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Abstract

Thousands of photos of Earth are taken every day by
astronauts from the International Space Station. Localiz-
ing these photos, which has been performed manually for
decades, has recently been approached through image re-
trieval solutions: given an astronaut photo, the goal is to
find its most similar match among a large database of geo-
tagged satellite images, in a task called Astronaut Photog-
raphy Localization (APL). Yet, existing APL approaches are
trained only using satellite images, without taking advan-
tage of the millions of open-source astronaut photos. In this
work we present the first APL pipeline capable of leveraging
astronaut photos for training. We first produce full localiza-
tion information for 300,000 manually weakly-labeled as-
tronaut photos through an automated pipeline, and then use
these images to train a model, called AstroLoc. AstroLoc
learns a robust representation of Earth’s surface features
through two objective functions: pairing astronaut photos
with their matching satellite counterparts in a pairwise loss,
and a second loss on clusters of satellite imagery weighted
by their relevance to astronaut photography through unsu-
pervised mining. AstroLoc achieves a staggering 35% aver-
age improvement in recall@1 over previous SOTA, reaching
a recall@100 consistently over 99% for existing datasets.
Moreover, without fine-tuning, AstroLoc provides excellent
results for related tasks like the lost-in-space satellite prob-
lem and historical space imagery localization.

1. Introduction

Earth observation is the process of collecting information
about the Earth’s surface, which is vital for monitoring the
state of our planet. Among the multitude of systems used
to acquire Earth observations data, most of which rely on
automatic collection by nadir-facing (straight-down) satel-
lites, manual acquisition of photos by astronauts aboard the
International Space Station (ISS) is a clear outlier. This im-
agery has distinctive properties including (1) a wide range
of spatial resolutions (up to 2 meters per pixel), (2) the po-

*Work was done outside of Amazon

Figure 1. One model, many space to ground applications. We
train a single model, AstroLoc, that succeeds in multiple space-
based image retrieval settings: astronaut photography localization,
“lost in space” orbit determination, and historical (Space Shuttle)
photography localization. In this figure, each group of 3 images
represent a query and its top-2 predictions from searching over a
worldwide database of millions of satellite images. Correct pre-
dictions in green, wrong predictions in red.

tential for oblique perspectives to observe topography and
height (e.g., measure the height of a volcanic eruption to
divert flights), (3) various illumination conditions (whereas
satellite imagery is typically sun-synchronous, always cap-
turing the same area at the same time of day), and (4) offers
the highest resolution open source Earth observations data.
Furthermore, due to the ISS’s 90 minute repeating orbit, as-
tronauts can be tasked with imaging for near real time dis-
aster response, and they can use human intuition to focus
on relevant areas and events, making the photographs very
information-dense, whereas satellites commonly collect im-
ages systematically, regardless of semantic value. All these
characteristics make this data source a perfect complement
to satellite data and a crucial component for climate sci-
ence [25], atmospheric phenomena [18, 38], urban planning
[9, 14, 28, 30], and, most importantly, disaster management
and response [31]1.

1https : / / storymaps . arcgis . com / stories /
947eb734e811465cb0425947b16b62b3
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Although over 5 million photos have been collected from
the ISS since the beginning of its operations, unfortunately
their full potential has yet to be unlocked. The complica-
tion is that astronaut photos, unlike satellite imagery, are
not automatically geolocated w.r.t. the Earth’s surface. Even
though the position of the ISS can be determined from the
timestamp of the photo and the ISS orbit path, an astro-
naut can point their camera (a standard hand-held DSLR)
toward any location on Earth within their vast visibility
range, which spans roughly 20 million square kilometers
(sqkm)2. Therefore, localizing a photo that covers an area
of 100 sqkm (i.e. 0.0005% of the visible/search area) is like
finding a needle in a haystack. For example, when an as-
tronaut is orbiting above Texas and photographs a wildfire,
the burning area could be anywhere from Canada to Mexico
depending on camera orientation, and the only way to know
where is by geolocating the image.

The potential value these photos hold when geolocated
has led to a concerted manual localization effort, with ex-
perts and citizen scientists localizing over 300,000 of these
images – a process defined by NASA as a “monumentally
important, but monumentally time-consuming job”3. Nev-
ertheless, manually geolocating a single astronaut photo can
take hours (hundreds of thousands of human-hours have
been spent on hand-labeling 300k of them), effectively mak-
ing this procedure inadequate given the ever-growing num-
ber of images that are being collected (up to 10k per day).
This problem has prompted recent investigation into au-
tomating the task of Astronaut Photography Localization
(APL) with deep learning, combining image retrieval and
image matching techniques [5, 33, 34]. Image retrieval is
used as a first step, to search within a database of precisely
geo-referenced satellite images for those that are most sim-
ilar to the astronaut photo (called the query). With such a
system, a query can be coarsely localized in less than a sec-
ond, making it a viable solution for such a large scale prob-
lem. Afterwards, the retrieval candidates may be refined us-
ing more computationally demanding matching techniques.
Although these pipelines have shown satisfactory speeds for
APL, their performance show a wide margin for improve-
ment, and we hypothesize that this is due to existing APL
models being trained only on satellite images [6]. This is a
critical limitation, considering that the end goal is to geo-
reference astronaut photos, not satellite images.

