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Abstract

Machine learning classication models trained with empir-
ical risk minimization (ERM) often inadvertently rely on
spurious correlations. When absent in the test data, these
unintended associations between non-target attributes and
target labels lead to poor generalization. This paper ad-
dresses this problem from a model optimization perspec-
tive and proposes a novel method, Gradient Extrapolation
for Debiased Representation Learning (GERNE), designed
to learn debiased representations in both known and un-
known attribute training cases. GERNE uses two distinct
batches with different amounts of spurious correlations and
denes the target gradient as a linear extrapolation of the
gradients computed from each batch’s loss. Our analy-
sis shows that when the extrapolated gradient points to-
ward the batch gradient with fewer spurious correlations,
it effectively guides training toward learning a debiased
model. GERNE serves as a general framework for de-
biasing, encompassing ERM and Resampling methods as
special cases. We derive the theoretical upper and lower
bounds of the extrapolation factor employed by GERNE.
By tuning this factor, GERNE can adapt to maximize ei-
ther Group-Balanced Accuracy (GBA) or Worst-Group Ac-
curacy (WGA). We validate GERNE on ve vision and one
NLP benchmarks, demonstrating competitive and often su-
perior performance compared to state-of-the-art baselines.
The project page is available at: https://gerne-
debias.github.io/.

1. Introduction
Deep learning models have demonstrated significant suc-
cess in various classification tasks, but their performance is
often compromised by datasets containing prevalent spuri-
ous correlations in the majority of samples [13, 18, 29, 52].
Spurious correlations refer to unintended associations be-
tween easy-to-learn, non-target attributes and target labels.
These correlations often cause models trained with Empir-
ical Risk Minimization (ERM) [45] to rely on these corre-
lations instead of the true, intrinsic features of the classes

[10, 12, 40]. This occurs because the ERM objective op-
timizes for the average performance [45], thereby biasing
the model toward the easy-to-learn features that are predic-
tive for the majority of training samples. As a result, ERM-
trained models often exhibit poor generalization when these
spurious features are absent in the test data. For instance, in
the Waterbirds classification task [46], where the goal is to
classify a bird as either a waterbird or a landbird, the major-
ity of waterbirds are associated with water backgrounds. In
contrast, the majority of landbirds are associated with land
backgrounds. A model trained with ERM might learn to
classify the birds based on the background—water for wa-
terbirds and land for landbirds—rather than focusing on the
birds’ intrinsic characteristics. This reliance on the spurious
feature allows the model to perform well on the majority
of training samples, where these correlations hold, but fails
to generalize to test samples where these correlations are
absent (e.g., waterbirds on land). Examples of Waterbirds
images shown in Fig. 1a. Avoiding spurious correlations is
crucial across various applications, including medical imag-
ing [25, 37], finance [11], and climate modeling [17].

This pervasive challenge has spurred extensive research
into strategies for mitigating the negative effects of spurious
correlations, particularly under varying levels of attribute
information availability. The authors of [50] provide a
comprehensive review of the methods and research direc-
tions aimed at addressing this issue. In an ideal scenario,
where attribute information is available in both the training
and validation sets, methods can leverage this information
to counteract spurious correlations [16, 39, 48]. When at-
tribute information is available only in the validation set,
methods either incorporate this set into the training process
[18, 32, 42] or restrict its use to model selection and hy-
perparameter tuning [27–29, 31, 35]. Despite these efforts,
existing methods still struggle to fully avoid learning spu-
rious correlations, especially when the number of samples
without spurious correlations is very limited in the training
dataset, leading to poor generalization on the test data where
these correlations are absent.

In this paper, we adopt a different research approach,
seeking to address the issue of spurious correlations from
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a model optimization perspective. We propose a novel
method, Gradient Extrapolation for Debiased Representa-
tion Learning (GERNE), to avoid reliance on spurious fea-
tures and learn debiased representations. The core idea is to
sample two types of batches with varying amounts of spu-
rious correlations (Fig. 1b) and compute the two losses on
these two batches. We assume that the difference between
the gradients of these losses captures a debiasing direction.
Therefore, we define our target gradient as the linear ex-
trapolation of these two gradients toward the gradient of the
batch with fewer amount of spurious correlations (Fig. 1c).
The contributions of this paper can be summarized as fol-
lows:
• We propose GERNE as a general framework for debias-
ing, with methods such as ERM and Resampling being
shown as special cases.

• We derive the theoretical upper and lower bounds of the
extrapolation factor and establish a direct connection be-
tween the extrapolation factor and the risk for the worst-
case group. We show that tuning this factor within these
bounds enables GERNE to adaptively optimize for either
Group-Balanced Accuracy or Worst-Group Accuracy.

• We validate our approach on six benchmarks spanning
both vision and NLP tasks, under both known and un-
known attribute cases, demonstrating competitive and
often superior performance compared to state-of-the-art
methods—particularly in scenarios where samples with-
out spurious correlations are scarce.

