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Figure 1. AbdomenAtlas 3.0 is a large-scale, image-text tumor dataset of 9,262 3D CT scans. Each CT scan has per-voxel tumor
annotations and reports, including 5,582 liver tumors, 368 pancreatic tumors and 4,424 kidney tumor, 7,003 of which are small tumors
(≤2cm). In addition, AbdomenAtlas 3.0 provides detailed annotations for pancreatic cancer staging (T1–T4), as well as per-voxel seg-
mentation of liver sub-segments (1–8) and pancreatic sub-segments (head, body, and tail). Structured, narrative, and enhanced reports were
created by a team of 12 board-certified radiologists assisted by our proposed Radiology Generative Pretrained Transformer (RadGPT).
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Abstract

Cancers identified in CT scans are usually accompa-
nied by detailed radiology reports, but publicly available
CT datasets often lack these essential reports. This absence
limits their usefulness for developing accurate report gen-
eration AI. To address this gap, we present AbdomenAt-
las 3.0, the first public, high-quality abdominal CT dataset
with detailed, expert-reviewed radiology reports. All re-
ports are paired with per-voxel masks and they describe
liver, kidney and pancreatic tumors. AbdomenAtlas 3.0
has 9,262 triplets of CT, mask and report—3,955 with tu-
mors. These CT scans come from 17 public datasets. Be-
sides creating the reports for these datasets, we expanded
their number of tumor masks by 4.2×, identifying 3,011
new tumor cases. Notably, the reports in AbdomenAtlas
3.0 are more standardized, and generated faster than tradi-
tional human-made reports. They provide details like tumor
size, location, attenuation and surgical resectability. These
reports were created by 12 board-certified radiologists us-
ing our proposed RadGPT, a novel framework that con-
verted radiologist-revised tumor segmentation masks into
structured and narrative reports. Besides being a dataset
creation tool, RadGPT can also become a fully-automatic,
segmentation-assisted report generation method. We bench-
marked this method and 5 state-of-the-art report generation
vision-language models. Our results show that segmenta-
tion strongly improves tumor detection in AI-made reports.

1. Introduction
Each year, over 85 million CT scans are performed in the
United States [44, 52], growing 6% per year, and signifi-
cantly outpacing the 0.7% annual growth rate of the med-
ical imaging workforce [13]. This disparity puts radiolo-
gists under significant time pressure, making it challenging
to generate detailed, accurate radiology reports. AI may
support report generation, but it requires data. To address
this gap, we present AbdomenAtlas 3.0 (summarized in
Figure 1 and Table 1), the first high-quality abdominal CT
dataset with reports. It has 9,262 3D CTs in NIfTI format
(2,789,975 CT slices) sourced from 17 public datasets (Ta-
ble 1), which originally had no radiology report. 12 board-
certified radiologists, assisted by RadGPT (introduced be-
low), generated reports for all CTs—totaling 1,843,262 to-
kens. For each CT, we document tumor size, location, atten-
uation (HU), and volume for each identified tumor. Reports
also include T-stage for pancreatic cancer (PDAC), derived
from tumor size and vessel involvement, critical for surgery.
Each CT has both structured (template-based) and narrative
(free-text) reports, and precise voxel-level annotations. Re-
ports cover tumors in the liver, pancreas, and kidneys, in-
cluding 3,011 tumors newly identified by the radiologists.

Our reports also describe organ abnormalities (e.g., fatty
liver, enlarged spleen), patient demographics, and contrast
phase. They locate tumors in liver segments (1–8) and pan-
creas segments (head, body, tail)—all annotated per-voxel.
This is the largest liver sub-segment dataset, and the first
public pancreas sub-segment dataset. Also, we enhanced
240 existing human-made reports, covering 66 distinct di-
agnoses, with more detailed tumor analyses.

To create AbdomenAtlas 3.0, we developed Radiol-
ogy Generative Pre-trained Transformers (RadGPT), an
anatomy-aware vision-language AI agent that assists radi-
ologists in creating CT-report datasets. We started with our
previous AbdomenAtlas 1.1 [31], composed of 17 public
datasets and their organ segmentation masks, but no tumor
segmentation nor report. First, RadGPT segments liver,
kidney, and pancreas tumors, along with liver/pancreas sub-
segments, surrounding organs, and blood vessels1. Then,
radiologists revise the segmented tumors, annotating missed
ones and removing false positives. We call the dataset with
CT scans and tumor segmentation masks AbdomenAtlas
2.0, and we also release it here. From the revised segmenta-
tions, RadGPT extracts attributes (e.g., tumor size, volume,
attenuation, stage) via deterministic, rule-based algorithms.
These attributes are used to fill a radiologist-designed tem-
plate, producing structured reports. RadGPT’s determin-
istic algorithms ensure that the structured reports are fully
explainable and fully coherent with the radiologist-revised
segmentations. Next, RadGPT converts the structured re-
ports into free-text narrative reports, using large language
models (LLMs) that emulate the style (word choice and or-
ganization) of radiologists at a major US hospital—through
in-context learning with special example selection (§3.2).
Last, RadGPT fuses per-voxel segmentations with human-
made reports/clinical notes to produce enhanced human re-
ports (§3.3), combining precise and detailed tumor analysis
from segmentation with broader diagnostic range (66 diag-
noses) from human-made reports. Reports were verified by
radiologists (Appendix C). We call the final triplet dataset—
CT scans, tumor masks, reports—AbdomenAtlas 3.0.

