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Abstract

Museums serve as repositories of cultural heritage and his-
torical artifacts from diverse epochs, civilizations, and re-
gions, preserving well-documented collections that encap-
sulate vast knowledge, which, when systematically struc-
tured into large-scale datasets, can train specialized mod-
els. Visitors engage with exhibits through curiosity and
questions, making expert domain-specific models essen-
tial for interactive query resolution and gaining histori-
cal insights. Understanding exhibits from images requires
analyzing visual features and linking them to historical
knowledge to derive meaningful correlations. We facilitate
such reasoning by (a) collecting and curating a large-scale
dataset of 65M images and 200M question-answer pairs
for exhibits from all around the world; (b) training large
vision-language models (VLMs) on the collected dataset;
(c) benchmarking their ability on five visual question an-
swering tasks, specifically designed to reflect real-world in-
quiries and challenges observed in museum settings. The
complete dataset is labeled by museum experts, ensuring the
quality and the practical significance of the labels. We train
two VLMs from different categories: BLIP [41] with vision-
language aligned embeddings, but lacking the expressive
power of large language models, and the LLaVA [46]
model, a powerful instruction-tuned LLM enriched with
vision-language reasoning capabilities. Through extensive
experiments, we find that while both model types effectively
answer visually grounded questions, large vision-language
models excel in queries requiring deeper historical context
and reasoning. We further demonstrate the necessity of fine-
tuning models on large-scale domain-specific datasets by
showing that our fine-tuned models significantly outperform
current SOTA VLMs in answering questions related to spe-
cific attributes, highlighting their limitations in handling
complex, nuanced queries. Our dataset, benchmarks, and
source code are available at: insait-institute/Museum-65.

*Equal Contribution # astrid.mokanu@gmail.com

1. Introduction
We release a high-quality, large-scale dataset and demon-
strate through experiments that training large VLMs on it
enables museum artifact understanding, for visually under-
standing exhibit images through visual question answering.
VLMs like CLIP [64], Gemini [75], and LLaVA [46] have
demonstrated strong capabilities in learning from large-
scale noisy image-text data, improving visual understanding
through natural language and bridging the gap between tex-
tual annotations and images [14, 45, 55, 63, 65, 66, 80, 81,
85]. However, these models [41, 46] struggle in domains
like museums, which require detailed, interdisciplinary
knowledge and structured attribute prediction, such as age,
origin, material, and cultural relevance [7, 54, 60]. While
pre-trained VLMs are effective for tasks like object detec-
tion [6, 30, 91] and semantic segmentation [20, 40, 88],
more complex multi-modal tasks demand advanced reason-
ing across visual and textual domains [34, 59, 66, 77].
Visual Question Answering (VQA) is a key multi-modal
task explored in works like [3, 7, 9, 52, 68, 70, 92]. In
the cultural heritage domain, VQA can enhance museum
engagement, but a large-scale dataset covering diverse arti-
facts with both visual and textual data is lacking. Existing
datasets primarily focus on art [67, 72, 82] and are often
used for image generation and style transfer [19, 27, 38, 65],
failing to capture deeper exhibit-context relationships.
In this work, we collect a novel large-scale multilingual
dataset MUSEUM-65 with high-quality images and exten-
sive textual information for a wide range of museum ar-
tifacts, totaling 65M images and 200M question-answer
pairs. We curate and use it to fine-tune VLMs, BLIP and
LLaVA, to enable a better understanding of museum ex-
hibits. The textual information of MUSEUM-65 reflects
the viewpoint of knowledgeable museum experts, providing
both depth and breadth for effective AI training. We fur-
ther design 5 real-world tasks: general VQA, category-wise
VQA, MultiAngle – questions using images from different
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Figure 1. Dataset composition. MUSEUM-65 covers a wide range of exhibit categories (top), e.g arts, historical/pre-historical, natural
sciences, and contains a large number of images from around the globe. Each image is paired with multiple questions exploring subjects
like Title, Creator, Period, Techniques, Culture, Inscriptions, etc. (right). A sample image with a question and answer is shown on the left.

viewpoints, Visually Unanswerable Questions – complex
questions requiring the use of general knowledge, and Mul-
tiLanguage – questions in languages other than the English.
We also conduct an ablation study on place of origin to as-
sess potential regional biases. We also show in Tab. 1 that
the existing vision-language models perform poorly, using
questions for place of origin and object title.