2. Related Work
Debiasing according to attribute annotations availabil-
ity. Numerous studies have leveraged attribute annota-
tions to mitigate spurious correlations and learning debiased
representation [3, 39, 51, 53, 55]. For instance, Group DRO
[39] optimizes model performance on the worst-case group
by directly minimizing worst-group loss during training.
While effective, such methods rely on complete attribute an-
notations, which are often costly and labor-intensive to ob-
tain. Consequently, recent works have explored approaches
that reduce reliance on full annotations by using limited at-
tribute information [18, 32, 42]. For example, DFR [18]
enhances robustness by using a small, group-balanced val-
idation set with attribute information to retrain the final
layer of a pre-trained model. In cases where attribute in-
formation is only available for model selection and hyper-
parameter tuning [6, 16, 28, 31, 54], an initial or auxil-
iary ERM-trained model is often used to infer the attributes
by partitioning the training data into majority and minority
groups. Samples on which the model incurs relatively low
loss (i.e., high-confidence predictions) are treated as “easy”
examples—where spurious correlations are likely to hold—
and these examples form the majority group. Conversely,
high-loss samples are considered “hard” examples, and typ-

ically form the minority group where such correlations may
not apply [49]. This process effectively creates “easy” and
“hard” pseudo-attributes within each class, allowing debias-
ing methods that traditionally rely on attribute information
to be applied. For example, JTT [28] first trains a stan-
dard ERM model and then trains a second model by up-
weighting the misclassified training examples detected by
the first model. Finally, a more realistic and challenging
scenario arises when attribute information is entirely un-
available [4, 43]—not accessible for training, model selec-
tion, or hyperparameter tuning—requiring models to gener-
alize without explicit guidance on non-causal features [50].

Debiasing via balancing techniques. A prominent fam-
ily of solutions to mitigate spurious correlations across
the aforementioned scenarios of annotation availability in-
volves data balancing techniques [7, 16, 19, 21, 36, 40, 47].
These methods are valued for their simplicity and adaptabil-
ity, as they are typically faster to train and do not require
additional hyperparameters. Resampling underrepresented
groups to ensure a more balanced distribution of samples
[16, 19] or modifying the loss function to adjust for imbal-
ances [38] are common examples of these techniques. We
demonstrate in Sec. 5.3 that although the balancing tech-
niques are effective, their performance is constrained in the
presence of spurious correlations. In contrast, our proposed
debiasing approach mitigates the negative effects of spuri-
ous correlations by guiding the learning process in a debi-
asing direction, proving to be more effective.

3. Problem Setup
We consider a standard multi-class classification problem
with K classes and A attributes. Each input sample xi ∈
X = {xj | j = 1, . . . , N} is associated with a class la-
bel yi ∈ Y = {1, . . . ,K} and an attribute ai ∈ A =
{1, . . . , A}, where N is the total number of samples in the
dataset. We define a group Xy,a for (y, a) ∈ G = Y × A
as the set of input samples xi with class label y and at-
tribute a, resulting in |G| = K · A groups. For each class
y, we denote by Xy =


a∈A Xy,a the set of all samples

with label y. We assume all groups are non-empty, i.e.,
∀(y, a) ∈ G,Xy,a ̸= ∅, and denote the cardinality of any
group Xm by |Xm|.

Our goal is to learn the intrinsic features that define
the labels, rather than spurious features present in a biased
dataset, where spurious correlations are prevalent. This
would ensure robust generalization when spurious correla-
tions are absent in the test distribution. Following [39],
we aim to learn a function parameterized by a neural net-
work f∗ : X → RK to minimize the risk for the worst-case
group:

f∗ = argmin
f

max
g∈G

Ex∼p(x|(y,a)=g) [ℓ(y, f(x))] , (1)
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(a) (b) (c)

Figure 1. (a): Sample images from the waterbirds classification task. Most landbird images appear with land backgrounds (i.e., y = 1, a =
1), while most waterbird images appear with water backgrounds (i.e., y = 2, a = 2). This correlation between bird class and background
introduces spurious correlations in the dataset. (b): Visualization of batch construction. Bb refers to a biased batch where the majority
of images from class y = 1 (top row) have attribute a = 1 (yellow), and the majority of images from class y = 2 (bottom row) have
attribute a = 2 (light-blue). Blb represents a less biased batch, with a more balanced attribute distribution within each class, controlled
by c (here c = 1

2
). Brs depicts a batch with group-balanced distribution and refers to the batch used in the Resampling method [16].

Bext simulates GERNE’s batch with c · (β + 1) > 1, where the dataset’s minority groups appear as majorities in the batch. (c): A
simplified 2D representation of gradient extrapolation where θ  R2. θLb is the gradient computed on Bb; training with this gradient
is equivalent to training with ERM objective. θLlb represents the gradient computed on Blb. θLrs is the gradient computed on Brs,
which is equivalent, in expectation, to an extrapolated gradient with c · (β+1) = 1. Finally,θLext is our extrapolated gradient, with the
extrapolation factor β modulating the degree of debiasing based on the strength of spurious correlations present in the dataset.

where ℓ(y, f(x)) → R is the loss function.

