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Abstract

Traditional deep networks struggle to acquire shape-fair
representations due to their high expressivity. Kolmogorov-
Arnold Networks (KANs) are promising candidates as they
learn nonlinearities directly, a property that makes them
more adaptive. However, KANs perform suboptimally in
terms of shape-fairness because of unconstrained nonlin-
earities, a limitation we demonstrate for the first time. On
the other hand, shape-fair networks reside on a neuromani-
fold of low-degree. Motivated by this, we investigate neu-
romanifold regularization of KANs to enable learning of
shape-fair feature representations. The proposed method,
NeuroManifold Regularized-KANs, is a novel regulariza-
tion that addresses failure modes during the acquisition of
local and global shape cues, separately. This is done by
constraining the degree of the neuromanifolds of two jointly
trained feature extractors. Additionally, we propose a novel
Style Decorrelation Loss that promotes decorrelation of in-
termediate representations. Our experiments demonstrate
that NMR-KAN improves shape bias over baseline convo-
lutional KANs by 14.8% while also providing robustness
under image corruptions and adversarial attacks. Code is
avaliable at: http://www.github.com/kaptres/NMR-KANY/.

1. Introduction

Image shape extraction is the process of identifying struc-
tural object features —such as contours, boundaries, and
part relationships—while minimizing reliance on fine-scale
texture details that can mislead recognition systems. It
is typically modelled as a two-stage nonlinear process
[3, 26, 36, 43]. Local shape cues, such as contours and
object parts, are first extracted. These are then aggregated
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Figure 1. NMR-KAN employs two KAN feature extractors with
constrained adaptive nonlinearities at different stages. The feature
extractors lie in a lower degree neuromanifold, leading to better
shape-models due to the emphasis on learning simpler functions
in the extraction of both local and global cues.

into structured global representations. Given the domain-
invariance of object shapes, correct shape processing poten-
tially implies robustness of the networks under image-space
corruptions and adversarial attacks, and generalizability of
the networks to domains unseen during training [20, 44].
Existing image processing methods (Figure 1, top) strug-
gle to acquire shape-fair representations. High expressivity
in traditional networks enables the capture of complex fea-
tures but also leads to learning non-generalizable, dataset-
specific details [1, 21, 49]. In computer vision, this of-
ten results in texture-biased representations, where models
rely on high-frequency details rather than structural form
[3, 14, 19]. Data augmentation techniques mitigate this to
some extent, but they do not address the root cause: un-
constrained network expressivity. This leads to overly com-
plex models that fall short of robustness expectations [39].
Other approaches, such as sparsity-based methods [31], re-
quire large datasets, making them impractical in low-data
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Figure 2. Representations of cue conflict images have lower shape
spread for our NMR-KAN (left) than the traditional networks
(right). Representation mapping my UMAP [37].

scenarios where synthetic augmentation is insufficient.

Thanks to their advantage of learning nonlinearities
directly, Kolmogorov-Arnold Networks (KANs) [33] are
promising candidates for modeling nonlinear processes in
computer vision tasks [2, 22, 47, 48]. However, KANSs per-
form suboptimally in terms of shape-fairness, a limitation
we demonstrate for the first time. When unconstrained,
the adaptive nonlinearities have excessive expressivity, re-
sulting in similar issues in traditional networks (Figure 1,
middle). Furthermore, KANs do not inherently distinguish
between local and global shape processing stages, limiting
their ability to form structured representations.

Neuromanifolds provide a means to regulate network ex-
pressivity, offering several advantages for shape-fairness.
Low-degree neuromanifolds, which have lower expressive
capacity, contain shape-fair networks [45] that generalize
across minor variations. Additionally, neuromanifold reg-
ularization enables targeted control over local and global
shape processing stages, aligning network design with
human-like perception. Beyond empirical benefits, this ap-
proach also provides a principled mathematical framework
for enforcing shape-fair representations.