We evaluated six CT report generation models on Ab-
domenAtlas 3.0 (internal validation) and a private dataset
(external validation): CT2Rep [21], M3D [4], CT-CHAT
[20], Merlin [8], RadFM [54] and RadGPT. Besides a
dataset creation tool, RadGPT can also become a fully-
automatic, segmentation-assisted report generation model,
by converting the outputs of a segmentation model into re-
ports, without radiologist revision. We expect Abdome-
nAtlas 3.0 to foster segmentation-assisted report genera-
tion, as the dataset has CTs, per-voxel annotations and re-
ports. We evaluated all report generation models with a new
diagnostic metric (§B.3). It first uses an LLM to extract la-
bels (tumor presence) from AI- and human-made reports.
Then, it compares the labels from AI- and human-made re-
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dataset CTs institutions countries annotated
liver tumors

annotated
pancreatic tumors

annotated
kidney tumors

FLARE’23 [2022] [link] 4,100 35 1 0 → 564 0 → 38 0 → 941
KiTS’23 [2020] [link] 489 1 1 0 → 1 0 452
LiTS [2019] [link] 131 7 5 50 0 0
TCIA-Pancreas-CT [2015] [link] 42 1 1 0 0 0
CT-ORG [2020] [link] 140 8 6 0 → 44 0 0 → 21
Trauma Det. [2023] [link] 4,714 23 13 0 → 113 0 → 32 0 → 38
BTCV [2015] [link] 47 1 1 0 0 0
CHAOS [2018] [link] 20 1 1 0 0 → 1 0
AbdomenCT-1K [2021] [link] 1,050 12 7 0 → 117 0 → 94 0 → 181
MSD CT Tasks (6) [2021] [link] 945 1 1 251 → 462 191 0 → 388
WORD [2021] [link] 120 1 1 0 → 47 0 → 1 0 → 45
AMOS [2022] [link] 200 2 1 0 → 74 0 → 4 0 → 56
AbdomenAtlas 3.0 (ours) 9,262 138 19 301 → 1,472 191 → 361 452 → 2,122

dataset liver
sub-segments

pancreas
sub-segments

peripancreatic
blood vessels1

tumor
stage

radiology
reports

text
tokens

FLARE’23 [2022] [link] ✗ ✗ ✗ ✗ 0 0
KiTS’23 [2020] [link] ✗ ✗ ✗ ✗ 0 0
LiTS [2019] [link] ✔ ✗ ✗ ✗ 0 0
TCIA-Pancreas-CT [2015] [link] ✗ ✗ ✗ ✗ 0 0
CT-ORG [2020] [link] ✗ ✗ ✗ ✗ 0 0
Trauma Det. [2023] [link] ✗ ✗ ✗ ✗ 0 0
BTCV [2015] [link] ✗ ✗ ✗ ✗ 0 0
CHAOS [2018] [link] ✗ ✗ ✗ ✗ 0 0
AbdomenCT-1K [2021] [link] ✗ ✗ ✗ ✗ 0 0
MSD CT Tasks (6) [2021] [link] ✗ ✗ ✗ ✗ 0 0
WORD [2021] [link] ✗ ✗ ✗ ✗ 0 0
AMOS [2022] [link] ✗ ✗ ✗ ✗ 0 0
AbdomenAtlas 3.0 (ours) ✔ ✔ ✔ ✔ 18,524 1,843,262

→ represents the number of CT scans with tumor annotations in the original dataset, followed (→) by our updated number of CT scans with tumor
annotations, including the additional annotations AbdomenAtlas 3.0 provided with radiologist support.