Model Name Zero-Shot
Attribute

Title Place

GPT-4o ✓ 22.03 33.33
Claude-3-7-sonnet ✓ 21.89 40.43
Llama-3.2-90b-vision ✓ 16.84 29.58
Gemini 1.5B flash ✓ 27.08 32.98

LLaVa nofinetune ✓ 10.13 23.42
LLaVa-ours (20mn 1ep) ✗ 57.00 70.00
BLIP nofinetune ✓ 3.00 5.00
BLIP-ours (20mn 5ep) ✗ 52.00 61.00

Table 1. Zero-Shot SOTA vs. our Fine-Tuned MUSEUM-65
Models. The results demonstrate that fine-tuning significantly im-
proves accuracy over zero-shot SOTA models.

Our contribution aims to facilitate the development of AI
models that can handle complex cross-disciplinary ques-
tions in a truthful and comprehensive manner, enabling mu-
seums to serve as dynamic educational platforms that enrich
visitor experience and deepen understanding across diverse
cultural, historical, and scientific domains, as we show by
fine-tuning BLIP [41] and LLaVA.[46] BLIP aligns images
with descriptive text effectively, generating accurate cap-
tions that enhance its question-answering capabilities. Still,
BLIP’s smaller text encoder/decoder (BERT-base, 110M
params.) limits its ability to handle complex instructions.
LLaVA, powered by the larger Llama-7B LLM, excels in
instruction comprehension and vision-language reasoning,
making it capable of performing complex tasks. We pro-
vide insights into the nuanced and detailed understanding
and real-world applications required for museum exhibits,
presenting comparisons of the two models on multiple met-

Dataset Domain #images #questions Public

Sheng et al. [69] Archaeology 160 800 ✗
AQUA [26] Art 21K 80K ✓
iMet [86] Art, History 155K 155K ✓
VISCOUNTH [7] Art 500K 6.5M ✗
MUZE [5] Art, History 210K 1.5M ✓

MUSEUM-65
(ours)

Art, History,
Nat. Sciences 65M 200M ✓

Table 2. Literature comparison. MUSEUM-65 v.s. related
datasets from literature based on data domains, size and structure.

rics. We show both can handle questions well when an-
swers can be directly derived from visual features. How-
ever, for questions requiring the integration of visual fea-
tures with broader human knowledge, large VLMs attain
higher accuracy, performing the reasoning needed for such
inquiries. For instance, they can answer questions that link
visual details to historical facts or explain connections to
related events or figures not directly depicted. The major
contributions of the paper are:
• Dataset and fine-tuned models: We introduce a dataset

of 65M images and 200M question-answer pairs for mu-
seum exhibits suitable to build new vision-language mod-
els and to fine-tune existing ones (e.g. BLIP, LLaVA)

• Benchmark: We propose 5 tasks derived from our dataset,
setting directions for research in real-world AI for cultural
heritage, along with the metrics to evaluate them.

• Results and insights: We offer several insights about the
collected dataset as well as the real-world tasks proposed.

2. Related Work
Vision language pre-training models and VQA. Models
like CLIP [64], BLIP [41] and LLaVA [46], pre-trained on
large-scale datasets, have shown remarkable versatility in
both unimodal and multimodal tasks [12, 13, 32, 36, 42, 43,
47, 49, 93], incl. zero-shot recognition [87, 89, 90], image
segmentation [20, 39, 88], object detection [6, 30, 91], etc.
They offer a broad understanding of general concepts and
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Figure 2. Dataset statistics. (a) distribution of questions, categorized by type: the most common question is about the objects’ place of
origin, (b) number of distinct values of each category: the most varied category is subject (c) data sources of each contributing museum,
(d) the most common subjects/tags associated with the exhibits: objects coming from historical museums, like maps, items related to the
United States, or personal themes, (e) average number of words (length) of each category value: organization has the most words and (f)
the most frequent values across different question categories: the objects’ types include ships, models, vessels, medals, and pieces of art.