The power of combining KANs and neuromanifold reg-
ularization (NMR) lies in their complementary strengths.
KANSs learn what features to extract by adapting nonlin-
earities to shape-relevant information, overcoming the lim-
itations of fixed nonlinearities in CNNs. NMR controls
where these nonlinearities reside, constraining the search
space to prevent capture of texture. This, along with our
novel strategy of specializing network stages for local and
global shape cues via distinct NMR constraints, yields ro-
bust, shape-biased representations. Traditional methods
lack this targeted, hierarchical control, hindering their abil-
ity to achieve similar shape-fairness (Figure 2).

We propose NeuroManifold-Regularized KANs (NMR-
KANS) for shape-feature representation (Figure 1, bottom).
Our contributions are i) for the first time shape-fairness in
KANSs is investigated, ii) for the first time the strengths
of neuromanifolds and KANs are combined together via

a novel architectural regularization strategy (Sec. 3.1) and
a novel loss function (Sec. 3.2), iii) for the first time the
shape-fairness problem in neural networks is addressed ex-
plicitly in terms of the local and global cue extraction stages
(Sec. 3.3).

2. Related Work

Why Neuromanifolds? Neuromanifolds provide a prin-
cipled way to control network expressivity. In particular,
a low-degree neuromanifold defines a constrained function
space, where shape-fair networks reside [45], limiting ex-
pressivity to prioritize structural shape cues over texture.

A neuromanifold, distinct from the data manifold in
manifold learning, is the function space containing func-
tions a given neural network can represent [9, 24, 27, 41].
Given an architecture, f, and the set of parameters P, it is
the space M = {f, | ¢ € ®}. For a convolutional network
with polynomial nonlinearities of depth L, kernel sizes k,
stride s, layer dimensions d, and polynomial degree r, we
denote the neuromanifold by Mg k s r.

Neuromanifold degree and dimensionality govern ex-
pressivity. Higher degrees enable complex functions but
risk overfitting and thus reducing overall robustness. For-
mal definitions for polynomial CNNs are [41]:

dim(Maxs,») = k| — L+ 1, M
(L—i=1)(k;—1)
_ —_ I\ _
deg(Maxs.r) = (k| — L)! H (kj — 1)! @
0<j<L

Standard regularization techniques, such as weight de-
cay, indirectly influence expressivity by penalizing param-
eter magnitudes. In contrast, neuromanifold-based regular-
ization directly constrains the function space itself. Rather
than merely discouraging certain parameter sets, NMR pre-
vents the network from learning functions outside the neu-
romanifold, ensuring structured expressivity.

Kolmogorov-Arnold Networks KANSs [34] aim to learn
nonlinearities directly, based on the Kolmogorov-Arnold
representation theorem (KART) which states a function can
be exactly represented as a sum of single-variable functions,

2n+1

flz) = Z D, (Z ‘Pp,q(xp)> (3)

where n is the dimensionality of the input space. While
KART provides an upper bound on the computational units,
it is at the cost of finding possibly more complex functions
o and ® than the fixed nonlinearities in traditional NNs.

In [34], parameterization of the nonlinearities ®s and s
via B-splines is proposed. Similar to how fully connected
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layers, and their deeper counterparts that extend UAT, can
be conveniently written via matrix notation as

fANJO'"(AH(...O'Q(AQOj(A1I+b1)+b2)...)+bn),

treating subscripts p, g as the indices of a matrix of nonlin-
ear functions, ) the stacked model can be written as

f%\p(n)o...og(?)o\y(l)x

where U() = [gop,q(j )] Subsequent works investigated ba-
sis functions other than B-splines in order to describe the
univariate functions ¢, 4 ;. For example, in [7] wavelet ba-
sis is considered, while others proposed polynomial bases
[5, 23], or RBF basis [33].