We hypothesize that it would be beneficial to exploit the
available 300,000 hand-labeled open-source astronaut pho-
tos to train the image retrieval model. The difficulty with
doing so is that these photos are only weakly annotated,
i.e., the manual label only provides the geographic location
(latitude,longitude) of a random point close to the center

2Considering that the ISS orbits at an altitude of 415 kilometers.
3We highly encourage the reader to view this clip https://www.

youtube.com/watch?v=drrP_Iss0gA&t=295s

Figure 2. Visual example of weak (manual) annotation and full
annotation of an astronaut photo. Weak annotation is the geo-
graphic coordinates of a single point, which does not provide in-
formation about the image’s size (i.e. it could cover a town or an
entire continent), whereas full annotation provides coordinates for
all 4 corners (called footprint), from which the coordinate of any
pixel within the image can be easily calculated (pixel-wise label).

of the image. Therefore, these weakly labeled photos can-
not be directly used in a metric learning framework, where
the model must be provided with pairs of queries (astro-
naut photos) and database (satellite) images from the same
location. In order to meet this criteria, we need these pho-
tos to be labeled with their full footprint (i.e. precise GPS
location of its four corners), so that we can exactly deter-
mine which images from the database can be used as pos-
itive samples (i.e., if they have a substantial overlap w.r.t.
the training queries). The concept of weak and full labels is
visualized in Fig. 2.

In light of these considerations, we first produce a pre-
cise annotation of these 300,000 photos, leveraging their
weak annotation and a state-of-the-art matching pipeline to
label their full footprint. Then, we demonstrate the impor-
tance of using this newly annotated data for training in two
ways. First, we create pairs of matching astronaut-satellite
images, and use them in a pairwise contrastive loss that
takes advantage of the fact that the two images within each
pair come from different domains. The creation of these
pairs relies on our new annotations, i.e., we select a pair
if the two images have enough intersection over union on
Earth’s surface. Even with this loss that takes advantage of
the newly labeled 300,000 astronaut photos, it is still im-
portant to fully leverage the much larger set of all 5.3M
geo-referenced satellite images (not just the ones overlap-
ping astronaut photos). However, we observe that the satel-
lite images are uniformly distributed on the surface of the
Earth, whereas the photos from astronauts tend to be un-
evenly distributed, with higher concentrations in salient ar-
eas like volcanoes, glaciers and lakes. Therefore, we pro-
pose a new mining technique, which allows for a weighted
sampling of the large satellite image collection according to
the distribution of astronaut photos, which we call Unsuper-
vised Mining, and, to the best of our knowledge, is the first
mining technique of its kind. We then make of use of this
data with a second contrastive loss.

We find that our training pipeline, yielding a model
which we call AstroLoc, leads to a model so powerful that
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it saturates existing test sets (recall@100 above 99%), and
brings us to propose new, more challenging test sets that
better reflect the task of APL in the real world. Furthermore,
AstroLoc is useful in the real world, and it has already been
used to localize hundreds of thousands of images available
here4. Thanks to AstroLoc, in a few months the backlog of
non-localized astronaut photos will be nearly empty for the
first time since the launch of the ISS, with the exception of
a small fraction that still result in failure cases. Finally, we
note that AstroLoc also shows great potential for other ap-
plications like ”lost-in-space” satellite orbit determination
and historical space image localization.

2. Related Work

Astronaut and satellite imagery localization The task of
localizing photos taken from Earth’s orbit has been studied
in a number of domains. Straub and Christian [35] examine
the possibility of matching the coastline of imagery from
satellites to enhance their autonomous navigation capabili-
ties. Schockley and Bettinger [29] take a similar approach,
but instead propose using terrestrial illumination matching.
The problem is more recently addressed by McCleary et al.
[22], which selects a set of landmarks on Earth to achieve
the same goal. They note that common hardware solutions
for localization are expensive (∼10k$) for nanosatellite de-
velopers, making a software solution a game changer for the
industry. For the similar task of localizing astronaut pho-
tography, which was historically performed by hand [33],
Stoken and Fisher proposed an automated solution lever-
aging image matching [33], in a framework that was then
expanded to localize night-time imagery [34].