can become valuable for specialized fields like cultural her-
itage and museums. Previous studies on VQA have largely
focused on images or videos, some works extending VQA
by integrating external general knowledge [53, 79, 83] or
knowledge tailored to specific datasets [24, 78].
Digital humanities and cultural heritage. In cultural her-
itage, achieving qualitative supremacy in visual understand-
ing requires both informative images and reliable textual in-
formation. However, the required expertise is a major chal-
lenge in data collection [15, 26, 50, 69, 76]. Multiple ap-
proaches for art understanding exist, including tasks such
as cross-modal retrieval [2], image captioning [4, 48, 67],
classifying [11, 56, 58, 74] or recognizing [17, 35] art-
works. Previous attempts leverage existing cultural her-
itage data, approaching it from a multi-modal perspec-
tive [4, 7, 22, 31, 48, 73] but usually without using VLMs.
MUZE [5] achieves strong results on fill-in-the-gaps tasks
by leveraging CLIP’s multi-modal representations. How-
ever, its design relies on separate attention heads for in-
dividual attributes, making it both computationally expen-
sive and challenging to scale for a large, diverse dataset like
ours. Moreover, it does not align well with the direct Q&A
needs of our dataset, limiting its applicability to our tasks.
Domain-Specific datasets. General-purpose datasets [18,
44] are vast but lack domain-specific capabilities for cul-
tural artifacts and scientific exhibits. For history and nat-
ural sciences [57, 71], datasets are scarce and often rely
on external knowledge bases. In the Art domain, multi-
ple datasets [67, 72, 82] exist but mainly focus on artis-
tic images with limited text and others [1, 8, 10, 16, 23,
25, 28, 33, 51] combine visual and textual data but are
either small, lack diversity, or rely on synthetic sources.
VISCOUNTH [7] has 500K images and 6.5M questions
only covering paintings and sculptures, while MUZE [5]
has 210K images and 1.5M texts in art and history (see

Tab. 2). Our dataset of 65M images and 200M questions
strikes a balance between scale and domain-specificity. It
offers both the diversity and depth needed for a more com-
prehensive exploration of art, history and natural sciences
VQA tasks, including data from museums used by previ-
ously mentioned works. We perform a benchmark compar-
ison, evaluating the performance of our best BLIP model
against BLIP trained on the MUZE dataset, showing that
our dataset offers superior utility and effectiveness over ex-
isting alternatives with the experiment results being high-
lighted in section 4.1 of the Supp. Mat.

3. Dataset
We built MUSEUM-65, a multi-modal dataset containing
65M images and 200M question-answer pairs in multiple
languages, ensuring cultural diversity, see Fig. 1.

3.1. Data Collection
MUSEUM-65 covers 50M objects with questions in English
and 15M with questions in 37 languages from Europe and
Asia (French, Spanish, German, etc). List of languages in
Supp. Mat. MUSEUM-65 is created by scraping museum
websites of 3 prime international aggregators (DPLA, Eu-
ropeana, Smithsonian), covering museums from Europe and
North America and 12 other individual museums (see Supp.
Mat.) spread over the other continents. Some museums
consist multiple images of the same object from different
angles. We collected the web urls of all the images. We
show more details about the data origin in Fig. 2. We will
make the dataset publicly available under the same license
museums use, CCBY-NC-4.0.

3.2. Data Curation
A total of 10 experts worked over 3 months, 2 experts cross-
checked for quality to clean and curate the entire data.
Tabular representation in the form of attribute-value pairs
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is the usual format for museum exhibit information. Each
museum has a unique set of attributes. After extracting the
attributes, we reformulate them as questions and associated
values become answers. For detailed method, see Supp mat
section 2.5. The overview of the method is as below.
Separating into attribute-value pairs. Information about
exhibits takes 2 forms: (a) attribute-value pairs, scraped us-
ing museums APIs; (b) single strings, otherwise. We de-
termine separators to obtain the attribute-value pairs when
object information is retrieved as a complete string.
Filtering attributes. The object attributes also include dis-
play site in museum, catalog number, inventory date, dimen-
sions, and more. These are redundant for our goals and we
excluded them from the main dataset. The remaining at-
tributes were again divided into 2 types: (a) medium length
attributes (with a length less than 100 words) (b) long length
attributes, the rest. The reason is the restriction to 512 in-
put tokens for BLIP. Despite LLaVA allowing for more in-
put tokens, the final dataset on which our models have been
trained was limited to the medium attributes, thus ensuring
a fair comparison of BLIP vs. LLaVA. When referring to
our dataset in terms of training, validation or testing, we re-
fer to the one with medium attributes only. However, we
will make the complete dataset along with the filtered and
long-length attributes publicly available as the raw version.
Creating questions from attributes. We structure attribute
data for visual question answering separately for each mu-
seum, adapting to their format differences. Questions are
manually crafted (63 unique questions, listed in Supp. Mat)
with attribute’s value serving as answer. Humans formu-
lated the questions to ensure diversity, having slightly varied
questions for the same attributes across different museums,
mimicking natural human curiosity to phrase questions in
varied ways. For example, for the attribute material, two
varied questions were: Which primary material is the ob-
ject made of? vs. What is the material used in the object?
Creating the final dataset. We download all images from
the collected image-urls. For each object, we now have a
list of images and a set of question-answer pairs, omitting

the answers for which the value is not known. Finally, for
each museum we create 3 columns - image (having the list
of images from different viewing angles), question (having
the list of all questions), answer (having the list of respec-
tive answers). Each question’s answer is a list, since mul-
tiple answers may apply. See Supp. Mat. for an example.