4. The Proposed Method: GERNE

We build GERNE with the goal of mitigating the impact of
spurious correlations. The core idea of GERNE is to sample
two batches with different amounts of spurious correlations,
hereafter named the biased batch Bb and the less biased
batch Blb (Fig. 1b). Let Lb,Llb be the losses calculated
on Bb and Blb, respectively. We assume that extrapolating
the gradients of these two losses towards the gradient of Llb

guides the model toward debiasing as illustrated in Fig. 1c.
We first present GERNE for training with known attributes
and then generalize GERNE to the unknown attribute case.

4.1. GERNE for the Known Attributes Case
In the following, we denote by p(y, a) the joint distribution
of class label y and attribute a in a sampled batch. During
training, we construct two types of batches with different
conditional attribute distributions p(a|y): the biased and the
less biased batches. Our method defines the target loss as a
linear extrapolation between the losses computed on these
two batches. A simplified illustration is shown in Fig. 1.
Finally, we derive the link between the extrapolation factor
and the risk for the worst-case group in Eq. (1), and theo-
retically define the upper and lower bounds of this factor.

4.1.1. Sampling the biased and the less biased batches
The biased batch and the less biased batches are sampled to
satisfy the following two conditions:

1. Uniform sampling from classes, i.e., ∀y ∈ Y , p(y) = 1
K .

2. Uniform sampling from groups, i.e., ∀(y, a) ∈
G, p(x|y, a) = 1

|Xy,a| for x ∈ Xy,a.
The biased batch (Bb) is sampled with a conditional at-

tribute distribution pb(a|y) within each class y to reflect the
inherent bias present in the dataset. Specifically, pb(a|y) =
αya, where:

αya =
|Xy,a|
|Xy|

. (2)

Note that to sample a biased batch, no access to the at-
tributes is required, and uniformly sampling from Xy for
each label y satisfies Eq. (2). The less biased batch (Blb)
is sampled with a conditional attribute distribution, denoted
as plb(a|y), which satisfies the following: ∀(y, a) ∈ G:

min(
1

A
, pb(a|y)) ≤ plb(a|y) ≤ max(

1

A
, pb(a|y)). (3)

That is, Blb exhibits a more balanced group distribution
than Bb, and Llb quantifies the loss when spurious corre-
lations are reduced in the sampled batch. Choosing

plb(a|y) = (1−c)·pb(a|y)+c· 1
A

= αya+c·( 1
A
−αya) (4)

satisfies the inequality in Eq. (3), where c ∈ (0, 1] is a hy-
perparameter that controls the degree of bias reduction. An
example of the two types of batches is presented in Fig. 1b.

4.1.2. Gradient extrapolation
We define our target loss Lext as follows:

Lext = Llb + β · (Llb − Lb), (5)
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where β is a hyperparameter, and the loss form given the
joint distribution p(x, y, a) is defined as:

L = E(x,y,a)∼p(x,y,a) [ℓ(y, f(x))] . (6)

Given the set of parameters θ of our model f , the gradient
of Lext with respect to θ can be derived from Eq. (5):

∇θLext = ∇θLlb + β · (∇θLlb −∇θLb) . (7)

Our target gradient vector ∇θLext in Eq. (7) is a linear ex-
trapolation of the two gradient vectors ∇θLlb and ∇θLb,
and accordingly, we refer to β as the extrapolation fac-
tor. Because the less biased batch has a less skewed con-
ditional attribute distribution compared to the biased batch
(as shown in Eq. (3)), extrapolating their gradients and to-
ward the less biased gradient forms a new gradient (Lext)
that leads to learning even more debiased representation for
some values of the extrapolation factor β > 0. A visual
representation of extrapolation is shown in Fig. 1c.

4.1.3. GERNE as a general framework for debiasing
Minimizing our target loss Lext simulates minimizing the
loss of class-balanced batches with the following condi-
tional distribution of (y, a) ∈ G :

pext(a|y) = αya + c · (β + 1) ·

1

A
− αya


. (8)

We provide the full proof in Appendix A.
Based on Eq. (8), we can establish the link between

GERNE and other methods for different values of β, c:
- For β = −1, Lext = Lb and GERNE is equivalent to
class-balanced ERM method.

- For c = 1 and β = 0, pext(a|y) = 1
A , and GERNE

matches Resampling [16], which samples equally from
all groups (Brs in Fig. 1b, with gradient of the loss com-
puted on it denoted as ∇θLrs in Fig. 1c).

- For c · (β + 1) = 1, we also have pext(a|y) = 1
A , and

Lext is, in expectation, equivalent to Lrs. However, their
loss variances differ. In fact, GERNE permits controlling
the variance of its loss through its hyperparameters (c, β),
which may help escape sharp minima [1] and improve
generalization [23]. The derivation of the variance of
GERNE’s loss is detailed in Appendix B.