In computer vision applications convolutional operations
are commonplace thanks to their parameter sharing and
translation equivariance properties [4]. The convolutional
KAN [6] operation, denoted *x an, can be defined with
similar motivations as

(Ixxanf)(@,y) =D Y Ulha, hy) (1@ + hayy + hy)) -
ha  hy

¢.: R—>R
ij
..... I I I ’_H
00[ “01 |02
.......... (pll(Plz
I =
..... tof il *KAN 0, [0, I
..... 120 IZI 122

r= (P”(I”) + (PIZ(IIZ) + (PZI(IZ]) + (PZZ(IZZ)

Figure 3. KANSs can be implemented as convolutions, allowing the
Convolutional KAN architectures.

Shape-fair feature representations in CNNs Human vi-
sion exhibits a strong shape bias, developed from an early
age [14, 28, 40]. This bias allows humans to recognize ob-
jects based primarily on their shape, even with variations
in texture or color. In contrast, CNNs have been shown to
exhibit a texture bias [14, 19].

Data augmentation strategies may not fully address the
underlying issue of the model’s preference for texture, and
they are not suitable in applications where real data is scarce
and synthetic data is not reliable. Despite this, they are
among the most popular strategies for mitigating shape bias.
Geirhos et al. [14] leveraged stylized images for training,
aiming to reduce the influence of texture cues, while Li et
al. used style-transferred images during training [32]. Oth-
ers explored different data augmentation strategies, includ-
ing human-like augmentations [19] and shape-based aug-
mentations [16, 30].

Beyond data augmentation, other factors have been
shown to influence shape bias in CNNs. Miiller et al.

[38] investigated the relationship between shape bias and
foreground-to-background ratio, finding that shape bias
varies systematically with it. Interestingly, the development
of adversarially robust models has also been linked to in-
creased shape bias, suggesting a potential connection be-
tween robustness and shape-based perception [10] where it
is also reported, particularly in early layers, adversarially
robust networks develop smoother convolution filters.

Recently, [31] proposed an architectural solution in-
spired by the sparse encoding of the brain. Specifically, they
reported that Top-K activations encode shape and structural
information, even when such activations are used only dur-
ing the inference stage.

3. Methodology

Our NMR-KAN (Fig. 4) is a regularization method lever-
aging neuromanifold properties and innovatively address-
ing the shape-feature representation problem. It consists of
two novel parts: Implicit neuromanifold regularization en-
hances local and global shape representations by separately
controlling the expressivity of the corresponding network
layers; the style decorrelation loss encourages the two fea-
ture extractors to explore complementary features.

3.1. Implicit neuromanifold regularization (INMR)

INMR is an architectural regularization method that con-
strains the candidate set of activation functions while sepa-
rately accounting for local and global shape feature extrac-
tion. On one hand, low-degree neuromanifolds naturally
favor shape features; on the other hand, they still need suf-
ficient expressive capacity to learn those representations. A
direct application of Eq. (2) is insufficient because it as-
sumes a uniform activation degree across all layers. This
leads to i) abrupt jumps in the neuromanifold degree due to
its exponential dependence on polynomial degree per layer,
and ii) a lack of distinction between local and global shape
extraction stages.

To address these limitations, we introduce heterogeneous
activation degrees, allowing finer control over expressivity
across layers. First, Corollary | extends Eq. (2) to networks
with layer-wise varying degrees, enabling the construction
of neuromanifolds with intermediate expressivity.

Corollary 1. The degree of the neuromanifold with polyno-
mial degrees v = (19, 71,...,7—1) IS

(L—j—1)(k;—1)

deg(Macsr) = (Ik| = L)t JT ~

0<i<L (k; — 1)

Note that although this extension is straightforward, its im-
plications are important. By allowing structured control
over expressivity, this formulation enables targeted regula-
tion of shape extraction stages, which was not possible with
uniform-degree neuromanifolds.
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Figure 4. Neuromanifold-regularized KANs (NMR-KAN) enable shape-fair feature representations through two novel components. (a)
Implicit neuromanifold regularization (INMR, Sec. 3.1): INMR, based on Corollary 1, separately handles local and global shape cue
extraction. One feature extractor uses simple activations in earlier layers to promote robust, shape-related features, while the other applies
them in later layers to prevent over-reliance on texture-like combinations. (b) Style decorrelation loss (SDL, Sec. 3.2): SDL enriches
features by disentangling the style representations of the two extractors, enhancing shape-fair representations. The two components lead to
Long-short distance effective receptive fields (Sec. 3.3): the receptive field of one branch has Gaussian spread, capturing short distance
correlations, while the other branch is non-Gaussian, accounting for long distance correlations.