3.3. Data Statistics and Bias Analysis
We analyzed the dataset by examining question distribution,
category diversity, sources, common subjects, word counts
per category, and frequent question types (See Fig. 2).
While bias-free datasets are unattainable [21], we ensure
our dataset is bias-aware. Our primary data sources, in-
ternational aggregators, naturally emphasize European and
American objects, leading to a selection bias, further am-
plified by the lack of digitization in smaller museums. Our
dataset includes 5M+ objects from other continents. Nev-
ertheless, results clearly show that finetuning on MUSEUM-
65 causes benefits to distribute evenly despite regional bi-
ases (see Tab. 8). Given the aggregators’ extensive curation,
our collection spans a vast historical timeline, from ancient
artifacts to modern art, covering statues, paintings, vessels,
fossils, corals, war depictions, weapons, manuscripts, tex-
tiles, coins, and more. To mitigate language bias, we in-
clude 15M samples across 37 languages beyond English,
with ongoing expansions. We also acknowledge framing
bias, as models are trained on front-view images as per
standard digitization practices, yet multi-angle experiments
confirm model robustness to different image perspectives.
To help researchers analyze and address biases, we will re-
lease MUSEUM-65 with tools for large-scale dataset ex-
ploration. These tools will enable image retrieval via text
or image queries, aiding systematic bias detection and miti-
gation. By making the source code and essential routines
publicly available, we aim to support customized dataset
curation while fostering transparency and inclusivity. Ad-
ditionally, we encourage users to explore the dataset and,
in the future, report undetected biases and model behaviors
through a planned public portal, improving data curation
and solidifying MUSEUM-65 as a real-world dataset.
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For applications requiring a minimally biased dataset, de-
biasing techniques such as model-agnostic training or spe-
cialized architectures will be commended [29, 61, 84].

3.4. Societal Impact of Dataset
Our dataset supports training multimodal models that en-
hance cultural accessibility, educational tools, and virtual
heritage exploration, while promoting multilingual data and
cross-cultural appreciation by enabling global artifact com-
parison. Inspection of images and text reveals that mu-
seums, as reputable institutions, curate collections to ad-
dress controversies—such as historical disputes, privacy, re-
ligious issues, and racial bias—and tag inappropriate con-
tent, ensuring dataset safety and quality. While origin bias
remains a concern, we aim to mitigate it through collabora-
tions and diversification, hoping broader museum digitiza-
tion will further enhance diversity. In the current form, we
consider this dataset a research artifact and strongly advo-
cate academic use only and advise careful investigation of
downstream model biases (further analysis in Supp. Mat.).

3.5. Data Splits
We split the data (English) in train, val and test, having
42M, 2M and 6M images, with an average of 3.5 questions
per image (15M instances in other languages are in a sep-
arate test split). We create multiple smaller train subsets
of 1M, 10M, 20M, and a smaller subset of the test dataset,
with 10K instances, which we use during experiments and
evaluation. The stratification is done to meet different com-
putational needs. For more details about the splits, as well
as the data format and examples, see Supp. Mat.

4. Evaluation
We compute two types of metrics: (1) traditional uni-gram
and n-gram-based numeric metrics that rely on lexical over-
laps, and (2) deeper semantic-based metrics that leverage
word embeddings for a more nuanced evaluation.
Setup. To ensure accurate and consistent metric calcula-
tions, we pre-process the answers by removing special char-
acters, retaining only alphanumeric content before comput-
ing the metrics. The overall metric is an average of individ-
ual metric scores for each question.

4.1. Numeric metrics
We compute the commonly used precision, recall, and
BLEU scores. To simplify evaluation, we introduce Com-
plete Precision, which is the percentage of questions where
the answer fully matches the ground truth (precision = 1.0).
Similarly, Partial Precision is the percentage where there
is at least some overlap (precision > 0.0). Complete Re-
call and Partial Recall are defined analogously. The BLEU
score [62] measures the fraction of word n-grams in the
model’s prediction that appear in at least one valid answer,
with a brevity penalty to discourage short responses. We
scale BLEU scores between 0 and 100, reporting results for

BLEU1 (1-gram) and BLEU2 (2-gram). For detailed expla-
nation of metrics, refer Supp. Mat.

