to alter the estimated initial noise in
the affected image regions. This enables our watermark to
provide localized information about edits that might have
been made to the image. Consequently, even when the se-
mantic embedding of the image ṽ aligns well with the initial
embedding used to seed the noise v, such tampering edits
can still be detected by identifying localized patches in the
reconstructed initial noise that neither match the expected
noise nor any other valid input to the hash function.

To detect such cases, we may inspect the noise patches
one by one. Given the model owner’s private information, we
may recover the b input bits used to seed each patch with an
exhaustive search over the 2b options per patch, and recover
a matching initial noise. Comparing this reconstructed noise
to the inverted noise zinv allows us to detect which patches
may have been modified. The total time for this search
scales as n · 2b (which is much faster than naively searching
over all 2(b·n) possible initial noise). After obtaining a per
patch noise-matching map (see Figure 3b), we may apply
a spatial test as the one described in Section 9.2 to detect
tampering attempts. In any case, the local patch inspection
is only required when an image is deemed watermarked
by semantic similarity detection; but the watermark owner
would like to have a finer understanding of the edits that
might have been applied to it. This inspection is especially
useful against the CAT ATTACK, described in Section 4.

3.3. Analysis
Before formally analyzing our watermarking scheme, we
state a simplifying assumption on the distance between the
initial and reconstructed noise patches. We assume the noise
patches are close if and only if the suspect image was pro-
duced from the same noise as the one given by our wa-
termarking scheme. The impact of low-likelihood events,
where unrelated patches end up close after noise reconstruc-
tion, remains part of our empirical analysis in Section 4.

Assumption 3.1 (Patch Distance Separation). There is a
threshold ⌧ dist so that, for all generation noises z, inverted
noises zinv, and patches indeces i 2 [k],

kzi � zinv
i k2  ⌧ dist

if and only if zinv = InverseDiffusion(Diffusion(z)).

An immediate consequence of the patch distance sep-
aration assumption is that we never declare an image as
watermarked if its initial noise was not generated using our
watermarking scheme.

Unrelated Prompts. A key property of our watermark-
ing approach is its resistance to forgeries generated from
unrelated prompts. Prior watermarking methods declare an
image as watermarked as long as the watermarking pattern
is embedded in the initial noise and the diffusion and inverse
diffusion processes remain reasonably accurate. However,
this creates vulnerabilities - an adversary could take an ex-
isting watermark and apply it to an unrelated, potentially
offensive, or misleading prompt. In contrast, our approach
strengthens watermark integrity by requiring that the new
prompt remains semantically close to the original. This en-
sures that watermarks are not erroneously detected in entirely
unrelated images. We formalize this claim the the lemma
below.

Lemma 3.2 (Detection Probability). Consider a suspect im-
age x̃ produced from our watermarking scheme with initial
semantic vector v. Let ṽ be the (possibly quite different)
semantic embedding of x̃, and ✓ 2 [�90�, 90�] be the angle
between v and ṽ. Set ✓mid as the threshold between semantic
vectors we deem related vs. unrelated. The probability that
we identify the image as watermarked is

nX

k=bn⇢(✓mid)c

✓
n

k

◆
⇢(✓)k(1� ⇢(✓))n�k. (2)

where ⇢(✓) =
�
1� ✓

180�

�b
.

We illustrate in the example below the sharp detection
thresholds Lemma 3.2 implies. Namely, we show how the
watermark detection probability varies with semantic simi-
larity between the original and a potentially modified image.
We delay the proof of Lemma 3.2 to the appendix.

Example 3.3 (Sharp Detection Thresholds). Our watermark-
ing scheme embeds a semantic vector v into an image at
generation time. When evaluating a suspect image that was
generated via our watermark, we extract its current semantic
vector ṽ. The probability of a watermark detection depends
on the semantic angle ✓(v, ṽ) between v and ṽ.