Table 1. Besides being the only public abdominal CT dataset with paired radiology reports, AbdomenAtlas 3.0 offers 4.2× more
annotated tumors than the combined total of its constituent datasets. The table highlights how AbdomenAtlas 3.0 enhances public
datasets with reports and tumor annotations. It includes 1,472 CT scans with liver tumors, 361 with pancreatic tumors, and 2,122 with
kidney tumors, most newly annotated with radiologist support. Each sample includes per-voxel annotations and reports. AbdomenAtlas
3.0 is also the first dataset to provide per-voxel segmentations of pancreas sub-segments and peripancreatic blood vessels. AbdomenAtlas
1.1 [31] has the same CTs as AbdomenAtlas 3.0, but it has only organ segmentation masks—no tumor masks, reports, organ sub-segments,
nor peripancreatic blood vessels. AbdomenAtlas 2.0 has the same CTs and masks as 3.0, no report—it is our intermediate step before 3.0.

ports to evaluate AI’s diagnostic sensitivity and specificity
(§3.4). To validate this new metric, radiologists manually
evaluated LLM labeling—it achieved 96% zero-shot accu-
racy (Figure 4). Our contributions are:
1. AbdomenAtlas 3.0 is the first public dataset with high-

quality abdominal CT scans (9,262), radiology reports
(structured, narrative, and enhanced), and tumor masks.

2. With 12 radiologists, we annotated 3,011 new tumors
in the 17 public datasets inside AbdomenAtlas 3.0—ex-
panding their number of tumor masks by 4.2×.

3. Our reports locate liver and pancreas tumors within sub-
segments of the organs. They also measure contact be-
tween tumors and blood vessels for pancreatic tumor
staging. Staging and sub-segments are key for surgery.

4. We developed Rad-GPT to assist dataset creation: un-
like current VLMs, it uses deterministic algorithms to
convert radiologist-revised tumor masks into reports,
improving reports’ trustworthiness and interpretability.
Also, RadGPT can generate fully-automated reports.

5. We benchmarked 5 SOTA VLMs for report generation
and showed segmentation improves report generation.

2. Related Work

Per-voxel tumor annotations are scarce. Most public ab-
dominal CT datasets concentrate on a single tumor type
(e.g., liver [7], pancreas [3], or kidney [22]) and contain
only a few hundred tumor annotations (Table 1). This small
volume of annotations hinders effective AI training and
evaluation. To address this, our radiologists have quadru-
pled the number of per-voxel tumor annotations in the 17
public datasets included in AbdomenAtlas 3.0 (Table 1).

Real-world radiology reports are even rarer than per-
voxel tumor annotations. At the time of writing, no publicly
available abdominal CT dataset contains authentic clinical
reports. Only one dataset, M3D-Cap [4], provides textual
captions (sourced from Radiopaedia [19]), but its scans are
2D JPG/PNG image series rather than standard 3D NIfTI or
DICOM volumes. Consequently, crucial information such
as inter-slice spacing and Hounsfield units (HU) is miss-
ing [59]. In contrast, CT scans in AbdomenAtlas 3.0
were collected in standard formats from 138 medical in-
stitutions, retaining clinically important metadata. As an-
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Figure 2. The RadGPT 3-stage pipeline for report generation. Blue arrows denote human revision used to create AbdomenAtlas 3.0.
By skipping revision, RadGPT can also become a fully-automatic, segmentation-assisted report generation AI. Stage I. Segmentation.
DiffTumor [11] and nnU-Net [25] segment 26 anatomical structures important for cancer detection and staging1. Radiologists corrected
wrong tumor segmentations in AbdomenAtlas 3.0, and ground-truths from public datasets were used when available. Stage II. Struc-
tured Report Generation. Deterministic algorithms (§3.1.1-3.1.3) extract radiologist-selected attributes—important for cancer detection,
staging and treatment—from CTs and segmentations. Attributes fill a radiologist-designed template, generating structured reports detailing
liver, kidney, and pancreatic tumors. The rule-based deterministic algorithms ensure the reports are fully coherent with segmentations and
explainable. Stage III. Style Adaptation. LLM adapts structured reports into a target hospital’s narrative style, leveraging example reports
from the hospital—in-context learning prioritizing examples of similar diagnoses (§3.2). LLM is asked to preserve medical information
and double checks for consistency. Radiologists revised reports in AbdomenAtlas 3.0. Also, LLM can fuse structured and human-made
reports, creating enhanced human reports combining segmentation-based precision with humans’ broad diagnostic range (§3.3).

other unique quality, our reports are paired with tumor and
organ masks—fostering the development of segmentation-
assisted report generation AI.

Due to the scarcity of reports in public datasets, only
two models specifically target abdominal CT report gen-
eration: M3D [4] (publicly released) and Merlin [8] (par-
tially released). Text-similarity metrics were used to eval-
uate both models (e.g., BLEU and ROUGE [35]; Mer-
lin was also evaluated with RadGraph-F1), but these met-
rics can be skewed by style variations even when the un-
derlying diagnoses remain unchanged (§B.3). In contrast,
we propose the evaluation of AI-generated reports using
diagnostic sensitivity and specificity (Table 2)—clinically
meaningful and acceptable metrics [9, 55]. Lastly, al-
though many report-generation models exist for 2D X-ray
[12, 33, 34, 45, 51, 57], adapting them to 3D CT may
require profound re-design, which may unfairly represent
the originals. Why? First, tumors in CTs can occupy
≤0.0001% of the full volume, vs. 5–10% in X-rays. Sec-
ond, many X-ray models rely on 2D pre-trained models, but
CT data is 3D. Processing CT slices individually is compu-
tationally prohibitive, and it is difficult to align slices with
findings in reports. Thus, all models we evaluated in Ab-
domenAtlas 3.0 [4, 8, 20, 21, 54] are designed for CT.