4.2. Semantic metrics
Some attributes like subject and short description, where
textual variations in answers are equally valid, make nu-
meric metrics insufficient. Semantic metrics offer a deeper
evaluation of the model’s domain understanding by captur-
ing contextual meaning rather than relying solely on exact
word matching. Results (Tab. 3) show that fine-tuning on
MUSEUM-65 significantly improves these metrics.
METEOR Score. METEOR aligns words using synonyms,
stemming, and paraphrasing, making it more robust than
pure n-gram overlap metrics. The final score considers pre-
cision, recall, and a fragmentation penalty to account for
word order. We scale the score between 0 and 100 and av-
erage it across all instances.
Word Mover’s Distance Score. We also report Word
Mover’s Distance (WMD) based top-1 accuracy [37], which
measures the minimum cumulative distance required to
transform the predicted response into the ground truth in
the Word2Vec embedding space. The most probable class
is determined based on the smallest WMD score and accu-
racy of determining the ground truth class is calculated.

Model
BLIP

nofinetune
BLIP

20mn 5e
LLaVA

nofinetune
LLaVA
20mn 1e

METEOR 3.24 37.45 2.96 58.85
WMD Acc. 35.54 74.02 54.5 87.02

Table 3. Semantic Evaluation results. Results demonstrate a sub-
stantial enhancement in domain understanding after fine-tuning

5. Experiments
We introduce a comprehensive benchmark for MUSEUM-
65, evaluating general and specific tasks across different
metrics by exploring multiple VQA-based tasks, including
general question VQA, category-wise VQA, and three more
challenging tasks designed to address real-world problems
relevant to Museum LLMs. We also perform an ablation
experiment on the place of origin to check if our models are
biased to giving more accurate results to objects that belong
from a specific region. This benchmark standardizes com-
parisons across methods, guiding future research toward ef-
fective models and identifying areas for improvement. See
Fig. 3 for an overview.

5.1. Experimental Setup
In our experiments we use two models known for VQA
tasks, LLaVA [46] and BLIP [41] using our dataset. We
train multiple model configurations with varying amounts
of data and training epochs to analyze the impact of train-
ing time and data size on the results. We evaluate their per-
formance using multiple scores (precision, recall, BLEU),
and discuss their behavior. For further details and why we
choose BLIP and LLaVA models, as well as our code and
dataset please refer to Supp. Mat.
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Figure 4. Benchmarked tasks. (1) general VQA, (2) category-wise VQA, (3) MultiAngle - measures the adaptability to different angle
images of the same object, (4) Visually Unanswerable Questions - observes the response to new common knowledge questions derived
from dataset’s available information for an exhibit, (5) MultiLanguage - checks the ability to use languages like French and German
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Figure 5. General VQA results. Comparison of fine-tuned
and non-fine-tuned models on precision and recall. Models fine-
tuned with the 20mn dataset perform best, with LLaVA20mn-
1ep achieving 80% partial precision and 64% complete precision.
LLaVA models also outperform BLIP in recall, indicating their
predictions more often contain or are contained in the ground truth.

Training on our dataset. We fine-tune LLaVA and BLIP
using the same image-question pairs, choosing for every im-
age one random question-answer pair every epoch. In each
case, the front view image of an object is used.
Finetuning BLIP. In our experiments we use BLIP, with the
configuration available as blip-vqa. We fine-tune three main
versions of BLIP, using: (a) 1mn train dataset for 5 epochs,
extended up to 20 epochs (independently fine-tuned), (b)
10mn train dataset, 5 epochs, (c) 20mn train dataset, 5
epochs referring to them as BLIP1mn-5ep, BLIP10mn-5ep,
and BLIP20mn-5ep respectively. We also fine-tune a 20mn
train dataset version for exactly 1 epoch to have a fairer
comparison for LLaVA20mn-1ep. During fine-tuning we
use a batch size of 512, mainly following the fine-tuning
scheme of [41]. More details in Supp. Mat.
Finetuning LLaVA. For finetuning LLaVA, we assure the
use of the same object-question pairs and the same order
as for BLIP experiments. We fine-tune two versions of
LLaVA, (a) using 1mn train dataset for 5 epochs, and (b)
using the 20mn dataset for 1 epoch. We will refer to them
as LLaVA1mn-5ep and LLaVA20mn-1ep. We use a batch
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material
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60.00
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language

collection
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creator
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40.00

20.00
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Human experts comparison

Llava20mn BLIP 20mn 5e BLIP-originalLLaVA-original Human experts

Figure 6. VQA category-wise results. Comparison of mod-
els with human experts (right) and fine-tuned vs. original mod-
els (left). Fine-tuned models outperform in all categories,
LLaVA20mn performing best. Fine-tuned models exceed hu-
man performance. The originals excel in language and collection
due to common knowledge answers and fewer related instances.

size of 512. We evaluate all models on the VQA tasks.
Hardware. We train and evaluate our models using
64×NVIDIA H100 GPUs.