For instance, Figure 5c illustrates a separation between
vectors associated with the original image and those that
are unrelated, occurring at a threshold of approximately
✓mid

⇡ 55�. When our watermarking scheme is run with
✓mid = 55�, n = 1024, and b = 7 (see Figure 7 for abla-
tion of these parameters). Figure 4 quantifies the probability
of a watermark detection: We observe near-perfect sepa-
ration between related and unrelated watermarked images
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(a) Image Feature Vector. Direct use of image
feature embedding fails to separate related from
unrelated images.
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(b) Caption Embeddings. Employing caption em-
beddings from blip2-flan-t5-xl and paraphrase-
mpnet-base-v2 yields improved separation.

0 20 40 60 80 100

Angle (degrees)

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Related

Unrelated

(c) Fine-tuned Caption Embeddings. Fine-tuning
the embedding model on 10k caption pairs further
enhances separation.

Figure 5. Ablation of Embedding Strategies for Watermark Detection. Comparison of angle separation between related and unrelated
images using different embedding approaches. The raw image feature vector (left) fails to distinguish semantic relationships, while caption
embeddings (center) substantially improve separation. Fine-tuning the embedding model (right) yields additional gains in detection accuracy.

for angles exceeding 5� beyond the threshold. For compari-
son, Section 13.2 presents the semantic angle shift resulting
from the simple insertion of different objects.

4. Empirical Analysis
In this section, we empirically evaluate the robustness of
SEALto different attacks.

Setting. To ensure a fair comparison with prior work [4, 8,
31], we use Stable Diffusion-v2 [25] with 50 inference steps
for both generation and inversion for all methods. Evalua-
tions were conducted on a set of prompts sourced from [27].
We set n = 1024 and b = 7 for all experiments. An ablation
study on the effects of n and b is available in Section 10.

Regeneration with the Private Model. Prior works as-
sume that the attacker lacks access to the model weights
(which are needed for accurate DDIM noise inversion) and
that the noise used during generation cannot be forged or
approximated with sufficient accuracy [4]. Going beyond
previous studies, we consider here a more challenging sce-
nario in which the attacker has full access to the model
weights and can invert the generated image using the same
model that produced it. The attacker’s access to the private
model is taken as an upper bound for the attacker’s capability
in practical forgery attacks [4, 17, 22].

In our experiment, we first generate an image using wa-
termarked noise. We then perform an inversion with the
same model to recover an approximate initial noise, which
is subsequently used to generate a second, forged, image.
Because the attack prompt differs from the original prompt,
the semantic embedding of the image ṽ changes to vattack.
The detection algorithm, therefore compares the estimated
noise to a reference derived from vattack (and not from ṽ).

The noise pattern derived from vattack during detection is
less likely to correlate to the pattern embedded in the image,
enabling the detection algorithm to declare the image as not
watermarked and evade the attack. As can be seen in Table 2,
our method uniquely provides non-trivial robustness in this
setting.

We also evaluate the Latent Forgery Attack directly [17]
in Section 11.

Cat Attack. A significant practical threat to the reputation
of a watermark owner arises from localized modifications
that shift the semantic interpretation of a watermarked image,
as opposed to producing a wholly new image. To evaluate
our method’s resilience against such tampering, we introduce
an evaluation we term the CAT ATTACK.

In this experiment, a cropped object (e.g., a cat) is pasted
onto a watermarked image. The cat image is randomly re-
sized to between 30% and 60% of the watermarked image’s
dimensions and placed at a random location, as exemplified
in Figure 3a. Unlike previous watermarking techniques that
may overlook semantic content, our approach is designed to
detect such alterations.

As shown in Figure 3b, the pasting of the object leads
to elevated `2 norms in the affected patches. Quantitative
results are presented in Table 1, and comparison of different
object sizes can be found in the Table in Table 4. These
results reveal that while our basic detection offers some
robustness, integrating the local spatial test (described in
Section 3) significantly improves the detection of these ed-
its. This demonstrates a key advantage of our method. We
note that in a different setting, methods such as [26, 35]
offer a strong solution for tampering detection via post-hoc
watermarking. Since robustness to tampering can be in ten-
sion with resistance to removal attacks, we next analyze our
method’s performance against standard removal attacks.
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Table 1. Detection of the Cat Attack. ROC-AUC of detecting edits
in generated images, as described in Section 4.

