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Abstract

We introduce a taxonomy of materials for hierarchical

recognition from local appearance. Our taxonomy is mo-

tivated by vision applications and is arranged according to

the physical traits of materials. We contribute a diverse, in-

the-wild dataset with images and depth maps of the taxon-

omy classes. Utilizing the taxonomy and dataset, we present

a method for hierarchical material recognition based on

graph attention networks. Our model leverages the taxo-

nomic proximity between classes and achieves state-of-the-

art performance. We demonstrate the model’s potential to

generalize to adverse, real-world imaging conditions, and

that novel views rendered using the depth maps can enhance

this capability. Finally, we show the model’s capacity to

rapidly learn new materials in a few-shot learning setting.

1. Importance of Material Recognition

Our ability as humans to recognize materials is critical to

every action we take. Using vision alone, we can infer that

a coffee cup will be hot to the touch if we see it is made

of paper. If it is instead perceived as a ceramic cup, we

can deduce it may be cooler and more rigid, but heavier to

lift. The ability to perceive materials from a distance thus

enables us to infer the consequences of an action before tak-

ing it. While this is second nature to us, humans, material

perception by machines remains an active field of research.

Material is a fundamental visual unit of a scene. Ob-

jects, defined by their form and function, convey what is in

a scene. In concert, materials inform how to interact with

the scene. Consider the case where our coffee cup is top-

pled and spills its contents. An autonomous agent must first

identify the spilled material as a liquid to then reason that a

towel is the proper cleanup tool, and not a broom. Further-

more, knowing a material enables estimation of mechanical

properties such as weight and elasticity. In the case of our

example, the agent must know that the towel is deformable

in order to handle it. In short, the ability to visually identify

materials is key to the development of autonomous systems

that can interact with the environment in more nuanced and

intelligent ways than possible today.

The term “material” can carry different meanings de-

pending on the context. In our example, if the coffee is

spilled on a wooden table, it may suffice to know that coffee

is a liquid. However, if it is spilled on a fabric, the cleaning

method used may be based on the liquid type (e.g., coffee v.

water). In other words, material recognition may need to be

done at different levels of detail based on the application [2].

Just as naturalists have taxonomized living organisms

into the tree of life, materials too conform to a hierarchy

(e.g., rubber Ă plastic Ă polymer). With this in mind, we

constructed a hierarchical taxonomy for materials (Sec. 3).

Our taxonomy includes materials that are commonly en-

countered in a variety of science and engineering disci-

plines, and its hierarchical structure is based on the phys-

ical properties of the materials. We have collected an in-

the-wild image dataset, Matador, to populate the taxonomy

with images of materials taken at different scales (mag-

nifications) and under different natural lighting conditions

(Sec. 4).1 Matador has „7,200 samples across 57 material

classes, where each sample includes the material’s local ap-

pearance (close-up texture), 3D structure (from lidar), and

the surrounding context (object-level information). Hav-

ing 3D structure allows us to render arbitrarily many ad-

ditional novel views for each sample, corresponding to dif-

ferent magnifications, orientations, and camera settings.

We use the taxonomy to develop a model for material

recognition by framing recognition as a hierarchical image

classification task. This is done by utilizing graph repre-

sentation learning to predict the full taxonomic classifica-

tion of a material from its local appearance (Sec. 5). We

show that structuring a graph neural network according to

our taxonomy improves classification accuracy on existing

benchmarks as well as our own Matador dataset, achiev-

ing state-of-the-art performance. The performance remains

high even when the taxonomy is sparsely populated with

images and when color information is excluded. A key ad-

vantage of our hierarchical approach is that, even when a

material is misclassified at the finest level, it can be cor-

rectly recognized at a higher level, still enabling useful in-

ferences regarding its mechanical properties. Finally, we

demonstrate that our model generalizes to adverse, real-

world imaging conditions, that rendering novel views for

training data can enhance this capability, and that the model

is effective at few-shot classification (Sec. 6).

1Matador webpage: https://cave.cs.columbia.edu/repository/Matador.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. Related Work

Images can be interpreted at multiple levels of granularity.

At the coarsest level, an image represents a scene. Within

a scene, there are objects, and each object is composed of

materials. Each material manifests as a texture in the image.