While these solutions have advanced the field of Earth
from space localization, they are limited, as the matching-
based methods can not achieve the scalability and speed re-
quired to localize astronaut photographs in real time. Berton
et al. [6] proposes approaching the task as an image re-
trieval problem, where the database is composed of satel-
lite images of known location. This leads to EarthLoc,
the first APL-focused retrieval model. In addition, AnyLoc
[19], a universal place recognition model, has been shown
to produce strong performance and robustness to the query-
database domain gap.

Unmanned aerial vehicle localization A closely related
task is that of unmanned aerial vehicle (UAV) localization.
Similar to Astronaut Photography Localization (APL), it is
approached through cross-domain image retrieval, where
the database is often made of satellite imagery and the
queries are photos collected by a drone. The goal is to ef-
ficiently find the best prediction for a given query in or-
der to localize the drone in real time [40]. Among no-

4Photos available at: https : / / eol . jsc . nasa . gov /
ExplorePhotos/

Type Queries Database

Acquisition manual, by astronauts automatic, by satellites
Number (Annotation) 5M (none), 300k (weak) 5.2M (full)

Extent 40 to 1,357,493 sqkm 346 to 391,776 sqkm
Extent percentile (5 / 95) 239 / 39,729 sqkm 465 / 16,026 sqkm

Occlusions Yes (ISS hardware, clouds) No
Obliquity & distortion Yes No
Illumination changes Yes (e.g. day/dawn/sunset) No

Years 2000 to 2024 2018 to 2021
Source https://eol.jsc.nasa.gov/ https://s2maps.eu

Coverage scattered, biased on glaciers, volcanoes etc. dense, worldwide

Table 1. Overview of data. Information reported about satel-
lite imagery refers specifically to the data used in this project, not
satellite imagery in general. The labeling refers to the weak and
full labeling shown in Fig. 2.

table examples from the literature, Bianchi and Barfoot [7]
introduced a method utilizing autoencoded satellite im-
ages, significantly reducing storage and computation costs
while maintaining robust localization performance. Dai et
al. [8] proposed an end-to-end framework, FPI, that directly
identifies UAV locations by matching UAV-view images
with satellite-view counterparts, streamlining the localiza-
tion process. Li et al. [20] developed a transformer-based
adaptive semantic aggregation method, whereas He et al.
[16] make use of foundation models to get an estimate of
the location to then refine it with visual-inertial odometry
algorithms.

Further improvements in UAV localization are achieved
by orientation-guided methods, as shown by Deuser et
al. [11], who use orientation-guided contrastive learning to
improve UAV-satellite image alignment. Zhu et al. [41] pro-
posed a modern backbone architecture optimized for effi-
cient UAV geo-localization, enhancing both speed and ac-
curacy for UAV applications.

3. Data

Our goal is to localize the extent of astronaut photos
(queries) given a worldwide map of geo-referenced satel-
lite images (database). Astronaut photographs represent
one of the most diverse and long standing Earth observa-
tions data sources. The dataset contains a wide range in spa-
tial resolution, field of view, illumination (including night
imagery), and obliquity (astronauts can tilt the camera and
take oblique photos). These images have many applications
in numerous fields [9, 14, 18, 25, 28, 30, 38], and critically
in disaster management and response [31]5.

For database images we follow [6] and use a yearly-
composited set of cloudless open-source satellite imagery
from Sentinel-2, named S2. We use tiles from zoom levels
8-12 [26] (expanding the range of zoom levels used in [6]),
to provide a thorough train and test set that reflects the ex-
tents of the query images. Characteristics of astronaut and
satellite imagery are compared in Tab. 1.

5https : / / eol . jsc . nasa . gov / Collections /
Disasters/ShowDisastersCollection.pl
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3.1. Training Set
In contrast to previous work, we propose taking advantage
of the 300k manually localized astronaut photos for train-
ing. The idea is to pair these photos with matching satel-
lite imagery from the database (i.e. with enough Intersec-
tion over Union, or IoU) and apply contrastive training to
train models that are robust to the domain differences be-
tween astronaut and satellite imagery. Unfortunately, the
available manual localization is only a weak annotation (see
Fig. 2), which does not provide enough information to com-
pute IoU. To overcome this limitation, we estimate the pre-
cise footprint for each query image as follows: for each
manually localized query, we select as potential positives
all the database images which contain the weak label point
at each zoom level, and we rotate these potential positives
by 90°, 180° and 270° to maximize the chance of finding
a similar image among the potential positives. In practice,
given five zoom levels, four rotations, and the fact that each
point is covered by four images (there is overlap among the
tiles), there are 5×4×4 = 80 potential positives per query.
Note that different zoom levels are required because it is im-
possible to estimate an image extent with only a weak label,
and a photo could cover an area as small as a city or as big
as a continent. We then perform image matching with Su-
perPoint [10] + LightGlue [21] and the EarthMatch pipeline
[5] to get the footprint coordinates of each query.