Next, leveraging the hierarchical learning property of
neural networks, we associate earlier layers with local shape
extraction and later layers with global shape aggregation.
Using Corollary 1, we define a structured neuromanifold:

r, 0<7<1IL
T2, L1SJ<L

(local shape cues)
Ty =

(global shape cues)

where the transition at L reflects the shift from local to
global shape cue extraction. Keeping r; constant within
each stage stabilizes the joint optimization. Below, we ap-
ply this structure in two dedicated feature extractors.

As a final note, INMR offers a scalable implicit regular-
ization, a key advantage over the analogous implicit meth-
ods for traditional CNNSs, such as reducing the number of
neurons, which are not scalable.

Constrained Local Feature Extraction To prevent
texture-driven feature learning in early-stage processing, we
impose a lower polynomial degree, r; < 7y , in view of
Corollary (1). This ensures that local shape cues, such as
edges and contours, are extracted using smoother, lower-
complexity functions, limiting the network’s ability to cap-
ture high-frequency, texture-like patterns. Without this con-
straint, the early-stage feature extractor may overfit to fine-
grained details, reducing generalization. The increased non-
linearity in later layers compensates for this restriction, al-

lowing a more expressive encoding of global structures.

Constrained Global Feature Aggregation In contrast,
the second feature extractor follows the inverse constraint,
r1 > 79, mirroring the first branch but shifting the role of
complexity control. Here, the lower-degree nonlinearities in
deeper layers prevent the network from overfitting to com-
plex texture compositions when integrating local cues into a
global shape representation. The higher expressivity in ear-
lier layers enables richer local feature extraction, capturing
necessary variations without introducing texture bias at the
global aggregation stage. This dual-branch strategy ensures
a structured separation of local and global shape processing,
reinforcing shape-fair learning.

Summary of the advantage: NMR introduces a structured
regularization that balances Constrained Local Feature Ex-
traction, which prevents texture bias in earlier layers, and
Constrained Global Feature Aggregation, which ensures
structured shape representations in later layers. Unlike tra-
ditional implicit regularization, INMR is scalable and pro-
vides targeted control over neuromanifold degrees.

3.2. Style decorrelation loss (SDL) to enrich features

SDL aims to decorrelate the styles of intermediate represen-
tations of the two feature extractors. The two feature extrac-
tors of INMR can still extract similar features, despite be-
ing constrained to a lower degree neuromanifold and aligns
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the design of the model architecture with that of the prob-
lem, This prevents the branches from converging to similar
feature extractors, enriching the learned representations and
improving shape-fairness.

A style space is defined in [12] in terms of the Grammian
of [th layer in the network as

w_ 1 OFR0)
Gl = gy 2 o )

where NV} is the number of channels and M is the number of
spatial dimensions. Noting that the matrix is symmetric and
its diagonal corresponds to self-correlation of channels, we

l ) e . ..
define H. z(])n =G, i if 7 < j and O otherwise, and optimize
based on H matrices.

Then, SDL promotes style dissimilarity between the two
branches, as measured by the Frobenius norm:

l l
ﬁdecorr = - Z Z ||H1(j,)1 - Hz(],)QHF (5)
(2%

l

where I Z(Jl)n denotes the [ matrix from nth branch, leading

’

to the total loss
L= Etask + aﬁdecomﬁ

In practice, since the Grammian can be costly to calculate
when V; is high, SDL only uses the outputs of the layers
where the basis changes, thatis, [ = L;.

Summary of the advantage: SDL aims at feature enrich-
ment by disentangling the style representations of the two
feature-extractors.