3. AbdomenAtlas 3.0 & RadGPT

Table 1 shows advantages of AbdomenAtlas 3.0 over its
17 source datasets—providing reports, organ sub-segments
and blood vessels annotated per-voxel, and 4× more tumor

annotations. Sections §3.1–§3.3 explain RadGPT (summa-
rized in Figure 2), and how it empowered 12 radiologists to
generate reports for the 9,262 CTs in AbdomenAtlas 3.0.

3.1. Creating Structured Reports
Structured reports use a radiologist-designed template, en-
hancing clarity and aiding medical decisions [1] (Figure 1).
To fill the template, RadGPT uses segmentation and de-
terministic algorithms to: (1) sub-segment organs to locate
tumors (§3.1.1); (2) measure tumor size, volume, and atten-
uation (§3.1.2); (3) perform cancer staging from tumor and
blood vessel segmentations (§3.1.3).

3.1.1. Sub-segment Organs to Locate Tumors
Human-made reports use organ sub-segments to locate tu-
mors. Location is key for prognosis, tracking tumor pro-
gression, and treatment planning. E.g., the possibility of tu-
mor surgical removal depends on its location [47]. To locate
liver and pancreas tumors in structured reports, RadGPT
sub-segments the organs and checks which sub-segments
intersect with the tumor. RadGPT segments tumors with
DiffTumor [11], a public segmentation model, and radiolo-
gists revise the segmentations (Appendix C).

For liver sub-segmentation, we leverage whole-liver
ground-truth per-voxel annotations to help the AI find liver
sub-segments. First, we offset the liver intensity (by 200
HU), following its ground-truth per-voxel annotation. Sec-
ond, using these CT scans with offsets as input, we trained
an nnU-Net [25] for liver sub-segmentation. The sub-
segments follow the Couinaud standard [15], which divides
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the liver into eight sub-segments that can be independently
removed in surgeries. Couinaud sub-segment annotations
are publicly available for 131 LiTS CT scans [7, 58], which
we used for training. Given the small size of this dataset,
we fine-tuned an nnU-Net pre-trained on 9,262 CT scans in
AbdomenAtlas 1.1 [31]. After fine-tuning, we inferenced
the nnU-Net on AbdomenAtlas 3.0. The HU value off-
setting ensured the precise alignment between the gener-
ated sub-segments and the existing liver ground-truth per-
voxel annotations. AbdomenAtlas 3.0 is the second [58]
but largest public dataset with liver sub-segments.

For pancreas sub-segmentation, there is no public dataset
with per-voxel annotations of pancreas head, body, and
tail—ours is the first. Thus, to subsegment the pancreas, we
used the superior mesenteric artery (SMA) as a landmark.
We trained an nnU-Net to segment the SMA (using private
data) and developed a deterministic algorithm that uses the
SMA segmentation to sub-segment the pancreas (Sup. Alg.
1). First, it uses the SMA to find the pancreatic neck, since
it curves around the SMA. The neck locates the head-body
boundary. Then, the body-tail boundary is set at the mid-
point along their length. Our landmark-based deterministic
algorithm closely mimics how radiologists use mesenteric
vessels to subsegment the pancreas [48]. AbdomenAtlas
3.0 is the first public dataset with pancreas sub-segments.

3.1.2. Measure Tumors Like Radiologists
Radiologists commonly measure tumors using use the
World Health Organization (WHO) standard, which pro-
vides two diameters: the longest tumor diameter in any ax-
ial plane (D), and its perpendicular diameter in the same
plane (d) [40]. Standardization of measurements is key for
accurate cancer prognosis and treatment planning [32, 40].
Thus, RadGPT also uses the WHO standard, measuring
tumors like radiologists. AbdomenAtlas 3.0 presents
radiologist-revised segmentations of liver, kidney and pan-
creas tumors. From segmentations, RadGPT extracts tumor
measurements using a deterministic algorithm that imple-
ments the WHO standard (Sup. Alg. 2). Besides diameters,
our structured reports present tumor & organ volume and at-
tenuation (HU values), also extracted from segmentation1.
Using volumes, our reports diagnose enlarged organs, and
attenuation diagnoses fatty liver (average HU < 40 [28])
and pancreas (pancreas-to-spleen attenuation < 0.7 [18])—
a condition related to diabetes and pancreatic cancer [18].
Meanwhile, tumor attenuation helps identify tumor type.