This method was successful for 221k queries, with the
remaining being not localizable due to either errors in the
manual label, too much obstruction from clouds, or the im-
age being of the horizon (i.e. Earth limb photograph, with
two corners in outer space, hence an invalid footprint). With
this now precisely localized collection of astronaut photog-
raphy, we pair each query with the all database images with
an IoU over tiou = 0.2 producing 865k query-database
training pairs. We then discard any pair containing a query
that is included within the evaluation sets to avoid any data
leakage.

3.2. Evaluation Sets
Evaluation sets are made of queries and the associated
database to localize them. Six evaluation sets were pro-
posed in [6], covering geographical areas across five conti-
nents that mirror astronaut photography use cases like land
change study and flood monitoring. However, as detailed
in their limitations [6], the test sets only contain queries
whose projected area on Earth’s surface is between 5,000
and 900,000 sqkm, which represents only 22% of all astro-
naut photo queries, as shown in Fig. 3.

We therefore propose new evaluation sets which include
all available geolocated queries within an evaluation area,
as well as add zoom levels 8 and 12 to the database to match
the wider range of query areas. To avoid introducing com-
plexity, we use the same regions as the test sets from [6].

Our new test sets (-L) cover 
the full range of surface areas

Previous test sets are 
limited to only the 22% of 
photos with the largest 
surface areas

Figure 3. Distribution of queries by covered area. The red mark
at 5,000 sqkm shows that 78% of astronaut photographs cover an
area lower than 5,000 sqkm. Thus, the test sets in Tab. 2 do not
contain this vast majority of queries, leading us to propose test sets
containing all queries used for experiments in Tab. 3.

These datasets were named after the geographic location of
their center, like Texas, Gobi, and Amazon, so we call these
new extended versions Texas-L (L for Large), Gobi-L, etc.

4. Method
4.1. Setting

Task Astronaut Photography Localization (APL) is the
task of estimating the geographic location covered by a
photo (query) taken by astronauts. APL can be approached
through image retrieval: for each query, we can estimate
its location by finding the most similar match in a large
database of geolocated images of Earth.

Formalization Throughout this paper, we rely on three sets
of images:
• The database D = {d1, d2, . . . , dND} is a set of
ND satellite images, each characterized by their RGB
content and the coordinate label of their four cor-
ners, called the footprint. Formally, the footprint
for a generic image di ∈ D is denoted as Fi =
{lat1, lon1, lat2, lon2, lat3, lon3, lat4, lon4} where lonk

and latk denote the longitude and latitude of the k-th cor-
ner, respectively (Fig. 2).

• The training queries Q = {q1, q2, . . . , qNQ} is a set of
NQ astronaut photos, with RGB content and footprints
(localized as explained in Sec. 3.1).

• The test queries T = {t1, t2, . . . , tNT } is another set of
NT astronaut photos, disjoint from Q, each characterized
by its RGB content and timestamp. The timestamp is cru-
cial in determining the location of the ISS when the photo
was taken, which enables narrowing down the search
space from the entire world surface area (510M sqkm)
to the local area visible from the ISS at that time (20M
sqkm). Note that due to cosmic radiation bit flips, the
timestamp can sometimes be incorrect: in such cases, it is
necessary to conduct a worldwide search (see Sec. 5.5).

Training with Astronaut Photos (Queries) While vari-
ous approaches have been used for APL, no previous work
has taken advantage of the huge dataset of 300k astronaut
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Figure 4. AstroLoc’s training pipeline. The upper branch feeds pairs of matching query-database images to the pairwise loss (Sec. 4.2).
The lower branch (Sec. 4.3) first creates clusters of satellite images, then queries are assigned to these clusters, which are sampled according
to how many queries are assigned to each cluster (unsupervised mining). A training batch (mined quadruplets, i.e. tuples of 4 images) is
sampled from a single cluster and fed to the Multi-similarity Unsupervised Mining (MUM) loss. Queries are not fed to the MUM loss,
and are not used to compute the clusters — they are only used to sample training data from a closer distribution to the queries’.

photos labeled by human experts. We posit that their use
at training time can lead to sizeable improvements in per-
formance, and we present two novel techniques to use this
data. In Sec. 4.2 we show how we use pairs of matching
query-database images (i.e., depicting the same location) to
implement a pairwise loss (see Fig. 4, upper branch). Ad-
ditionally, we use the photos a another time, to inform a
second loss this time computed on tuples of satellite images
that are sampled using the distribution of the queries (see
an overview in Fig. 4 bottom). This allows us to use the
entire set of database images for training (whereas the pair-
wise loss can be applied only on areas covered by astronaut
photos) while still leveraging the queries (see Sec. 4.3).