Although texture and material are distinct concepts, they are

closely related, and much of the prior work has utilized tex-

tures to recognize materials. We refer the interested reader

to Liu et al. [46] and Dana [17] for comprehensive historical

perspectives on this line of work.

Material Recognition from Texture. The earliest ap-

proaches to texture recognition are based on the use of filter

banks [6, 31, 41, 52, 72] or statistical analysis [14, 53]. Sig-

nificant progress was later made by representing a texture

using textons [35] that are constructed from the frequency

responses to a set of hand-crafted filters [15, 16, 37, 44, 51,

70, 73–75], including Gabor filters [24, 72] and Gaussian

kernels [40, 51]. Textons are aggregated into a histogram

and used for recognition, similar to bags of features for

object recognition. Subsequent methods enhanced the fil-

ter bank to handle multi-scale image features [19, 29, 43],

rotation invariance [64] and affine invariance [42], and

the downstream recognition routines were improved with

Fisher vectors [57] and contextual priors [45].

The field has since shifted from hand-crafted filter banks

to learned models. Most works in this vein utilize con-

volutional architectures (CNNs) to either learn a filter

bank [12, 13] or a dictionary [63, 71, 85, 86, 93]. Since

forming histograms from textons is effectively spatial pool-

ing, much attention has been given to feature aggrega-

tion in CNNs [88, 90, 91]. Recently, incorporating multi-

scale geometry in feature pooling has shown promising re-

sults [11, 23, 55, 83]. Such methods aim to replace average

or max pooling with an operator that captures the orderless,

fine-grained structure of textures without losing the higher-

level spatial order. In contrast to prior work, we use a hier-

archical taxonomy of materials, which allows us to leverage

the taxonomic proximity between materials for recognition.

Material Image Datasets. Texture-based recognition

aims to classify materials based on the intensity fluctua-

tions they produce in images. Such fluctuations can be de-

scribed as having characteristic patterns such as “striped”

or “checkered” [12, 65, 66]. In this approach, there is no

direct measurement of the physical properties of a material

or the way it interacts with incident light. Ideally, material

recognition would be explicitly based on the optical proper-

ties of a material [17]. However, this would require at least

a partial measurement of the bidirectional reflectance dis-

tribution function (BRDF) [92] or the bidirectional texture

function (BTF) [7, 18, 62, 79], which can only be done in

controlled settings using specialized setups.

Learning-based approaches to material recognition in-

stead lean on large image datasets to capture variability

in camera pose and real-world lighting. Several datasets

of this type exist and are either aggregated from online

sources [3, 4, 69] or captured using a custom hardware plat-

form [84, 85]. The former tend to also include some object-

level information which can aid local material recogni-

tion [67]. In our work, we are chiefly interested in recogni-

tion based on local appearance. We present a novel dataset,

Matador, of „7,200 in-the-wild samples spanning 57 ma-

terial types. Using this dataset, we also render numerous

novel views of each sample to augment model training by

varying magnification, orientation, and camera settings [9].

Graph Representation Learning. The definition of a

material is relative: while “brick” and “concrete” are dis-

tinct classes of materials, they are both instances of a “ce-

ramic”. This observation inspired our use of hierarchical

learning to recognize materials. Hierarchical image classi-

fication [8, 10, 28, 48, 60, 87, 89, 94] has recently been used

to take advantage of semantic relationships between classes,

e.g., in object recognition, where the hierarchy is defined by

WordNet [54]. Several such methods utilize graph neural

networks [81, 82] to explicitly represent hierarchical rela-

tionships, which have demonstrated impressive generaliza-

tion capabilities [36, 56, 77, 78, 89]. Based on our taxon-

omy, we develop a graph neural network [39] to learn visual

relationships between material classes. In doing so, should

related taxonomy classes share visual traits (which is not

necessarily guaranteed), we can exploit this for recognition.