3.3. Long-short distance effective receptive fields

The combination of INMR and SDL leads to an important
property of NMR-KAN: the effective receptive field (ERF)
[35] has Gaussian spread in one of the branches, indicat-
ing short distance correlations are leveraged; while the other
branch has a non-Gaussian distribution, accounting for long
distance correlations. This is because the design of the two
components of INMR encourages the learning of local and
global shape cues, while SDL actualizes the intent of the
design by decorrelating the styles of intermediate represen-
tations. Fig. 5, following [35], demonstrates our ERF is sig-
nificantly better for addressing local and global shape cues
thanks to the long and short distance ERFs when compared
to the ERF of a traditional CNN and a convolutional KAN
with a single feature extractor. This i) provides insight for
the increased shape-fairness of NMR-KAN and ii) the com-
plementarity of the learned features.

NMR-KAN first feature extractor

¢
Ll ]

NMR-KAN second feature extractor

KAN with Gram basis

Ist maxpool 2nd maxpool Sth maxpool

3rd maxpool 4th maxpool

Figure 5. Integrated framework yields non-Gaussian and Gaussian
effective receptive fields on the first and second features extractors
of the network, respectively. ERFs are acquired using random in-
puts and at every max pool layer.

4. Experiments and Results

4.1. Experimental Setting

Datasets. Our novel cue conflict dataset, Tiny ImageNet
[29], Tiny ImageNet-C [18], and CIFAR-10 are used. Since
downsampling the original dataset from [14] loses the tex-
ture, the new cue conflict dataset is created using 64 x 64
images from Tiny ImageNet as detailed in the Appendix.
The dataset will be made publicly available. Sample im-
ages are shown in Fig 6.

Evaluation metric. Shape bias (s) is defined as the ratio
of correct shape decisions to the total number of correct
guesses. A “correct shape decision” occurs when the model
classifies an image into the same category as its source im-
age, while a “correct guess” includes either a correct shape
or texture classification.

Models and training details. Vanilla convolutional KANs
(CKANS) are implemented using ResNet [17] and VGG-
like [42] architectures, following [11], with 3 different
bases: B-spline, Gram polynomial, and wavelet. For B-
spline, the spline order is 3 and the number of grid points is
5, for Gram polynomial basis the polynomial degree is set to
3, and for wavelet basis the mexican hat wavelets are used.
When the number of parameters is too high, bottleneck con-
volutional layers are utilized. All models are trained on Tiny
ImageNet’s training split, and reported Top-1 scores are ac-
quired on the validation split. The novel cue conflict dataset
is used only for shape bias tests, and not during training
of the models. In our implementations of NMR-KAN, the
modules up to the third pooling layer are considered as the
early stage layers so that the receptive field is large enough
to capture shape information in the later stages. For the im-
plementation of [31], the original paper is followed by ap-
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cue conflict images acquired from them. Style images are (a) spi-
der (b) orthopetra (c) garment (d) ladybug (e) barrel/chest

plying the Top-k operation after every max-pooling layer.
However, applying a sparsity of 5%, as reported in the orig-
inal work, led to poorly trained models. Instead, a spar-
sity of 50% yielded best-shape bias results over a search
with a granularity of 5%. All models are trained with cross-
entropy loss as L4k, (When applicable) loss weight oo = 1,
Adam optimizer, and cosine learning scheduling.

4.2. First demonstration of shape bias in CKANs

For the first time, we show the shape bias in CKANs in
Table 1. The evaluations indicate that Gram polynomials
achieve the highest Top-1 accuracy on Tiny ImageNet for
both ResNet and VGG architectures, with the VGG model
demonstrating the highest shape bias. This is in alignment
with our mathematical analysis suggesting the potential of
KANSs for shape fairness in the supplementary material. In
contrast, traditional CNNs, such as ResNet, exhibit better
shape bias compared to VGG. Given that VGGI11 contains
132M parameters, while ResNet18 has only 18M, this sug-
gests that CKANs may leverage neurons more efficiently.
Based on both shape bias and Top-1 accuracy scores,
VGG-Gram is adopted as the baseline architecture. Table 2
shows that the variations in degree, where all layers of the