- For c · (β + 1) > 1, pext(a|y) > 1
A if αya < 1

A (also
pext(a|y) < 1

A if αya > 1
A ). In this case, GERNE sim-

ulates batches where the underrepresented groups (i.e.,
those with αya < 1

A ) are oversampled.

4.1.4. Upper and lower bounds of β
Having pext(a|y) in Eq. (8) within [0, 1], β should satisfy:

max
(y,a)∈G
αya ̸= 1

A

min(i1ya, i
2
ya) ≤ β ≤ min

(y,a)∈G
αya ̸= 1

A

max(i1ya, i
2
ya), (9)

where: i1ya = − αya

c·( 1
A−αya)

− 1, i2ya =
1−αya

c·( 1
A−αya)

− 1.
These bounds are used when tuning β. In Appendix C, we
simplify these bounds to [βmin,βmax] = [−1, i1y′′a′′ ], where
(y′′, a′′) = argmax(y,a)∈G αya. Note that β doesn’t affect
pext(a|y) for αya = 1

A according to Eq. (8).

4.1.5. Tuning β to minimize the risk for worst-case group
Eq. (5) can be rewritten as follows (detailed in Appendix A):

Lext =
1

K
·



g=(y,a)∈G
pext(a|y)(β) · Lg, (10)

where
Lg = Ex∼p(x|(y,a)=g) [ℓ(y, f(x))] . (11)

In the presence of spurious correlations, minority or less-
represented groups often experience higher risks, primarily
due to the model’s limited exposure to these groups during
training [20]. Taking this into consideration, we define g′ =
(y′, a′) = argmin(y,a)∈G αya. Since Lg′ is weighted by
pext(a

′|y′), increasing β beyond 1
c −1 assigns more weight

to Lg′ in Eq. (10) than any other group loss (all groups’
losses are equally weighted when c · (β + 1) = 1). This
increase in β encourages the model to prioritize reducing
the loss of the underrepresented group g′ during training,
therefore minimizing the risk for the worst-case group.

We outline the detailed steps of our approach for the
known attribute case in Algorithm 1.

Algorithm 1 GERNE for the known attribute case
Input: Xy,a ⊆ X for y ∈ Y and a ∈ A, f with initial
θ = θ0, # epochs E, batch size per label B, # classes K,
# attributes A, learning rate η.
1: Choose c ∈ (0, 1] and β ∈ [βmin,βmax] via grid search.
2: for epoch = 1 to E do
3: Biased Batch Bb = ∅, Less Biased Batch Blb = ∅
4: for (y, a) ∈ G do
5: Sample a mini-batch By,a

b = {(x, y)} ⊆ Xy,a

of size αy,a ·B;
6: Bb = Bb ∪By,a

b

7: Sample a mini-batch By,a
lb = {(x, y)} ⊆ Xy,a

of size ((1− c) · αy,a +
c
A ) ·B

8: Blb = Blb ∪By,a
lb

9: end for
10: Compute Lb,Llb on Bb, Blb, respectively. Then,

compute ∇θLb and ∇θLlb.
11: Compute ∇θLext using Eq. (7).
12: Update parameters (SGD): θ ← θ − η ·∇θLext

13: end for

4.2. GERNE for the Unknown Attributes Case
If the attributes are unavailable during training, it is not pos-
sible to directly sample less biased batches. To address this,
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we follow the previous work [28, 31, 54] by training a
standard ERM model f̃ and using its predictions to create
pseudo-attributes ã. Since f̃ is trained on biased batches,
it tends to rely on spurious correlations, resulting in bi-
ased predictions. Leveraging these predictions, we classify
samples into easy—those with high-confidence predictions,
where the spurious correlations likely hold— and hard —
those with low-confidence predictions, where the spurious
correlations may not hold. After training f̃ , we select a
threshold t ∈ (0, 1) and construct pseudo-attributes based
on model predictions as follows: For each class y, we com-
pute the predictions ỹi = p(y|xi) = softmax(f̃(xi))y for
each xi ∈ Xy . We then split them into two non-empty sub-
sets: The first subset contains the smallest ⌊t · |Xy|⌋ values,
and the corresponding samples form the group Xy,ã=1. The
remaining samples forms the group Xy,ã=2. This process
ensures that each setXy is divided into two disjoint and non-
empty groups. Consequently, the pseudo-attribute space
consists of two values, denoted as Ã = {1, 2} (i.e., Ã = 2)
with G̃ = Y × Ã replacing G in the unknown attribute case.
t is a hyperparameter, and we outline the detailed steps of
GERNE for the unknown case in Appendix D.