3. A Visual Taxonomy of Materials

The names given to material categories are highly depen-

dent on the context in which they are studied. While a

roboticist may broadly characterize a cup as being made of

plastic, a material scientist is likely to define it more finely,

perhaps as polystyrene [34]. This is in part because different

fields study materials at different scales. At one end, a mate-

rial could be coarsely defined as a solid, and at the other end

as a group of atoms. The granularity at which a material is

perceived, therefore, depends on the level at which we wish

to interact with it. We take inspiration from the tree of life in

biology and define a taxonomy of materials, where the vo-

cabulary is chosen to be pertinent to tasks requiring visual

perception, and the structure is designed based on the phys-

ical traits of the materials.2 The purpose of this taxonomy

is to enable the creation of a framework that can (a) exploit

visual similarities among related categories to improve clas-

sification, (b) relate unknown materials to known ones, and

(c) make qualitative inferences about the mechanical prop-

erties of a material from its image.

2Modern phylogenetic trees of life are rooted in genome sequencing.

Before this, most trees of life were based on external morphology (i.e.,

visual appearance of organisms). In some ways, our approach represents

a blend of both methods: our material taxonomy is organized by physical

properties, but our recognition method utilizes passive visual imaging.
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Matter Solid Abiotic Metal Ferrous Iron, Steel

Non-ferrous
Aluminum, Brass,

Bronze, Copper

Rock Solid Mass
Granite, Limestone, Marble,

Sandstone, Shale, Quartz

Aggregate Dirt, Gravel, Sand

Ceramic Decorative
Glass, Plaster, Porcelain,

Stoneware, Terracotta

Structural Asphalt, Brick, Cement, Concrete

Polymer Textile
Cotton, Linen, Nylon, Polyester,

Silk, Wool, Carbon fiber, Carpet

Plastic
Elastomer, Foam, Paint, Ther-

moplastic, Thermoset, Wax

Biotic Natural Vegetation Flower, Foliage, Ivy, Shrub

Terrain
Grass, Moss, Plant

litter, Soil, Straw

Derivative Wood
Cardboard, Paper,

Timber, Tree bark

Animal Hide Fur, Leather, Suede

Food Fruit, Vegetable, Bread

Liquid

Gas

Phase State Composition Form Material

(a) Vocabulary Corpus

Field Tokens

Physical Sciences 1761 M

Computational Sciences 1400 M

Natural Sciences 917 M

Tech. & Applied Sciences 297 M

Medicine & Health Sciences 116 M

All 4191 M

(d) Mechanical Properties

Material
Density

[kg m−3]

Surface

Roughness

[µm]

Young’s

Modulus

[GPa]

Yield

Strength

[MPa]

Tensile

Strength

[MPa]

Brick 1600–2000 5–50 5–20 – 2–5

Iron 7150–7870 0.1–50 100–210 120–200 130–210

Polyester 1330–1380 0.004–0.006 3–7 – 200–500

Timber 400–900 5–50 6–18 25–140 40–150
...

(c) Material Taxonomy
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(b) Overall Word Occurrences

Figure 1. Framework for the Taxonomic Classification of Materials. (a) We search through archives of text in the scientific literature

to build a vocabulary for materials based on the frequency of word occurrences. (b) Shown here is the word occurrence plot for the 57

materials that are most popular in the fields listed in (a). Such a vocabulary can be generated for subfields as well (e.g., robotics). (c) Using

the vocabulary in (b), we create a taxonomy for the classification of materials. The structure of the taxonomy is organized based on the

physical traits shared by the materials. The advantage of this taxonomy in the context of recognition is that, even when a material cannot

be uniquely identified from its appearance, it still may be identified at a higher level in the taxonomy (form, composition, state, or phase).

Note that the taxonomy focuses on solids, but could be extended to liquids and gases as well in the future. (d) In some applications, it may

be useful to know how a material would behave when physically interacted with. To this end, we have listed the mechanical properties for

the materials in our taxonomy (the full list is in Sec. S4 of the supplemental material).
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A Vocabulary of Materials. Inspired by Bhushan et al.

[5], we first set out to create a vocabulary that includes all

types of materials an intelligent system might encounter.

We began with all the names of materials in WordNet [54].