4.2. Query-Satellite Pairwise Loss
Given the cross-domain nature of the problem, we aim to
take matching images from the different distributions and
applying contrastive learning to encode their relationship
in feature space. To this end, we create a batch P =
{p1, p2, . . . , pB} of query-database pairs pi = (qi, di) ∈
(Q,D) that have an intersection over union (IoU) higher
than a threshold tiou

6 (see examples in Fig. 4 top). We
ensure that within a batch there are no two pairs with ge-
ographic overlap, so that for a pair pi ∈ P all the images
from other pairs pj ∈ P\{pi} are negative examples.

With this setting, we define a contrastive loss that com-
prises two terms: an attraction term Lpos that acts between
images in a matching pair, pulling their representations
closer, and a repulsion term Lneg , that is applied between
images from different pairs (i.e., non matching), pushing

6For the sake of readability, we abused the notation by implying that a
matching query and database images from the sets Q and D have the same
index as the index of the pair they belong to. This trick to simplify the
notation is equivalent to have preliminarily sorted the sets Q and D.

them apart. Formally, given a similarity measure S(I1, I2)
between the features of two image (e.g., the cosine similar-
ity), we define the positive loss term as

Lpos =
1

α1B

B∑
i=1

γ(α1, qi, di) (1)

where α1 > 0 is a gain and

γ(x, y, z) = log
[
1 + e−x×S(y,z)

]
(2)

is the attraction function.
For the negative loss term, let us first denote with PQ =

{q1, q2, . . . , qB} the set of all queries in the batch P , and
with PD = {d1, d2, . . . , dB} the set of all database images
in P . With this notation, we define Lneg as

Lneg =
1

β1B

B∑
i=1

[
φ(β1, qi,PQ\{qi}) + φ(β1, qi,PD\{di})

+ φ(β1, di,PQ\{qi}) + φ(β1, di,PD\{di})
]

(3)

where β1 > 0 is a gain and

φ(x, y,Z) = log

1 +

|Z|∑
j=1

ex×S(y,Zj)

 (4)

is the repulsion function. The overall loss is

Lpairs = Lpos + Lneg (5)

4.3. Unsupervised Mining
Although the use of the Query-Satellite Pairwise Loss by
itself leads to state-of-the-art results (see Sec. 5), it does not
fully exploit the large quantity of available satellite imagery
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Figure 5. Examples of training batches, using the three different sampling solutions presented. For each solution, we show two
examples of batches with batch size 12 (i.e. 3 quadruplets), so that each image has 3 positives and 8 negatives. Solution 1 leads to training
a non-robust model, because of the lack of hard negatives, as quadruplets are randomly sampled and are often very diverse between each
other. Solution 2 provides hard negatives, but it creates batches with uninformative and feature-less images (e.g. batch 1 is from a cluster
of images of seas next to coasts) which hurt the training process. Solution 3 allows to simultaneously provide hard negatives, discard
uninformative batches, and focus on the most salient imagery, by sampling images from clusters that reflect the queries’ distribution.

worldwide, as it only uses images that overlap with astro-
naut photographs. Therefore, we propose to use a second
loss: in the next paragraphs, we explain the design of this
innovative technique, starting from a naive implementation
and developing into our full-fledged MUM loss.

Solution 1: naive sampling The simplest approach to
train a retrieval model on large volumes of satellite im-
agery would be to directly apply a contrastive loss. Com-
mon training pipelines rely on using quadruplets [2, 23] (i.e.
4 images) from each class, and stacking multiple quadru-
plets within a batch to ensure that each image has exactly
3 positives (from the same class) and a multitude of nega-
tives. However, this naive approach would not train a robust
model, because random sampling of classes would lead to
very few hard negatives (see Fig. 5 left), which are crucial
to train robust image retrieval models.

Solution 2: database clustering To improve over naive
sampling we could first compute features for all images
within our database, and then cluster them with a k-means
algorithm in feature space. This leads to the creation of K
clusters that share similar visual characteristics: for exam-
ple one cluster containing images of forests, another one
with images of deserts, and so on. These clusters can then
be used to create training batches: for example there would
be one batch of forest images, one batch of desert images,
et cetera, leading to harder negatives within batches. While
this solution leads to better results (see [6]), one issue would
arise: some batches may contain only uninformative im-
ages, like feature-less images of deserts or seas, (see Fig. 5
center), which can hurt the learning process.