Basis Architecture Conv. Shape bias Top-1
acc. (val)
UAT ResNet18 full 31.76 59.9
UAT ResNet18-ft full 35.79 65.4
UAT VGG11 full 28.02 48.6
UAT VGG11-ft full 28.52 61.2
Gram VGG BotNeck 42.53 57.4
B-spline VGG BotNeck 42.11 50.7
Wavelet VGG BotNeck 29.86 46.4
Gram ResNet BotNeck 25.00 55.8
Gram ResNet full 20.80 58.0
B-spline ResNet full 26.35 52.0
Wavelet ResNet full 18.18 51.8

Table 1. Shape bias and Top-1 validation accuracy for vari-
ous CKAN implementations (ResNet-18, VGG-11 with Gram, B-
spline, and Wavelet bases) and traditional CNNs. “BotNeck” in-
dicates bottleneck convolutional layers, “ft” indicates ImageNet
pre-training, included as a reference.

Shape bias and validation accuracy during training

----- vanilla-CKAN val accuracy
—— vanilla CKAN shape bias
S\ e Top-K val accuracy
0.2 —— Top-K shape bias

-+ IRAS-CKAN val accuracy
—— IRAS-CKAN shape bias

Shape bias / validation accuracy

20 40 60 80 100 120 140
Epochs

Figure 7. Shape bias and validation accuracy during training
for a VGG-like CKAN with a degree 3 Gram polynomial basis
(baseline), Top-K activations [31], and the proposed NMR-KAN.
NMR-KAN demonstrates consistently higher shape bias through-
out training while maintaining reasonable validation accuracy.

network share the same basis, do not exhibit a clear correla-
tion with the shape bias. However, both the averaged shape
bias and the Top-1 accuracy scores slightly favor the degree
3 results.

degree | 2 3 4 5 6 7
s | 415 425 418 411 419 420

Table 2. Uniformly changing activation degrees does not signifi-
cantly affect acquiring shape-fair feature representations.

4.3. NMR-KAN enables shape-fairness

Fig. 7 demonstrates that NMR-KAN improves the shape
bias to 57.3%, an improvement of 14.8% over the base-
line, demonstrating the effectiveness of our implicit regu-
larization strategy in promoting shape-fairness. It is seen
that failing to improve in the later stages. In contrast to
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vanilla CKAN which reach its peak shape-fairness during
early stages of the training, NMR-KAN reaches its peak
near the end of the training, correlating more strongly with
validation accuracy.

Interestingly, Top-K operation [31] only slightly im-
proves the shape bias of the baseline. The performance drop
observed in the Top-K operation compared with the values
reported in the original work could be due to the nature of
the method: sparsity operations might require more data to
confidently learn representations.

We have also tested DuFeNet [46], which uses additional
edge information to enhance shape bias, on our cue conflict
dataset which achieved 41.6% top-1 accuracy and 39.7%
shape bias.

While shape bias increased, the Top-1 accuracy drops
by 7.3% requiring consideration. The “strong negative cor-
relation” between accuracy and shape bias is reported sys-
tematically in [13] (Fig.4). This trade-off aligns with pre-
vious work [8], where texture-based models achieve sur-
prisingly high ImageNet accuracy. Standard CNN training
often inadvertently encourages this bias [14, 15], exploit-
ing unintended features for faster learning. Thus, impos-
ing shape-fairness might require unlearning these shortcuts,
potentially reducing accuracy while promoting reliance on
more robust shape features.