1AbdomenAtlas 3.0 is the first dataset with per-voxel annotations for
the blood vessels key for pancreatic tumor staging: the celiac axis (CA), su-
perior mesenteric artery (SMA), superior mesenteric vein (SMV), common
hepatic artery (CHA), and portal vein. These annotations were produced
by an nnU-Net trained in private data, and revised by radiologists (Ap-
pendix C). AbdomenAtlas 3.0 also has per-voxel annotations for other
22 structures important for cancer detection/staging: liver tumors, kidney
tumors, pancreas tumors, liver, kidney, pancreas, spleen, adrenal glands,
stomach, duodenum, bile duct, intestines, aorta, and postcava.

Figure 3. Automated T staging. Our RadGPT first segments the
tumor and key vascular structures from CT scans, then measures
tumor size and blood vessel contact angle to automatically assign
T stage and resectability. If the tumor-vessel contact angle sur-
passes 180 degrees, the tumor becomes unresectable (T stage 4).

3.1.3. Stage Pancreatic Cancer using Segmentation
Tumor T-stage summarizes tumor size and relationship to
nearby structures. It is key for surgical planning and sur-
vival, especially for pancreatic adenocarcinoma (PDAC), an
aggressive cancer [1]. However, staging is time-consuming.
As shown in Figure 3, for PDAC staging, radiologists must
measure tumors (§3.1.2) and analyze its interaction with
blood vessels (SMA, CHA, CA, SA) [1]. Accordingly,
RadGPT first segments vessels and tumors (using nnU-Net
and DiffTumor1) and radiologists revise segmentations (Ap-
pendix C). Then, a deterministic algorithm uses the revised
segmentations to measure the tumor-vessel contact angle
(Sup. Alg. 3). Large angles (>180◦) make surgery diffi-
cult, increasing stage. For interpretability, reports justify
stages with tumor size and tumor-vessel degree of contact,
and our deterministic algorithm faithfully implements the
guidelines radiologists use to stage PDAC [1]. Abdome-
nAtlas 3.0 is first public dataset with PDAC T stage labels.

3.2. Creating Narrative Reports
Structured reports use rigid templates to improve clarity and
clinical decision-making [1]. However, rigid templates may
conflict with the reporting style of an institution. Thus,
RadGPT can create narrative reports that mimic the style
of a target institution. In AbdomenAtlas 3.0, they mimic
human-made reports at a major US hospital (Figure 1). The
narrative reports are created through style adaptation with
in-context learning: we provide a pre-trained LLM (Llama-
3.1 70B, AWQ quantization [17]) with a structured report
and 10 human-made reports from the target institution, and
the LLM adapts the structured report to the style of the
human-made reports. We ask the LLM not to change di-
agnoses or details. Thus, narrative reports contain all the
detailed information from structured reports (§3.1).

However, style of human-made reports varies with diag-
noses. E.g., pancreatic tumor differ from liver tumor re-
ports [41]. Thus, we verify diagnoses to give the LLM ex-
ample reports with the correct style. First, another LLM
categorizes human-made reports according to tumors (liver,
pancreas, kidney, none). Then, when adapting a structured
report to narrative, the first LLM receives example human-
made reports with the same tumor as the structured report.
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Internal validation on the test set of AbdomenAtlas 3.0 (IID)

pancreatic tumor (%) kidney tumor (%) liver tumor (%)

Model Sen. (≤2 cm) Sen. (>2 cm) Spec. Sen. (≤2 cm) Sen. (>2 cm) Spec. Sen. (≤2 cm) Sen. (>2 cm) Spec.

CT-CHAT [20] 66.7 51.9 61.2 31.1 32.8 74.2 5.7 3.2 94.7
CT2Rep [21] 0.0 0.0 92.5 36.5 39.3 70.4 35.8 49.2 70.4
M3D [4] 0.0 7.4 97.2 8.1 16.4 84.1 9.4 12.7 86.0
Merlin [8] 33.3 51.9 71.8 28.4 45.9 86.6 30.2 41.3 95.9
RadFM [54] 0.0 0.0 99.9 3.7 6.3 95.6 3.3 5.7 93.9
RadGPT (ours) 66.7 81.5 93.2 54.8 93.3 51.8 39.6 96.8 64.4

External validation on unseen hospital—UCSF (OOD)

Model Sen. (≤2 cm) Sen. (>2 cm) Spec. Sen. (≤2 cm) Sen. (>2 cm) Spec. Sen. (≤2 cm) Sen. (>2 cm) Spec.