5.2. Task 1: VQA on general questions
The task involves using all the questions associated with
each image and producing the individual scores described
in Sec. 4. We compute the average score over all image-
question pairs for each metric, to observe the model’s gen-
eral VQA capability and adaptability across a diverse range
of visual and linguistic contexts, providing the performance
on any kind of question addressed by the user.
While evaluating the fine-tuned LLaVA and BLIP on all
the questions we observe that the LLaVA models are al-
ways receiving better results than their BLIP counterpart
(See Fig. 5). LLaVA20mn trained 1 epoch receives the
best results having for 80% of the predictions at least a part
in common with the ground truth, and 63% perfect match
(prediction and ground truth are equal). We observe that
the LLaVA models (fine-tuned 1mn or 20mn, and original
LLaVA) have usually a close result between precision and
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Model Angle
Partial
Prec.

Complete
Prec.

Partial
Recall

Complete
Recall BLEU1

LLaVA20mn-1ep Original 58.09 46.09 58.12 41.04 42.14
Alternative 56.14 44.89 56.15 40.01 41.02

LLaVA no finetune Original 24.35 0.09 24.35 11.25 1.61
Alternative 23.56 0.02 23.56 10.85 1.54

BLIP- Original 52.78 42.51 52.78 35.29 38.31
Alternative 51.75 41.87 51.75 34.59 37.62

BLIP nofinetune Original 13.82 9.70 13.82 5.22 6.52
Alternative 12.86 8.71 12.86 4.72 5.92

Table 4. MultiAngle results. Fine-tuned LLaVA20mn-1ep and
BLIP20mn-5ep v.s. no fine-tune models. The models are stable
w.r.t. the viewpoint changes. (Please refer to Fig. 7-3rd col.).

recall, while the BLIP models (fine-tuned and original) have
a big decrease in complete recall (the ground truth is com-
pletely present in the prediction).

5.3. Task 2: VQA category-wise
Questions are grouped by attributes (eg: title, creator, tech-
nique, subjects/labels). For each category, relevant ques-
tions are compiled (e.g asking about the title, denomina-
tion, or object name collected under title). The model then
answers each question, generating individual scores, which
are then aggregated to compute an average score for each
category, allowing for a detailed analysis of the model’s
strengths and weaknesses across different categories, re-
vealing areas where it may excel or struggle. All questions
attributed to one category, in Supp. Mat.
For this experiment, we compare the partial precision. We
see in Fig. 6 that LLaVA and BLIP original have very low
results for most of the categories. We notice LLaVA fine-
tuned having significantly better results than BLIP fine-
tuned on subject and collection. The lowest result for all
models are for title, which is also very difficult for humans.
Human experts evaluation on VQA category-wise task.
We randomly selected 850 question-answer pairs covering
different attributes and conducted an experiment with 10
museum experts, who answered the same questions as our
models. Their responses were evaluated across the cate-
gories types, title, place, material, and subject using the
same methodology as for the models. The results (see
Fig. 6) reveal that certain categories, such as place and
types, are particularly challenging for humans. Notably,
fine-tuned models outperform human experts across all cat-
egories, especially in subjects, place, and types, highlight-
ing the need for specialized models with domain-specific
knowledge. For materials, performance is comparable, as
these can be determined by simply observing the object.
IAA metrics: We approximate Fleiss’s Kappa by simulat-
ing categorical behavior for free-form answers. Five experts
independently answered a set of 63 unique questions (from
test set). The “best” response was chosen via majority vot-
ing, and agreement was measured as proportion of the re-
maining four matching it, yielding 52.7% agreement—well
above the 6.25%= 0.54 expected by chance.