4.2.1. Tuning β to control the unknown conditional dis-
tribution of an attribute a in class y

After creating the pseudo-attributes and defining the
pseudo-groups, we consider forming a new batch of size B
by uniformly sampling γ · B examples from group Xy,ã=1

and (1 − γ) · B examples from group Xy,ã=2, where γ ∈
[0, 1], γ · B ∈ N. The resulting conditional distribution of
an attribute a given y in the constructed batch is:

pB(a|y) =


ã∈Ã

pB(ã|y) · p(a|ã, y). (12)

Because the max/min value of a linear program must occur
at a vertex, we have for p(a|ã, y) = pã,y(a):

∀γ ∈ [0, 1],min
ã∈Ã

pã,y(a) ≤ pB(a|y) ≤ max
ã∈Ã

pã,y(a). (13)

This means that if: maxã pã,y(a) <
1
A (minã pã,y(a) >

1
A ),

then there is no value for γ can yield a batch with pB(a|y) >
1
A (pB(a|y) < 1

A ) via sampling from the pseudo-groups.

Proposition 1. In case of unknown attributes, GERNE
can simulate creating batches with more controllable
conditional attribute distribution (i.e., pB(a|y) >
maxã∈Ã pã,y(a) or pB(a|y) < minã∈Ã pã,y(a)). We
provide the proof of this proposition in Appendix E.

5. Experiments
To evaluate the general applicability of GERNE, we as-
sess its performance across five computer vision and one

natural language processing benchmarks: Colored MNIST
(C-MNIST) [3, 27], Corrupted CIFAR-10 (C-CIFAR-
10) [15, 31], Biased FFHQ (bFFHQ) [22, 27], Waterbird
[46], CelebA [30], and CivilComments [5]. We categorize
these datasets into two groups: Datasets-1 and Datasets-
2. Datasets-1 comprises the first three datasets mentioned
above and is used to evaluate GERNE’s performance with-
out data augmentation. Datasets-2 consists of the remaining
three datasets, for which we follow the experimental setup
described in [50] to ensure a fair comparison.

5.1. Experiments on Datasets-1
Datasets. C-MNIST is an extension of the MNIST dataset
[26] where each digit class is predominantly associated with
a specific color. This introduces a spurious correlation
between the digit label (target) and color (attribute). C-
CIFAR-10 modifies CIFAR-10 by applying specific texture
patterns to each object class [15], making texture a spurious
feature. Both C-MNIST and C-CIFAR-10 include versions
with varying degrees of spurious correlation, reflected by
the minority group ratios of 0.5%, 1%, 2%, and 5% in the
training and validation sets. The bFFHQ dataset comprises
human face images, with “age” and “gender” as the target
and spurious attributes, respectively. The majority of fe-
male faces are young, while the majority of males are old.
The minority group ratio in the training set is 0.5%.

Evaluation metrics. We follow the evaluation protocols
of prior work [27, 29, 31]. For C-MNIST and C-CIFAR-10,
we report Group-Balanced Accuracy (GBA) on the test set.
For bFFHQ, we evaluate performance based on the accu-
racy of the minority group.

Baselines. For the known attribute case, we compare
GERNE with Group DRO [39] and Resampling [16]. For
the unknown attribute case, we consider ERM [45], JTT
[28], LfF [31], DFA [27], LC [29], and DeNetDM [44].

Implementation details. We adopt the same model archi-
tectures as the baselines and use SGD optimizer across all
three datasets. More details are provided in Appendix F.1.

Results. Tab. 1 compares GERNE with baselines for both
known and unknown attribute cases. All baseline results
are adopted from [29], except DeNetDM, which is sourced
from [44]. When the attributes are known, GERNE outper-
forms Group DRO by a significant margin on C-MNIST and
C-CIFAR-10 datasets. The improvement in performance
ranges from about 5% on C-CIFAR-10 with 5% of minor-
ity group and up to 16% on C-MNIST with 1% of minor-
ity group. Furthermore, GERNE outperforms Resampling
[16] by over 13% on bFFHQ and consistently surpasses it
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Table 1. Performance comparison of GERNE and baselines on the C-MNIST, C-CIFAR-10, and bFFHQ datasets. We report GBA (%)
with standard deviation over three trials for C-MNIST and C-CIFAR-10 across varying minority ratios, and minority group accuracy (%)
for bFFHQ. DeNetDM results are from [44], and Resampling results are generated using GERNE with c = 1, β = 0. All other results are
from [29]. ✓× indicate known/unknown training attributes. The best results are marked in bold, and the second-best are underlined.

Methods
Group C-MNIST C-CIFAR-10

bFFHQ
Info 0.5 1 2 5 0.5 1 2 5

Group DRO ✓ 63.12 68.78 76.30 84.20 33.44 38.30 45.81 57.32 -
Resampling ✓ 77.68 ±0.89 84.36 ±0.21 88.15 ±0.11 91.98 ±0.08 45.10 ±0.60 50.08 ±0.42 54.85 ±0.30 62.16 ±0.05 72.13 ±0.90
GERNE (ours) ✓ 77.79 ±0.90 84.47 ±0.37 88.30 ±0.20 92.16 ±0.10 45.34 ±0.60 50.84 ±0.17 55.51 ±0.10 62.40 ±0.27 85.20 ±0.86