4.4. NMR-KAN strengthens adversarial defense

Table 3 compares adversarial robustness of NMR-KAN
with that of ResNet-18 and Top-K under PGD (o = 10,
e = 8/255), DeepFool (o = 20, ¢ = 8/255) and AutoAt-
tack. All models are finetuned on CIFAR-10 and tested fol-
lowing the implementation in [25]. The results demonstrate
that NMR-KAN is consistently well-performing under ad-
versarial attacks.

| ResNet-18  Top-K  Ours
PGD* 32.8% 46.4% 56.2%
DeepFool 83.0% 69.4% 79.6%
AutoAttack 23.8% 50.5% 50.7%

Table 3. NMR-KAN is consistently well-performing under adver-

1 ot o — 8 _ *
sarial attacks. =T e = & o = 10* /207 steps.

4.5. NMR-KAN improves robustness to corruptions

Table 4 presents the relative mean corruption error (mCE)
on Tiny ImageNet-C, assessing the robustness of our mod-
els under various image corruptions. Each component of
NMR-KAN progressively contributes to lowering the rel-
ative mCE. The introduction of the hybrid basis reduces
the relative error from 105.7 to 100.1, suggesting that con-
straining activation complexity enhances robustness. Fus-
ing the features from both branches further improves robust-
ness, lowering the mCE to 95.1. The complete NMR-KAN

method achieves the lowest relative mCE of 92.5, demon-
strating the effectiveness of combining the hybrid basis, fea-
ture fusion, and style decorrelation loss in enhancing re-
silience to image corruptions. The improvement in robust-
ness aligns with the observed increase in shape bias, sug-
gesting a potential correlation between shape-fairness and
resistance to corruptions.

4.6. Qualitative results

Figure 8 shows GradCAM visualizations for VGG11 (tra-
ditional CNN), VGG-Gram (CKAN), and our NMR-KAN
model’s two branches. Traditional CNNs prioritize textures,
while VGG-Gram, though somewhat sensitive to shape, re-
mains texture-sensitive. In contrast, NMR-KAN consis-
tently emphasizes object contours and edges, indicating a
stronger focus on shape.

For example, with the fish images, VGG11 focuses on
the textured tail fin, while VGG-Gram expands attention
to the body, but remains influenced by texture. NMR-
KAN highlights the fish’s outline, demonstrating a clear
preference for shape. Similarly, for the cat and bird im-
ages, NMR-KAN focuses on key shape features (ears, face,
whiskers, paws, tail, etc.) while traditional methods are
distracted by textures or background elements. These re-
sults demonstrate that NMR-KAN promotes shape-fairness
in CKANS, focusing on regions richer with shape informa-
tion.

5. Ablation studies

Table 5 presents the ablation study to dissect the individual
contributions of each component by incrementally introduc-
ing them to the baseline CKAN model, VGG11-like CKAN
architecture with Gram basis of degree 3 (c¢f. Section 4.2).
For the models with heterogeneous degrees, earlier layers
use degree 2 and later layers use degree 3 polynomials.
Hybrid basis. Introducing the hybrid bases, i.e. using
different bases in the earlier and later layers of the net-
work, already yields a noticeable improvement in shape
bias (+5.1%), albeit with a slight drop in Top-1 accuracy
(-3.8%). This suggests that constraining the activation
search space, even without fusing features from two differ-
ent branches or style decorrelation, encourages the network
to prioritize more robust shape-related features. The accu-
racy drop likely reflects the reduced expressivity of the con-
strained branch, as a result of which, the ability to capture
fine-grained details, which can benefit classification perfor-
mance on the in-distribution data, are limited.

Fused features. Fusing the features from the two branches
results in the most significant increase in shape bias (+6.0%)
but also the largest decrease in accuracy (-4.4%). The fused
features provide a richer representation of shape, however,
this might be leading to leveraging textural cues.
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Models rel. mCE Blur Noise Weather Digital