Solution 3: unsupervised mining We finally propose to
not only create clusters from database images, but also
to sample them according to the distribution of the astro-
naut images: intuitively this means that, as astronauts take
very few photographs of deserts, and many photographs of
glaciers, the clusters of desert-images will be sampled sel-
dom, while the clusters with glaciers will be sampled more

often (see Fig. 5 right).
To formalize this concept, we split the database images

into a set of K clusters C1, . . . , CK using a standard k-means
algorithm in feature space, such that

K⋃
k=1

Ck = D (6)

Secondly, we compute features for the training queries (i.e.
astronaut photos), and assign each to one of the K clusters
C: we then denote with b1, . . . , bK the size of the bins de-
rived from assigning the features of the training queries to
the K clusters. Clusters are then sampled according to

k ∼ B(Q, 1, k) (7)

where B denotes the weighted distribution according to the
bins b1, . . . , bK , i.e. such that

Pr(k) =
bk∑K
i=1 bi

(8)

meaning that clusters with more queries are sampled more
often for the creation of our training batches. We emphasize
that the training batches are made only of database images,
and that the queries are only used to calculate how often
each cluster should be sampled, as shown in Fig. 4. Finally,
given a series of quadruplets from cluster CK (sampled ac-
cording to Eq. (7)), we plug them into a contrastive loss (in
our case a Multi-Similarity loss [37]). Therefore, the second
loss in our pipeline is

LMUM =
1

4H

H∑
i=1

 1

α2

4∑
j=1

log

1 +
∑

d∈hi\{hij
}

e
−α2S(hij

,d)


+

1

β2

4∑
j=1

log

1 +
∑

d∈Hk\{hi}

e
+β2S(hij

,d)


(9)

where α2 and β2 are positive hyperparameters, and MUM
stands for Multi-similarity with Unsupervised Mining.
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Among the large number of mining techniques in litera-
ture, our Unsupervised Mining stands out in two ways:
1. it is the only mining that uses one distribution (i.e. Q) to

learn how to sample from another distribution (i.e. D);
2. unlike common mining techniques used in localization

and place recognition pipelines [1, 3, 15, 24], our miner
does not require labels of queries, so we could poten-
tially use all of the 5M existing astronaut photos (even
the unlabeled ones). In practice we use only training
queries to ensure avoiding any kind of test data leakage.

Finally, our final loss is the sum of the two losses:

L = λ1Lpairs + λ2LMUM (10)

5. Experiments
5.1. Implementation Details

Training We set the hyperparameters as follows: tiou =
0.2, α1 = 1, α2 = 1, β1 = 50, β2 = 50, λ1 = 1, λ2 =
1,K = 50, batch size = 48 (48 pairs for pair loss, 48
quadruplets for MUM loss), learning rate = 5e-5, Adam op-
timizer. We use as architecture a DINO-v2-base backbone
[27] with SALAD [17] and a linear layer to reduce feature
dimensionality (from 8448 to 2048) (i.e. a similar model to
AnyLoc [19] while being over 10 times lighter than Any-
Loc, which uses DINO-v2-giant). Training runs for 30k
iterations. As in [6], the Texas dataset is used as valida-
tion. The features for our Unsupervised Mining are com-
puted periodically (every 5000 iterations) while the model
is undergoing training, as standard practice in virtually ev-
ery mining procedure [1, 3, 6, 24]. With this setup, mining
increases the training time by less than 10%.

Evaluation We follow the protocol from [6] by doing im-
age retrieval with an augmented dataset (i.e. applying four
90° rotations to each image), and using as metric the re-
call@N, as the percentage of queries where at least one of
the top-N predictions is a correct match to the query.

5.2. Results
In Tab. 2 we report experiments on the test sets proposed
by [6]. For fairness, we include results with a more power-
ful version of EarthLoc that uses the same architecture and
training data of AstroLoc, which we refer to as EarthLoc++.

Results clearly show that, whereas previously there was
no dominant method between EarthLoc and AnyLoc, the
introduction of AstroLoc provides a new state-of-the-art
model which significantly outperforms all previous, achiev-
ing a near perfect (above 99%) recall@100 on all six eval-
uation sets. Note that the recall@100 is more relevant in
the real world than recall@1, since it is common practice
to re-rank the top-N predictions with image matching meth-
ods [5, 33, 36]. Some qualitative results of queries and their

predictions are in Fig. 1, with many more in the supplemen-
tary.

New test sets Here we compute experiments on the newly
extended test sets described in Sec. 3.2, which provide a
setting that is more similar to the real world scenario and
more challenging. Results, reported in Tab. 3, illustrate that
AstroLoc is able to outperform previous models by an even
wider margin, and presents recall@100 consistently above
96% even in these more comprehensive and complex cases.

5.3. Other Space to Ground Use Cases

In this paper we test the robustness of AstroLoc by per-
forming experiments on two related tasks: the lost-in-space
problem and historical space imagery localization. Given
the lack of space, we present a thorough explanation of the
tasks, motivations, experimental details and results in the
supplementary, while only offering a brief summary here.