ERM × 35.19 ±3.49 52.09 ± 2.88 65.86 ± 3.59 82.17 ± 0.74 23.08 ± 1.25 28.52 ± 0.33 30.06 ± 0.71 39.42 ± 0.64 56.70 ± 2.70
JTT × 53.03 ± 3.89 62.90 ± 3.01 74.23 ± 3.21 84.03 ± 1.10 24.73 ± 0.60 26.90 ± 0.31 33.40 ± 1.06 42.20 ± 0.31 65.30 ± 2.50
LfF × 52.50 ± 2.43 61.89 ± 4.97 71.03 ± 1.14 84.79 ± 1.09 28.57 ± 1.30 33.07 ± 0.77 39.91 ± 1.30 50.27 ± 1.56 62.20 ± 1.60
DFA × 65.22 ± 4.41 81.73 ± 2.34 84.79 ± 0.95 89.66 ± 1.09 29.75 ± 0.71 36.49 ± 1.79 41.78 ± 2.29 51.13 ± 1.28 63.90 ± 0.30
LC × 71.25 ± 3.17 82.25 ± 2.11 86.21 ± 1.02 91.16 ± 0.97 34.56 ± 0.69 37.34 ± 1.26 47.81 ± 2.00 54.55 ± 1.26 69.67 ± 1.40
DeNetDM × - - - - 38.93 ± 1.16 44.20 ± 0.77 47.35 ± 0.70 56.30 ± 0.42 75.70 ± 2.80
GERNE (ours) × 77.25 ± 0.17 83.98 ± 0.26 87.41 ± 0.31 90.98 ± 0.13 39.90± 0.48 45.60± 0.23 50.19± 0.18 56.53 ± 0.32 76.80 ± 1.21

across all other ratios. Our explanation behind GERNE su-
perior performance over Resampling is that latter tends to
present the majority and minority groups equally in the sam-
pled batches during training, and the model f tends to pri-
oritize learning the easy-to-learn spurious features associ-
ated with the majority group (e.g., the colors in C-MNIST),
leading to learning biased representation and poorer gen-
eralization. In contrast, GERNE undermines learning the
spurious features by directing the learning process more in
the debiasing direction, thanks to the extrapolation factor.
For the unknown attribute case, GERNE outperforms all
baselines, except on C-MNIST with 5% of minority group
(ranks second), while maintaining a lower standard devia-
tion. At this 5% minority ratio, LC achieves slightly higher
accuracy—likely benefiting from its use of data augmenta-
tion to increase the diversity of the samples in the minority
group. We exclude DeNetDM’s results on C-MNIST, as the
authors use a different version of this dataset.

5.2. Experiments on Datasets-2
Datasets. Waterbirds [46] contains bird images with spu-
rious correlations between bird type and background: Most
waterbirds appear with water backgrounds, while most
landbirds appear with land backgrounds. CelebA [30] in-
volves classifying hair color (blond, non-blond), with gen-
der (male, female) as the spurious attribute: Most blond im-
ages depict females. CivilComments [5] is a binary toxic
comment classification dataset, where the spurious attribute
marks references to eight different demographic identities
(male, female, LGBTQ, Christian, Muslim, other religions,
Black, and White).

Evaluation metrics. We follow the same evaluation strat-
egy from [50] for model selection and hyperparameter tun-
ing. When attributes are known in both training and vali-
dation, we use the worst-group test accuracy as the evalu-
ation metric. When attributes are unknown in training, but

known in validation, we use the worst-group validation ac-
curacy. When attributes are unavailable in both, we use the
worst-class validation accuracy.

Baselines. For each dataset, we select the best three meth-
ods reported in [50]. We end up with ERM [45], Group
DRO [39], DFR [18], LISA [51], ReSample [19], Mixup
[53], ReWeightCRT [21], ReWeight [19], CBLoss [7],
BSoftmax [36] and SqrtReWeight [50]. We also report the
results for CnC [54] as it adopts similar training settings.

Implementation details. We employ the same data aug-
mentation techniques, optimizers and pretrained models de-
scribed in [50]. Further details are in Appendix F.2.

Results Tab. 2 shows the worst-group accuracy (WGA)
of the test set for GERNE compared to the baseline meth-
ods under the evaluation strategy explained above. In the
known attributes case, GERNE achieves the highest accu-
racy on CelebA and CivilComments, and ranks second on
Waterbirds, following DFR. In case of unknown attributes
in the training set but known in validation, our approach
again attains the best results on Waterbirds and CivilCom-
ments datasets and remains competitive on CelebA, closely
following the top two baselines’ results. In particular,
DFR uses the validation set to train the model, whereas
GERNE employs it only for model selection and hyperpa-
rameter tuning. We include a comparison between DFR and
GERNE when using the validation set for training in Ap-
pendix G. When attributes are unknown in both the train-
ing and validation sets, GERNE achieves the best results on
Waterbirds and CelebA. However, we observe a significant
drop in accuracy on CelebA compared to the second case
(known attributes only in validation), while this drop is less
pronounced on Waterbirds. The difference can be attributed
to the use of worst-class accuracy as the evaluation metric.
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In CelebA’s validation set, the majority of blond hair images
exhibit spurious correlations (female images), leading the
model selection process to favor the majority group while
disregarding the minority group. In contrast, the validation
set in Waterbirds is group-balanced within each class, lead-
ing to only a slight decrease in performance between the
second and third case. This highlights the critical role of
having access to the attributes in the validation set —or at
least a group-balanced validation set— for model selection
when using GERNE.