CT-CHAT [20] 27.5 N/A 73.1 24.3 29.7 74.6 5.2 4.2 94.0
CT2Rep [21] 2.1 N/A 96.7 4.0 10.0 98.0 0.0 0.0 100.0
M3D [4] 3.3 N/A 97.9 14.8 13.1 86.3 10.7 17.3 87.3
Merlin [8] 7.5 N/A 100.0 8.1 9.2 100.0 9.1 19.2 100.0
RadFM [54] 0.0 N/A 100.0 7.5 6.8 90.9 10.9 11.1 85.0
RadGPT (ours) 76.9 N/A 76.6 92.0 97.3 78.3 79.6 89.4 73.4

Table 2. In tumor detection, fully-automated reports by RadGPT surpass reports created by end-to-end report generation models.
We use RadGPT as a fully-automated segmentation-assisted report generation model (Figure 2). The results indicate that per-voxel
segmentation (step 1 in the RadGPT pipeline) may strongly improve report generation. We tested out-of-distribution (OOD) at UCSF, a
hospital not seen in training, and in-distribution (IID). In the IID set, the ground-truth contained 9 small and 27 large pancreatic tumors, 74
small and 61 large kidney tumors, and 53 small and 63 large liver tumors, with 890, 791, and 810 negatives, respectively. In OOD, we have
385 (small) and 0 (large) for pancreas, 50 (small) and 219 (large) for kidney, and 142 (small) and 301 (large) for liver, with 244 negatives
for each organ. Decision thresholds are analyzed in 15. While other methods were evaluated zero-shot, CT-CHAT, CT2Rep and Merlin
were trained in AbdomenAtlas 3.0, giving them an advantage in the IID dataset. To compute sensitivity and specificity, we used our
proposed diagnostic evaluation (§3.4): an LLM extracted binary tumor presence labels per-organ, and we compared the labels for AI-made
reports and ground-truth human-made reports. LLM label extraction accuracy is 96% (Figure 4). Table 5 provides additional metrics
(BLEU, ROUGE, BERT, RadGraph-F1), showing they are usually sensible to variations in report style, unlike our diagnostic evaluation.

After adapting a structured report into a narrative re-
port, the LLM performed a quality check. It extracted di-
agnoses and quantitative information (e.g., tumor size and
stage) from both reports and checked for consistency. We
prompted the LLM to correct in the narrative report any in-
formation diverging from the structured report, and to re-
move any diagnosis not present in the structured report.

3.3. Creating Enhanced Human Reports

Like most abdominal CT datasets, AbdomenAtlas 3.0 fo-
cuses on tumors—as cancer is a major cause of death. Our
reports can precisely measure and analyze multiple tumors
in a CT, while human-made reports usually measure the
largest tumors only (§4.3). However, human-made reports
cover multiple diagnoses unrelated to tumors. To com-
bine their strengths, RadGPT prompts the zero-shot LLM
(Llama 3.1 70B AWQ) to fuse the details in structured re-
ports with the many diagnoses in human-made reports/clin-
ical notes (Figures 12 and 1), generating enhanced human
reports. AbdomenAtlas 3.0 has 240 of them: 209 used
clinical notes for TotalSegmentator CT scans [4], and 31
used notes from our radiologists. They span 66 diagnoses.

3.4. Evaluating Diagnoses in AI-Made Reports

We propose a new strategy to evaluate the clinical utility of
AI-made reports: a straightforward, LLM-based diagnostic

evaluation. First, we prompt a zero-shot LLM (Llama 3.1
70B AWQ, prompts in §B.4) to identify in which organ the
report mentions tumors. Then, we convert the LLM answer
into categorical labels. We compare labels for AI-made and
human-made reports (ground-truth) to calculate tumor de-
tection sensitivity and specificity. This evaluation strategy
is scalable and practical: with zero-shot inference, it does
not need fine-tuning and is easily adaptable to multiple hos-
pitals. Importantly, our strategy produces clinically relevant
metrics (detection sensitivity / specificity), which are easy
to interpret by clinicians. Here, we limit our evaluation
strategy to tumor detection. However, it can be expanded
to evaluate other relevant clinical information and diseases
beyond tumors—with simple prompt modifications.

4. Experiment & Result

We randomly selected 10% of AbdomenAtlas 3.0 as a
test set, where we evaluated 6 CT report generation mod-
els: CT2Rep [21], M3D [4], CT-CHAT [20], Merlin [8],
RadFM [54] and RadGPT—as baselines for future work.
In AbdomenAtlas 3.0, RadGPT transforms radiologist-
revised tumor masks into reports. In this section, we eval-
uate RadGPT as a fully-automated, segmentation-assisted
method, without radiologist revision (Figure 2). We have
both AI trained on AbdomenAtlas 3.0 (CT2Rep and CT-
CHAT, see Appendix B.1 for training details) and those
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Figure 4. Confusion matrices. (a) A zero-shot LLM (Llama 3.1
70B AWQ) has 96% accuracy, 0.953 F1-score in determining if
radiology reports show tumors. Thus, the LLM can accurately
calculate tumor detection sensitivity and specificity for AI-made
reports (§3.4). LLM’s accuracy rivals established labelers, as those
in CheXpert [24] and CheX-ray14 [50]. Results were manually
evaluated by radiologists on 447 reports with kidney, pancreas, and
liver tumors. (b) PDAC staging confusion matrix for RadGPT,
the first public AI for staging abdominal CT tumors. Results on a
private dataset with ground-truth tumor stage annotations (N=42).

trained on abdominal CTs in other works (M3D, Merlin,
DiffTumor inside RadGPT). To ensure realistic evaluation
[5, 6], we evaluate on the AbdomenAtlas 3.0 test set and
on a private out-of-distribution (OOD) dataset, from the
University of California San Francisco hospital (UCSF, Cal-
ifornia, USA) never seen by any AI in training.