5.4. Task 3: Multi Angles
To assess the model’s resilience to viewpoint changees, we
evaluate it using images captured from different angles or
perspectives, available in our dataset. By substituting these
viewpoint-varied images for the originals, we can directly
compare these scores with those from the initial baseline
images to observe any shifts in accuracy or relevance.
For this task we select a subset of ≈ 5K exhibits from the
test dataset with multiple images taken from different angles
(e.g. 2nd column of Fig. 7). In total we evaluate on ≈ 22K
questions. All our models (Tab. 4) show consistent scores
when presented with images from different angles, suggest-
ing a strong capacity for generalization and an ability to
recognize objects despite variations in angle or orientation,
providing insights into the model’s ability to maintain per-
formance stability when faced with real-world variability
in image capture. The slight performance drop can be at-
tributed to a decrease in image information (e.g. pictures of
statues from the side are generally harder to recognize).

5.5. Task 4: Visually Unanswerable Questions
We introduce a set of specialized questions to assess the
model’s contextual understanding, focusing on an object’s
country of origin or creator. These carefully designed ques-
tions require a deeper level of contextual or associative rea-
soning. For example, instead of simply asking about charac-
teristics that may be linked with a visual pattern (assuming
that the painters’ style can be visually recognized - “Who
is the painter of this painting?”), these questions may ask,
“Who was the mentor of the painter of this painting?” or
“What is the nationality of the painter of this painting?”.
We manually generate 5-6 questions for exhibits, related ei-
ther to the creator or country and search for answers on-
line (e.g. 3rd column of Fig. 7). We obtain 510 and 515
image-question-answer pairs from the train and test dataset
respectively. This approach evaluates not only whether the
model can correctly identify or infer the country of origin
or creator based on visual cues but also tests its ability to
correlate these features with general knowledge or cultural
information, addressing beyond surface-level visual details.
The full list of questions is available in Supp. Mat. Ac-
cording to results in Tab. 5, both original and fine-tuned
LLaVA have much higher reasoning capabilities than BLIP,
due to LLaVA’s higher model size and larger pre-training
dataset. Moreover, fine-tuning LLaVA enhances its ability
to reason about museum exhibits, esp. when considering
the precision of its answers. On the other hand, BLIP’s per-
formance on this complex task drops after fine-tuning, hint-
ing at BLIP’s limited model capacity causing forgetting of
prior knowledge in order to accommodate the new training
data. The consistency of results across the test dataset fur-
ther supports LLaVA20mn-1ep’s ability to reason beyond
visual features even on unseen images (see Tab. 6).
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Q: What is the medium of the object? 

Q: What is the title of this object?   

Q: Who is the artist of the object?

 Commemorative, Non-figurative

war memorial

Q: What are the subjects of the object?

A: Commemorative, Military Non-

figurative, Second

Q: Which part did the country of origin

of this object support during WW2? 

A: David Nash

oil on canvas 

oil on canvas 

 silver denarius (empire) 

silver penny

Task 1: General VQA Task 3: MultiAngle Task 4: Visually Unanswerable Questions Task 5: MultiLanguage

David Nash

unknown artist

Republic

Italy

Germany

Denmark

Partitur

United States

 Etrerat à 4 nuits de Paris

United States

A: Neutral, occupied by Nazi Germany

A: Parliamentary Republic 

A: Partitur, Munchen, Bayerische Staatsbibliothek

A: oil on canvas 

 A: silver denarius (empire) 

 Q: What is the form of government in

the country of origin of this object? 

Q: Geben Sie eine kurze

Beschreibung des Objekts?

Q: Quel est le titre de l'objet?

A: Chemins de fer de l'Ouest. Gare St Lazare.

Etretat à 4 heures de Paris. Tennis club

LLaVA20mn

BLIP20mn

LLaVA20mn

BLIP20mn

LLaVA20mn

BLIP20mn

LLaVA20mn

BLIP20mn

LLaVA20mn

BLIP20mn

LLaVA20mn

BLIP20mn

LLaVA20mn

BLIP20mn

LLaVA20mn

BLIP20mn

Figure 7. Examples. LLaVA20mn-1ep and BLIP20mn-5ep behaviour on different tasks, General VQA (1st column), MultiAngle (2nd
column), Visually Unanswerable Questions (3rd column) and MultiLanguage (4th column). We observe more precise answers for
LLaVA20mn than for BLIP20mn on all the tasks. Also the last two tasks seem to be impossible for BLIP20mn.