Table 2. Performance comparison of GERNE and baseline meth-
ods on Waterbirds, CelebA, and CivilComments. We report the
worst-group test accuracy (%) and standard deviation over three
trials for each dataset. Baseline results are sourced from [50] as
the same experimental settings are adopted. ✓✓ denotes known
attributes in training and validation sets. ×✓ indicates attributes
are known only in the validation set, while ×× signifies that at-
tributes are unknown in both sets. Best results are highlighted in
bold, and the second-best are underlined.

Methods
Group Info

Waterbirds CelebA Civil-
train/val attr. Comments

ERM ✓/✓ 69.10 ± 4.70 62.60 ± 1.50 63.70 ± 1.50
Group DRO ✓/✓ 78.60 ± 1.00 89.00 ± 0.70 70.60 ± 1.20
ReWeight ✓/✓ 86.90 ± 0.70 89.70 ± 0.20 65.30 ± 2.50
ReSample ✓/✓ 77.70 ± 1.20 87.40 ± 0.80 73.30 ± 0.50
CBLoss ✓/✓ 86.20 ± 0.30 89.40 ± 0.70 73.30 ± 0.20
DFR ✓/✓ 91.00 ± 0.30 90.40 ± 0.10 69.60 ± 0.20
LISA ✓/✓ 88.70 ± 0.60 86.50 ± 1.20 73.70 ± 0.30
GERNE (ours) ✓/✓ 90.20 ± 0.22 91.98 ± 0.15 74.65 ± 0.20

ERM ×/✓ 69.10 ± 4.70 57.60 ± 0.80 63.20 ± 1.20
Group DRO ×/✓ 73.10 ± 0.40 78.50 ± 1.10 69.50 ± 0.70
ReWeight ×/✓ 72.50 ± 0.30 81.50 ± 0.90 69.90 ± 0.60
DFR ×/✓ 89.00 ± 0.20 86.30 ± 0.30 63.90 ± 0.30
Mixup ×/✓ 78.20 ± 0.40 57.80 ± 0.80 66.10 ± 1.30
LISA ×/✓ 78.20 ± 0.40 57.80 ± 0.80 66.10 ± 1.30
BSoftmax ×/✓ 74.10 ± 0.90 83.30 ± 0.30 69.40 ± 1.20
ReSample ×/✓ 70.00 ± 1.00 82.20 ± 1.20 68.20 ± 0.70
CnC ×/✓ 88.50± 0.30 88.80± 0.90 68.90± 2.10
GERNE (ours) ×/✓ 90.21 ± 0.42 86.28 ± 0.12 71.00 ± 0.33

ERM ×/× 69.10 ± 4.70 57.60 ± 0.80 63.20 ± 1.20
Group DRO ×/× 73.10 ± 0.40 68.30 ± 0.90 61.50 ± 1.80
DFR ×/× 89.00 ± 0.20 73.70 ± 0.80 64.40 ± 0.10
Mixup ×/× 77.50 ± 0.70 57.80 ± 0.80 65.80 ± 1.50
LISA ×/× 77.50 ± 0.70 57.80 ± 0.80 65.80 ± 1.50
ReSample ×/× 70.00 ± 1.00 74.10 ± 2.20 61.00 ± 0.60
ReWeightCRT ×/× 76.30 ± 0.20 70.70 ± 0.60 64.70 ± 0.20
SqrtReWeight ×/× 71.00 ± 1.40 66.90 ± 2.20 68.60 ± 1.10
CRT ×/× 76.30 ± 0.80 69.60 ± 0.70 67.80 ± 0.30
GERNE (ours) ×/× 89.88 ± 0.67 74.24 ± 2.51 63.10 ± 0.22

5.3. GERNE vs. Balancing Techniques
Balancing techniques have been shown to achieve state-of-
the-art results, while remaining easy to implement [16, 50].
While Resampling often outperforms Reweighting when
combined with stochastic gradient algorithms [2], we show
in Tab. 1 that GERNE consistently outperforms Resampling
in both group-balanced accuracy (GBA) and minority group
accuracy. This highlights the flexibility of GERNE to adapt
to maximize both metrics, and its superior performance in

comparison to Resampling and other balancing techniques,
as further supported by the results in Tab. 2. In Appendix B,
we provide a detailed ablation study comparing GERNE to
an equivalent “sampling+weighting” approach with match-
ing loss expectation, and demonstrate how GERNE can
leverage its controllable loss variance (by the hyperparame-
ters c, β) to escape sharp minima.