Zero-shot LLMs can accurately evaluate report gen-
eration. For automated evaluation on a large test dataset,
we will use an LLM (Llama-3.1) to assess the reports gen-
erated by 6 AI models (§3.4). Before that, radiologists ver-
ified the LLM’s ability to determine whether a report indi-
cates tumors or not. They read the zero-shot LLM answers
for 447 different reports, verifying that it achieved 96% ac-
curacy (Figure 4). Results demonstrate the LLM reliability
in evaluating tumor detection, per-organ.

Segmentation can assist report generation models.
The LLM-based evaluation, (Table 2) showed that the re-
ports generated by RadGPT strongly surpassed the other
abdominal CT report generation models, especially in the
OOD test set (unseen hospital)2. End-to-end trained meth-
ods had difficulty detecting tumors in the OOD dataset (low
sensitivity), and RadGPT strongly outperformed them for
small and large tumors in the liver, pancreas, and kidneys.
This performance difference shows the benefits of using
segmentation to improve report generation: DiffTumor pro-
duces accurate tumor segmentations, which RadGPT trans-
lates into reports. By releasing AbdomenAtlas 3.0, the
first abdominal CT dataset with triplets of CT scans, reports,
and per-voxel annotations, our objective is to catalyze fur-
ther research on segmentation-assisted report generation.

RadGPT is the first public AI model to perform can-
cer staging on abdominal CT. Figure 4 shows the perfor-

2As RadGPT narrative and structured reports match in diagnostic ac-
curacy we present only one result for RadGPT.

liver tumor pancreatic tumor kidney tumor

Detection Precision (%) 92.3 (12/13) 50.0 (8/16) 91.7 (11/12)

Size Accuracy (%) 100.0 (12/12) 75.0 (6/8) 100.0 (11/11)

Table 3. RadGPT has 75.6% tumor detection precision and
93.5% tumor measurement accuracy. A radiologist manu-
ally evaluated reports RadGPT created for 23 external test CTs
(UCSF). A tumor measurement was considered correct if it de-
viated by ≤10% from the radiologist’s measurement (both use the
WHO measuring standard [40]). As evaluation is time-consuming,
the radiologist evaluated 23 reports. Using an LLM for automat-
ically evaluating tumor measurements is challenging: it requires
pairing tumors in AI-made reports and ground-truth reports.

mance of RadGPT for staging of pancreatic adenocarci-
noma. RadGPT fully-automated reports achieved accuracy
of 71.43% in determining tumor T stages 1 to 3. The results
show that AI is a promising tool for assisting cancer staging,
a key but time-consuming task for radiologists. Still, these
fully-automatic results show radiologist revision is essential
to ensure staging accuracy in AbdomenAtlas 3.0.

4.1. RadGPT Accurately Measures Tumor Size
An expert radiologist manually evaluated structured reports
generated by RadGPT. He analyzed each reported tumor,
evaluating its measurement and checking if the tumor is a
false-positive (tumor not present in the CT volume) or a
true-positive (present). The radiologist deemed 75.6% of
the tumors reported by RadGPT true-positives, and 93.5%
of them were correctly measured (Table 3). RadGPT only
made measuring mistakes for pancreatic tumors (PDAC),
but even the radiologist could not measure 3 PDACs.

4.2. RadGPT Locates Tumors in Organs
RadGPT uses use organ sub-segments to locate tumors. It
achieved a Dice similarity coefficient (DSC) of 0.85 in seg-
menting eight liver sub-segments, according to the test set
from Zhang et al. [58]. For pancreas sub-segmentation, we
do not have a ground-truth or dataset for testing, because
AbdomenAtlas 3.0 is the first public dataset to present
pancreas sub-segments (head, body, and tail). However,
our algorithm to sub-segment the pancreas closely follows
radiologist-accepted standards (see Figure 5), and we asked
radiologists to qualitatively evaluate our annotations.