Model
partial
prec.

complete
prec.

partial
recall

complete
recall BLEU1

LLaVA20mn-1ep 31.37 25.1 31.37 12.94 15.16
LLaVA no finetune 24.27 0.58 24.27 6.21 1.74
BLIP 20mn-5ep 2.35 0.2 2.35 0.2 0.63
BLIP no finetune 6.08 5.69 6.08 2.75 2.95

Table 5. Visually Unanswerable Questions results on train im-
ages. Clearly, LLaVA20mn-1ep, performs best, especially for
complete precision and complete recall, showing the ability to vi-
sually link the objects with the corresponding dataset information
and to respond to visually unanswerable questions.

Model
partial
prec.

complete
prec.

partial
recall

complete
recall BLEU1

LLaVA 20mm-1ep 29.7 25.83 29.7 10.29 12.67
LLaVA nofinetune 27.18 1.55 27.18 6.41 3.08
BLIP 20mm-5ep 3.3 0.78 3.3 0.19 0.73
BLIP nofinetune 5.44 5.24 5.44 2.33 2.58

Table 6. Visually Unanswerable Questions results on test im-
ages. Results are consistent with those of the train split indicating
the capability of the model to generalise well on unseen images.

5.6. Task 5: Multiple Languages
We evaluate the model’s zero-shot performance on non-
English questions, including French, German, Spanish, and
others available in the multilanguage dataset split. Ques-
tions are formulated in the respective languages using col-
lected attributes. This assesses the model’s ability to link vi-
sual content with multilingual queries, recognizing objects,
actions, or scenes without relying on English training bi-
ases, which is crucial for real-world multilingual use.
Lastly, we evaluate our models on 500 images with textual
data in French and German, for a total of 2864 question-
answer pairs (e.g. in Fig. 7 - 4th column). In Tab. 7 we can
observe that both variants of LLaVA achieve better results
than BLIP. However, our fine-tuned LLaVA seems to have
partially forgot its abilities to answer in foreign languages
due to it being only fine-tuned with english data. Although
the original LLaVA easily answers questions in different
languages (it has high partial precision and recall), it mostly
fails to give perfect answers. Further fine-tuning the models
using multilingual data from MUSEUM-65 should improve
their performance. A small-scale dataset was curated for
Tasks 4 & 5 to ensure quality, given the significant manual
effort. We plan to continue scaling this curation.

Model
French German Average

partial
prec.

complete
prec.

partial
prec.

complete
prec. BLEU1 BLEU2

LLaVA20mn-1ep 10.37 0.54 9.72 1.17 1.36 0.27
LLaVA nofinetune 41.81 0.4 18.41 0.15 1.46 0.13
BLIP20mn-5ep 4.02 0.4 0.73 0.15 0.21 0.01
BLIP nofinetune 2.01 0.6 0.8 0.29 0.13 0

Table 7. Multi-Language results. LLaVA models perform bet-
ter than BLIP ones. LLaVA20mn-1ep slightly forgets the abil-
ity to answer in other languages, due to its fine-tuning in En-
glish. However, on complete precision and BLEU2 the results of
LLaVA20mn-1ep are sligthly better than the no fine-tune versions.

5.7. Place of Origin Ablation
We curated 1K images per continent and evaluated our best
models on it in Tab. 8. Despite the bias in place of origin,
the benefits distribute evenly.

Model Europe N. America S. America Asia Africa Oceania

LLaVA 20mn-1ep 85.2 79.6 86.6 67.4 86.7 99.2
LLaVA 8.6 43.57 20.3 23.4 20.79 52.4
BLIP-20mn-5ep 79.1 73.1 76.4 65.5 76.4 49.7
BLIP 4.3 15.2 19.7 9.3 19.7 6.6

Table 8. Continent-wise Partial Precision. Despite of training
data imbalance, the training on our dataset benefits all continents.

6. Conclusion
We present a large, specialized dataset for VQA on mu-
seum exhibits, designed to bridge visual content and text-
based queries. This dataset encompasses millions of im-
ages paired with varied questions, enabling models to de-
liver answers about a broad range of cultural artifacts. We
fine-tune two VLMs, BLIP and LLaVA, to compare their
performance on this museum VQA dataset. LLaVA, in par-
ticular, excels at answering visually unanswerable questions
through reasoning and general knowledge. Additionally,
cross-lingual tests confirm the adaptability of these models
in multilingual contexts, highlighting their potential for use
in diverse cultural and linguistic settings. This dataset and
our experiments open doors for future applications in mu-
seum experiences. Models trained on MUSEUM-65 could
support interactive virtual tours, where users ask detailed
questions in their own languages. They could power digital
curators, providing rich cultural insights, or integrate with
AR to offer real-time, on-site interpretation, creating im-
mersive learning experiences for museum visitors globally.
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