The Lost-in-Space satellite problem has the goal of iden-
tifying the location/orbit of nanosatellites through computer
vision [22], requiring photos be searched for over the entire
planet. We use as queries the images from McLeary et al.
[22], and a worldwide database at zoom level 9 (12k im-
ages). Results in Tab. 4 highlight the robustness and adapt-
ability of AstroLoc, which is the only method to achieve a
R@1 over 50% on the retrieval-formulation of lost in space,
outperforming all other methods by at least 45% of R@1.

Historical space imagery localization Historical imagery
of Earth from space is a unique source of data to understand
how Earth has changed over decadal time spans. We per-
form experiments on 704 queries from early Space Shuttle
days (1981-1984), on a worldwide database, and report re-
sults in Tab. 5. We empirically find that AstroLoc achieves
strong results even on these old film photographs, showcas-
ing its robustness to various types of domain changes.

5.4. Ablations

We compute ablations on the losses and mining in Tab. 6,
where results clearly show the strong impact from each
module in our pipeline. Most importantly, the combination
of these components presents the optimal characteristic of
orthogonality, in that their mixture has notably higher re-
sults than each of the singular elements.

5.5. Toward Worldwide Search

Astronaut photographs are associated with a timestamp
which, combined with the known orbit of the ISS, can be
used to obtain the position of the camera when the photo
was taken, allowing the search space to be reduced from
the entire extent of the Earth to just 20M sqkm (the area
of Earth’s surface visible from the ISS). However, due to
high-energy cosmic particles causing bit-flips in cameras,
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Method Texas (6k / 34k) Alps (2k / 53k) California (4k / 30k) Gobi Desert (1k / 54k) Amazon (1k / 19k) Toshka Lakes (2k / 63k)
R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100 R@1 @10 R@100 R@1 R@10 R@100 R@1 R@10 R@100

Nadir 2.4 - - 1.2 - - 2.4 - - 1.8 - - 3.1 - - 1.4 - -
Random Choice 0.2 1.7 15.5 0.1 1.1 11.6 0.2 2.3 20.1 0.1 1.0 13.2 0.1 1.1 11.5 0.2 1.2 9.1

TorchGeo [32] (SSL w SeCo [39]) 6.1 15.6 41.7 7.4 20.2 49.2 5.1 14.5 37.1 3.7 14.0 38.9 4.6 13.3 32.9 5.7 15.6 38.5
TorchGeo [32] (SSL w GASSL [4]) 9.7 22.8 46.4 9.1 23.1 50.5 13.3 31.4 58.8 6.3 17.5 45.4 8.3 20.3 40.1 20.4 38.6 64.2

OGCL UAV-View [11] [12] 17.6 33.2 55.9 14.6 33.2 63.9 22.8 48.1 74.9 7.6 22.8 50.1 20.4 39.1 62.5 31.8 51.8 74.4
MBEG [41] 7.0 17.6 35.1 6.6 19.3 45.9 8.7 20.7 41.5 4.4 15.0 38.0 6.4 17.1 39.3 8.1 20.7 49.1
AnyLoc [19] 44.1 68.7 87.8 40.7 70.8 92.0 48.7 75.0 91.6 28.7 57.0 81.7 38.6 63.8 86.2 63.7 84.5 96.3
EarthLoc [6] 55.9 73.0 88.3 58.4 76.8 89.5 58.0 76.0 91.4 51.1 67.5 86.5 47.2 67.9 84.6 72.2 85.0 93.3

EarthLoc++ [6] 80.0 89.4 95.9 80.6 91.2 96.7 82.9 92.0 97.9 67.6 84.6 94.6 73.6 85.5 93.1 90.1 95.3 98.2
AstroLoc 96.1 98.7 99.7 98.1 99.5 99.8 97.4 99.2 99.8 94.6 99.2 99.9 93.0 96.9 99.1 99.0 99.6 99.9

Table 2. Recalls on APL test sets from EarthLoc [6], from which we source most of the numbers in the table. AstroLoc comfortably and
consistently achieves recall over 90%, outperforming all other methods by a large margin. Numbers next to each test set name (e.g. Texas
6k / 34k) represent number of queries / database images. R@N indicates the recall-at-N. Best results bold, second best underlined.