4.3. RadGPT Enhances Human-made Reports
Human-made radiology reports often omit critical quantita-
tive details—such as tumor volumes and attenuation (HU)
values—compromising clinical decision-making. In our
evaluation of 90 human reports from a UCSF, none reported
organ or tumor volumes and only 63% measured all de-
tected tumors. In contrast, our structured reports (RadGPT)
consistently provide full, quantitative data. As shown in
Table 4, while human-made reports measure volume and
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Figure 5. Pancreas and liver sub-segments. (a) RadGPT seg-
ments the pancreas based on radiology standards [48]. (I-II) the
SMA separates the pancreas head (H) from the body (B), and (III)
the remaining pancreas is divided at its midpoint into the body and
tail (T). (b) Our liver sub-segmentation model achieved a DSC of
0.85 in segmenting eight liver sub-segments on a public test set
[58]. Sub-segments are in different colors and tumors in brown.
Sub-segments are essential for RadGPT to locate tumors.

HU in 0% of cases and capture all tumors in only 63% of
cases, RadGPT achieves 100% for all metrics. This level of
consistency streamlines clinical assessments and improves
prognostic accuracy by ensuring every tumor is precisely
measured [10, 39, 53].

In AbdomenAtlas 3.0, 240 CT scans include clinical
notes, which lack quantitative tumor measurements; for in-
stance, among 63 TotalSegmentator notes mentioning tu-
mors, none provide such data—even though they report
other findings like calcified arterial plaques. By merging
these notes with our structured and narrative reports using
an LLM, RadGPT generates 240 enhanced reports that in-
tegrate the notes’ comprehensive clinical findings (covering
66 diagnoses) with precise tumor sizes (see Figure 12).

4.4. Discussion: End-to-End, Segmentation-based?

Table 2 shows RadGPT outperformed end-to-end VLMs.
The unique design of RadGPT offers several advantages
over end-to-end training. (i) Interpretable: RadGPT gen-
erates reports from tumor segmentation, allowing clinicians
and developers to visualize and verify tumor locations and
sizes in the CT. In contrast, errors in end-to-end meth-
ods are harder to diagnose and debug. (ii) Interactive:
Our goal is creating a high-quality dataset of CTs and re-
ports to drive innovation in report generation. As all algo-
rithms make mistakes, a human-in-the-loop approach is key.
Segmentation is a safeguard, allowing radiologists to en-
sure reports are correct, and easily transforming radiologist-
revised masks into reports. (iii) Strong supervision: tumor
segmentation AI has been a long-term focus of the research
community, achieving high accuracy by leveraging precise
per-voxel masks. Our benchmark shows that segmentation-
assisted models can transfer this high accuracy to reports.

Volume HU Diameters

Human-made 0% 0% 63%
RadGPT (ours) 100% 100% 100%

Table 4. Comparison of human-made reports vs. RadGPT re-
ports for 90 UCSF CTs. Values indicate the percentage of reports
containing tumor volume, HU and diameter measurements for all
detected tumors. RadGPT reports provide more clinically rele-
vant [10, 39, 53] quantitative details about tumors.

5. Conclusion & Future Work
Dataset curation and report-generation are inter-dependent.
Developing image-report-mask methods requires image-
report-mask datasets, but creating these datasets requires
reliable methods and human-in-the-loop involvement. Our
focus is creating high-quality image-report-mask datasets to
support further methodological advancements.

AbdomenAtlas 3.0 is the first public dataset provid-
ing high-quality abdominal CT scans with reports and per-
voxel tumor annotations, encompassing 9,262 CT scans
from 138 institutions. It uniquely includes pancreas sub-
segments, peripancreatic blood vessels, and pancreatic can-
cer stages—absent in existing public datasets. RadGPT
transforms per-voxel annotations into structured reports us-
ing deterministic algorithms. These reports align with
the accuracy of segmentations revised by radiologists in
AbdomenAtlas 3.0. Additionally, RadGPT enables
fully-automated report generation, surpassing existing ap-
proaches in detecting tumors. Together, AbdomenAtlas
3.0 and RadGPT bridge the gap between tumor segmenta-
tion and report generation, offering valuable resources and
tools to advance AI in abdominal CT interpretation.

We are committed to expanding AbdomenAtlas 3.0 to
include reports for more types of tumors. Additionally, we
plan to host benchmarks using AbdomenAtlas 3.0 with
two train/test splits. IID Split: Randomly sets aside 10% of
the dataset for testing, where training and testing data come
from the same institutions, following standard AI evaluation
practices. Used in Table 2. OOD Split: Uses data from 23
unseen institutions (4,500 CT scans) for testing, providing
a large test set to evaluate AI generalization to new environ-
ments. This benchmark will assess report generation mod-
els using standard text similarity metrics but will prioritize
tumor detection sensitivity and specificity, enabled by our
proposed LLM-based diagnostic evaluation.

Although 66 out of 240 fusion reports present diverse
diagnoses, AbdomenAtlas 3.0 is cancer-centric. Cancer is
a leading cause of death, and over 40% of medical imaging
reports focus on cancer detection. Thus, AI-assisted report
generation has the potential for significant impact. We hope
our release of the cancer-centric AbdomenAtlas 3.0 will
stimulate further AI advancements in the field.
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