Method AUC
WIND 0.000
Tree-Ring 0.000
Gaussian Shading 0.000
SEAL 0.551
SEAL+ Spatial Test 0.982

Table 2. Robustness to Private Model-Based Forgery Attack. An
attacker with access to the private model weights can approximate
the watermarked initial noise by inverting a watermarked image
using the private model. We evaluate how accurately different meth-
ods evade the false identification of unrelated images, generated
with this initial noise, as watermarked.

Method AUC
WIND 0.000
Tree-Ring 0.000
Gaussian Shading 0.000
SEAL 0.708

Regeneration Based Removal Attack. Our method is
robust to regeneration-based removal attacks [36], similarly
to other initial-noise-based approaches [4, 14, 34], and it
significantly outperforms classical watermarking methods
(see Section 13.3).

Steganalysis Removal Attack. We evaluate the robust-
ness of our method against a steganalysis attack [33] that
attempts to approximate the watermark by subtracting non-
watermarked images from watermarked ones. As shown
in Table 3, SEAL maintains high performance under this
attack.

Robustness to Image Transformations. We evaluated
the robustness of SEAL under a standard suite of image
transformations (see Section 9.3). As shown in Figure 6,
SEAL achieves an average detection rate of 0.896 under
these conditions. This is comparable to some watermark-
ing techniques and somewhat lower than others [31]. Yet,
our method provides a unique resistance to forgery. Fur-
ther enhancements, such as incorporating rotation search
or sliding-window search during detection (see [4]), could
improve its robustness against removal attempts.

Ablation of Captioning and Embedding Models. A
straightforward approach for our method to approximate
the final image semantics to embed it in the noise would be
to use the visual feature vector from the proxy-generated

xpre rather than the embedding of its caption. However, as
illustrated in Figure 5a, this approach fails to yield a clear
separation between related and unrelated images. Conse-
quently, we employ the captioning and caption-embedding
for deriving caption embeddings, which results in a more
distinct separation as shown in Figure 5b. To further enhance
our method’s accuracy, we fine-tuned the embedding model
using 10k pairs of related captions, leading to additional
improvements (Figure 5c).

Generation Quality. Our watermarking method is
distortion-free at the single-image level, since the added
noise is sampled from a pseudo-random Gaussian distribu-
tion, similarly to non-watermarked image generation. As a
result, all single-image quality metrics remain identical to
those of non-watermarked images (see Table 7, Figure 10).

5. Limitation and Discussion
Stronger Forgery Attacks. Although we evaluated a
stronger set of forgery attacks compared to previous works,
other types of forgery attacks might still potentially com-
promise our watermark. For example, a highly persistent
attacker might attempt to gather information about the corre-
lation between individual initial noise patches and the image
semantics. While not theoretically impossible, an attacker
would face several practical limitations in carrying out such
an attack. Among them are the lack of access to the private
model weights, the inherent stochasticity of the watermark,
and the watermark owner’s ability to deploy multiple in-
stances of the hash function by using multiple secret salts.

Attacker Advantage and Removal Attacks. Our method
is more vulnerable to removal attacks than some existing
methods. However, we believe that a sufficiently persistent
attacker can remove most current watermarks. Nonethe-
less, improving watermark robustness against forgery attacks
holds significant societal value - it is essential for protecting
the model owner’s reputation and, consequently, for enabling
practical deployment.

Additional limitations and discussion points can be found
in Section 12.

6. Conclusion
We introduce the first initial noise-based watermarking
method for diffusion models that is both database-free and
semantic-aware. Our suggested watermark is uniquely ro-
bust against a new class of stronger forgery attacks. We
hope our work highlights the potential of semantic-aware
watermarking and helps pave the way forward for further
research in this area.
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