Zoom Defocus Motion Glass|Shot Impulse Gauss|Fog Frost Snow Brightness|Pixel Elastic JPEG Contrast
VGG-Gram 1057 |108.9 1052 1082 1059|74.6 77.5 843 [96.5 70.6 74.2 1857 | 858 147.0 139.6 1220
+ hybrid basis 100.1 | 97.8  95.0 96.8 97.1 705 732 78.1 |92.7 69.7 72.7 1859 |83.1 139.6 1353 1147
+ fused features 95.1 96.7  93.0 963 919|649 68.7 72.1 |83.3 664 64.7 1839 |81.0 1353 1323 1023
Top-K [31] 969 |100.4 94.2 96.0 945|635 68.8 71.6 |88.9 72.6 69.1 2014 824 137.0 1289 84.8
NMR-KAN (ours)| 92.5 93.7 89.7 92.6 923|654 67.8 729 |82.8 63.1 654 1689 |77.5 129.3 123.2 103.4

Table 4. Relative mean corruption error (mCE) on Tiny ImageNet-C for the baseline VGG-Gram CKAN, incremental components of NMR-KAN, the Top-K method [31], and
the full NMR-KAN. Lower rel. mCE indicates better robustness to image corruptions. Best results are in bold.

original VGGI11 VGG-Gram

NMR-KAN branch 1 NMR-KAN branch 2

original VGG11 VGG-Gram NMR-KAN branch 1 NMR-KAN branch 2

Figure 8. Grad-CAM results comparing VGG11 (traditional), VGG-Gram (degree 3), and the two branches of the proposed NMR-KAN model. For the fish examples, VGG11
primarily focuses on the tail, while VGG-Gram highlights the fin and the overall object, including the textured interior. In contrast, NMR-KAN exhibits attention primarily around
the object’s edges, with the two branches offering mostly complementary information. In the cat example, VGG11 emphasizes the face, texture around the neck, and rear limbs,
while VGG-Gram attends to characteristic shape features, such as the ears and eyes, along with textured regions such as the top of the head. NMR-KAN, on the other hand,
focuses more on distinct features, including the ears, face, whiskers, paws, and rear limbs, with the two branches again offering complementary attention. For the bird example,
VGG11 attends to the background, whereas the other models focus on similar regions of the bird itself.

Shape bias Top-1
acc. (val)
baseline 42.5 574
+ hybrid basis 47.6 53.6
+ fused features 53.6 49.2
+ style decorr. (NMR-KAN) 57.3 50.1

Table 5. Contribution of each component of NMR-KAN towards
shape bias.

Style decorrelation. SDL further boosts the shape bias
(+3.7%) with a small recovery in accuracy (+0.9%), sug-
gesting that encouraging stylistic diversity between the two
branches prevents them from collapsing into similar fea-
ture extractors. The improvement in accuracy indicates that
SDL might help capture complementary information.

5.1. Robustness under hyperparameters

In Fig. 9 we report the shape biases for differing degrees
for hybrid bases, each averaged over 3 separately trained
models. In the figure, degrees denoted as (n,m) refers to
a model with a basis of degree n in the early layers, and
degree m in the later layers.

All evaluated models exhibit a higher shape bias than
the baseline model, with the lowest being the (7,3)-model
at 42.9% while the (2,3) and (3,2) models form the best
symmetric pair (47.65% shape bias). Notably, the general
trend suggests the increase in the total degree leads to a de-
crease in shape bias. With a higher total degree, the models
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S0 Shape bias versus differing degrees in early and late layers
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0
(23) (24) (25 (27) (35 (3,7) (53) (7.3) (7,2) (52) (42) (3,2)
Degrees (early layers / late layers)

Figure 9. The choice of the heterogeneous degrees of a single
KAN feature extractor consistently demonstrates higher shape-
fairness, though the lower degree ones yields the better results.

have more parameters and greater capacity, thus, potentially
relying more on texture-related features.

6. Conclusions

Our work and the newly proposed NMR-KAN contributes
i) the first time investigation of shape-fairness in KANs, ii)
leveraging the neuromanifold and KAN in a unified frame-
work for the first time, and iii) for the first time, explicitly
addressing the shape-fairness problem in terms of local and
global cue extraction stages. The results demonstrate that
NMR-KAN improves shape bias over baseline CKANs by
14.8% while also providing robustness under image corrup-
tions and adversarial attacks.
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