We then scanned for occurrences of these names in histor-

ical corpora of text, ranging in focus from popular science

to niche conference and journal publications. The fields we

focused on are listed in Fig. 1a. The complete corpus has

billions of words and phrases sourced from M2D2 [59]. We

then aggregated word occurrences of synonyms, and each

synonym group is given a material name. We end up with

a distilled set of 57 categories, the word occurrence distri-

bution for which is shown in Fig. 1b. One could use all

of these categories, or, for a given application domain, one

could regenerate the distribution of word occurrences to find

the categories that are most relevant to that domain.

Hierarchical Representation. Next, we arranged the

above material categories into a taxonomy. Our taxon-

omy, inspired by Schwartz and Nishino [68], is shown in

Fig. 1c. The higher-level structure (phase, state, composi-

tion, and form) was derived from existing material classi-

fications used in the fields of material science, mechanical

engineering, and chemical engineering. Note that we fo-

cus on solids in our work as they are most relevant to vi-

sion applications such as robotics and autonomous driving.

Furthermore, the definitions of some of the materials have

been stretched to accommodate corner cases. This is be-

cause most engineered materials are made of multiple con-

stituent materials. In such cases, we deemed it more useful

to categorize by the dominant component. This taxonomy is

intended to serve as a starting point, and it can be expanded

(to include liquids, for instance) with time.

Mechanical Properties. For an intelligent system to

fully benefit from material recognition, it must know more

than just the names of the materials in its field of view. It

must also have an understanding of how each material will

behave upon interaction. To this end, we have compiled a

table of mechanical properties for each leaf (material) in our

taxonomy. The relevant parameters include density, surface

roughness, elasticity, and strength. The ranges for these pa-

rameters were obtained from existing literature in material

science and mechanical engineering. An abbreviated ver-

sion of this table is shown in Fig. 1d; the full table with all

the materials is in the supplemental material (Sec. S4).

4. Matador: A Material Image Dataset

To populate our taxonomy, we collected a dataset, named

Matador, that consists of over 7,200 samples across the 57

different materials in our taxonomy. Fig. 2 shows exam-

ples of samples in the dataset. For each sample, we capture

a close-up, high-resolution image of the local appearance

(color in Fig. 2a, grayscale in Fig. 2b) and a registered lidar

scan of the material’s 3D surface structure (Fig. 2c). The 3D

(a) Local

Appearance

(b) B&W Local

Appearance

(c) Lidar Local

3D Structure

(d) Surrounding

Global Context
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F

o
li

a
g

e
L

ea
th

er
T

re
e

B
a

rk
Figure 2. The Matador Dataset. (a-b) Each sample includes a

real-world image of a material taken at a high resolution and (c)

its 3D structure (depth map). (d) The surrounding context is also

captured. The dataset comprises „7,200 samples across the 57

material categories of the proposed taxonomy (Sec. 3).

structure was captured to enable us to generate additional

views of the material, corresponding to different magnifica-

tions, orientations, and camera settings. A wide-angle im-

age of the sample in its surrounding context is also captured

(Fig. 2d). Matador is unique in three respects: (a) the di-

versity of materials it includes, (b) the hierarchical labels

assigned to samples, and (c) the use of 3D structure to gen-

erate novel views. It is available on the Matador webpage.

Data Collection. To collect the dataset, we developed an

iOS application. A smartphone allows for increased mobil-

ity when capturing in-the-wild samples, meaning the user

can image the sample at the camera’s minimum focus dis-

tance to maximize spatial resolution. We chose the iPhone

15 Pro Max as our platform for the quality of its cameras

and lidar.3 For each sample, the local appearance and 3D

structure are captured using the wide-angle camera (12MP,

74° FOV) and lidar (100 points/degree2, 74° FOV). Subse-

quently, an additional context image is taken from a more

distant viewpoint using the ultrawide-angle camera (12MP,

104° FOV). Both images (appearance and context) are 12-

bit Bayer raw. For cases where one may wish to register

the local and context images, we also record the phone’s

3Among tested smartphones, the iPhone 15 Pro Max has the only lidar

capable of capturing depth maps at close distances (around the camera’s

minimum focus distance of „15 cm). We use lidar since stereo matching

can be unreliable for weakly textured materials. Additionally, the iPhone

15 Pro Max has superior optical performance with a measured MTF50 of

0.240 cycles/pixel compared to, e.g., the Pixel 8 Pro’s 0.158 cycles/pixel.
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Figure 3. Rendering Novel Views from a Real-World Sample. From a captured material sample, we simulate its appearance under