Method Features Memory Total latency Per query Texas-L (21k / 179k) Alps-L (10k / 261k) California-L (12k / 166k) Gobi Desert-L (2k / 284k) Amazon-L (3k / 101k) Toshka Lakes-L (9k / 299k)
dimension (GB) (hh:mm) latency (ms) R@1 @100 R@1 @100 R@1 @100 R@1 @100 R@1 @100 R@1 @100

AnyLoc 49152 235 GB 23:51 291 29.2 72.2 30.9 78.9 31.7 76.3 22.9 68.2 20.4 63.5 34.9 76.8
EarthLoc 4096 19 GB 1:12 21 44.0 75.0 52.9 82.6 49.1 80.4 33.9 70.1 34.9 70.6 63.3 86.5

EarthLoc++ 2048 9 GB 1:42 12 72.4 91.5 79.4 94.7 75.4 92.9 62.6 87.2 62.6 89.2 83.4 95.1
AstroLoc 2048 9 GB 1:42 12 91.1 98.5 94.6 99.2 92.1 98.7 84.2 96.2 83.8 96.8 94.8 99.0

Table 3. Results on our extended versions of the test sets from Tab. 2. “-L” (for “large”) test sets better represent the performance
that an APL model would achieve if deployed, as no filtering has been applied on test queries. The two numbers (e.g. Texas 21k / 179k)
represent the number of queries and database images. Memory, Total latency and Per query latency refer to testing on the Texas dataset.
Memory is the memory required to store features; Total latency is the time to run the test (including database feature extraction); and Per
query latency is the time needed to localize one query, which consists of query feature extraction and kNN search (kNN is the primary
bottleneck). All tests are performed with an A100 and a 32-core CPU, using FAISS [13] for efficient kNN.

Method # Params (M) R@1 R@5 R@10 R@20 R@100

AnyLoc 1136 4.4 9.6 13.4 19.0 40.0
EarthLoc 27.6 3.3 7.0 8.8 12.0 27.6
AstroLoc 105 52.7 63.9 68.7 73.3 83.7

AstroLoc-tiny 27.2 36.7 49.4 55.3 61.6 74.5

Table 4. Results of Lost-in-Space satellite problem. Using the
dataset from VINSat [22] as queries, AstroLoc achieves good re-
sults on this additional task. AstroLoc-tiny is a tiny version more
suitable for deployment on a nanosatellite, with 27M model pa-
rameters and 512 dimensional features (see supplementary).

Method R@1 R@5 R@10 R@20 R@100

AnyLoc 19.6 32.7 40.5 47.2 65.2
EarthLoc 29.5 40.1 43.5 48.7 64.5
AstroLoc 82.0 89.9 91.9 94.2 96.7

Table 5. Results on historical imagery localization. The 704
queries are 40 year-old photos from the early days of the Space
Shuttle. Searched is conducted across the whole globe.

Pair Loss Sol. 1 Sol. 2 Sol. 3 Texas-L Alps-L
(Sec 4.2) (Sec 4.3) (Sec 4.3) (Sec 4.3) R@1 R@10 R@100 R@1 R@10 R@100

✓ 83.6 93.1 97.5 87.2 95.0 98.2
✓ 67.6 79.2 89.3 76.5 87.1 93.9

✓ 72.4 83.3 91.5 79.4 89.1 94.7
✓ 82.2 91.1 97.1 86.9 94.5 97.9

✓ ✓ 84.0 93.3 97.5 87.9 95.1 98.0
✓ ✓ 86.5 94.1 97.7 91.5 96.5 98.6
✓ ✓ 91.1 96.2 98.5 94.6 97.8 99.2

Table 6. Ablation over components and variation of the loss.

the timestamp can be unreliable, leaving no information
about which area of the Earth the photo is taken near.

We therefore propose the task of worldwide astronaut

Method R@1 R@5 R@10 R@20 R@100

EarthLoc 40.3 49.5 53.2 57.1 66.6
AstroLoc 86.9 91.9 93.4 94.6 96.8

Table 7. World-wide search. Using the same query sets as Tab. 3,
but with a database encompassing the entire Earth. Results com-
puted for the best performing methods only, except AnyLoc [19],
due to its large features (49,152-D vs EarthLoc’s 4096-D) requir-
ing 600GB of RAM to store features to compute kNN.

photography localization, where the database covers the en-
tire world with 881k images. Results (Tab. 7) show that
AstroLoc achieves a recall@100 of 96.8%, proving its ro-
bustness even in this highly challenging scenario.

6. Conclusions

We tackle the task of Astronaut Photography Localization
(APL), and through newly computed labels and ad hoc
training techniques, obtain AstroLoc, which shows impres-
sive results on all APL datasets. Furthermore, we find that
AstroLoc can be utilized for other real-world applications,
showing robustness to various domains. Finally, we note
that we have already used AstroLoc (in conjunction with
EarthMatch’s post-processing) to provide localization for a
staggering 500k photos, and anticipate that in a few months
the backlog of non-localized photos will be nearly empty
for the first time since the launch of the ISS.
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