5.4. Ablation Study
Tuning the extrapolation factor β. The value of β in
Eq. (7) plays a critical role in guiding the model to-
ward learning debiased representation (i.e., reducing re-
liance on spurious features and improve generalization). In
Fig. 2, we illustrate the effect of tuning β on the learn-
ing process using C-MNIST with 0.5% of minority group
in the known attributes case. We show results for β ∈
{−1, 0, 1, 1.2} with c = 0.5. For β = −1, our target loss
Lext in Eq. (5) equals the biased loss Lb, which leads to
learning a biased model that exhibits high accuracy on the
majority group, yet demonstrates poor performance on both
the minority group and the unbiased test set. As β increases
(e.g. β = 0, β = 1), the model starts learning more in-
trinsic features. This is evident from the improved perfor-
mance on the minority group in the validation set, as well
as on the unbiased test set. However, as the extrapolation
factor β continues to increase, the model begins to exhibit
higher variance during the training process, as shown for
β = 1.2, ultimately leading to divergence when β exceeds
the upper bound defined in Eq. (9) (1.22 in this case). While
GERNE appears to be sensitive to small variations in β
(e.g. 1.2 to 1.22), we show in Appendix C that βmax is
inversely proportional to c, A. This implies that decreas-
ing c allows for a wider feasible range of β. By comparing
the accuracies on minority and majority training groups in
case β = 0, β = 1, we can see that both cases have around
100% accuracy on minority but higher accuracy on major-
ity for β = 0. However, β = 1 results in better gener-
alization overall. This highlights the importance of direct-
ing the training process toward a debiased direction early in
training, especially when overfitting is likely to occur on the
minority group (e.g., when it contains very few samples).

How the selection of t inuences the optimal value of
β. To answer this question, we conduct experiments on
C-MNIST dataset with 0.5% of minority group. We first
train a biased model f̃ , and use its predictions to generate
the pseudo-attributes for five different values of the thresh-
old t. Let’s refer to the pseudo-groups with ã = 1 as the
pseudo-minority groups. For each threshold, we tune β to
achieve the best average test accuracy. Simultaneously, we
compute the average precision and recall for the minority
group. As shown in Fig. 3, with t = 5 × 10−4, the aver-
age precision reaches 1, indicating that all the samples in
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Figure 2. The impact of tuning β  {−1, 0, 1, 12} on debiasing
the model. On the left column, we plot the training losses Lb,Llb

and the target loss Lext. On the right column, we plot the average
accuracy of the minority and majority groups in both training and
validation sets, as well as the average accuracy of the unbiased test
set. Each plot represents the mean and standard deviation calcu-
lated over three runs with different random seeds.

the pseudo-minority groups are from the minority groups.
However, these samples constitute less than 20% of the total
minority groups, as indicated by the average recall. Despite
this, GERNE achieves a high accuracy of approximately
70%, remaining competitive with other methods reported
in Tab. 1 while using only a very limited number of minor-
ity samples (t = 5× 10−4 corresponds to about 28 samples
versus 249 minority samples out of 55,000 samples in the
training set). As t increases to 10−3 and 3 × 10−3, pre-
cision remains close to 1 while increasing the number of
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Figure 3. The effect of the threshold t used to generate pseudo-
attributes on the extrapolation factor β and model performance.
We plot the average precision and recall over pseudo-minority
groups (y, ã = 1), averaged across all classes y. For each
(y, ã = 1), precision is defined as the fraction of minority samples
among all samples in that group, and recall is the fraction of those
minority samples relative to all minority samples in class y. We
also report the best achievable test accuracy, along with the corre-
sponding extrapolation factor β, across different threshold values.

minority samples in the pseudo-minority groups. This in-
crease introduces more diversity among minority samples
within the pseudo-minority groups, allowing for lower β
values to achieve the best average test accuracy. However,
for even higher thresholds, such as t = 10−2, minority sam-
ples constitute less than 40% in the pseudo-minority groups,
prompting a need to revert to higher β values. We conclude
that identifying the samples of minority groups (high aver-
age precision and high recall) is of utmost importance for
achieving optimal results and this agrees with the results
presented in both Tab. 1, Tab. 2 where we achieve the best
results in the known attributes case.

6. Conclusion

We introduce GERNE, a novel debiasing approach that ef-
fectively mitigates spurious correlations by leveraging an
extrapolated gradient update. By defining a debiasing direc-
tion from loss gradients computed on batches with varying
degrees of spurious correlations, GERNE’s tunable extrap-
olation factor allows optimizing either Group-Balanced Ac-
curacy (GBA) or Worst-Group Accuracy (WGA). Our com-
prehensive evaluations across vision and NLP benchmarks
demonstrate GERNE’s superior performance over state-of-
the-art methods, both for known and unknown attribute
cases, without data augmentation. Furthermore, GERNE
offers a general framework that encompasses methods like
ERM and Resampling, extending its applicability to unbi-
ased datasets. Future work will explore dynamic adaptation
of the extrapolation factor and refine attribute estimation for
the unknown attributes case.
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