different magnifications, orientations, and camera settings. (a) We first create a 3D mesh and texture map it with the appearance image. We

then apply spatial transformations to the mesh to change its pose. (b) The optical image of a novel view (including depth of field effects) is

obtained by raytracing. It is then blurred to account for pixel area, and the result is sampled to produce the discrete image. Finally, noise is

added, resulting in the novel view. By varying the parameters in this process, we render numerous novel views for each real-world sample.

motion during the time between the two captures using the

phone’s inertial measurement unit. Since the data collec-

tion is done in the wild, lighting and camera viewpoint vary

across samples. We have publicly released the iOS applica-

tion, enabling Matador to grow in size and scope over time.

Rendering Novel Views. Using the 3D structure of the

captured sample, we can simulate images under different

magnifications, orientations, and camera settings. This pro-

cess is outlined in Fig. 3. We begin by creating a 3D mesh

from the depth map and texture-mapping it with the sur-

face radiance values measured in the local appearance im-

age. Spatial transformations are then applied to the mesh to

change the pose of the original sample. For the purpose of

view generation, we assume the sample to be Lambertian

and do not alter illumination (each Matador class already

captures a wide variety of point and extended sources). A

high-resolution (optical) image for a novel viewpoint is then

generated by raytracing the mesh, using a thin-lens model

to include depth-of-field (defocus) effects [32]. Raytracing

implicitly accounts for occlusions and perspective effects,

which are both important in the case of significant surface

depth variations. To produce the discrete image, we first

blur the optical image with a box filter whose support is

equal to the pixel active area. The result is then sampled by

a pulse train with period equal to the pixel pitch. Finally,

we add photon and sensor noise to produce the novel view.

By altering the pose of the sample, defocus of the lens,

pixel active area, pixel pitch, and image noise level, we can

simulate how an arbitrary camera would image the sample

at any magnification and orientation. Many novel views are

rendered for each sample (see Fig. 4). This process is ap-

plied to all „7,200 raw samples in the Matador dataset to

obtain a larger and more diverse set of material images to

supplement model training, which we show improves gen-

eralization to real-world settings (Sec. 5).

Generalization Test Set. To evaluate the impact novel

views have on recognition performance in the wild, we

construct an additional out-of-distribution (OOD) test set.

Given a material sample in Matador, we begin with the

Figure 4. Rendered Novel Views for Gravel. Examples of the

many novel views rendered from a single real-world sample of

gravel (left) using the process described in Sec. 4.

region of interest (ROI) defined in the appearance image.

Using the depth map and motion between appearance and

context captures, we map the ROI onto the context image

and extract a patch of similar scale. Accelerometer noise

means this patch does not exactly align with the ROI seen

in the appearance image, and instead captures a different

area on that instance of material. In addition, as the context

image has a different viewpoint, image sensor, and field of

view, the resultant patches comprise an OOD test set. See

Sec. S2.4 of the supplemental material for further details on

the construction of this test set, as well as example images.

5. Recognizing Materials

We now describe a method that leverages our proposed tax-

onomy to recognize materials from their local appearance.

Consider the materials “iron” and “brass” in Fig. 1c; they

are distinct classes but share a common ancestor, “metal”,

which is characterized by a range of mechanical properties.

They are arranged in the taxonomy according to their me-

chanical properties, and we speculate that materials with

close taxonomic proximity may share visual traits. While

not guaranteed, should such similarities exist, our aim is to

exploit them for recognition. In addition, in cases where

we are unable to recognize a local appearance as “brass”, it

would still be useful for a downstream application to know

that it is a metal. For this reason, we design our recognition

method to account for the structure of our taxonomy. To

this end, we use a graph neural network (GNN) to encode

the structure of the taxonomy and thereby constrain how

materials share features in latent space (based on their taxo-
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nomic proximity). While training this model, our objective

is to predict an image’s full taxonomic classification, i.e.,

the class at each level of the taxonomy. We refer to this

approach as hierarchical material recognition.

To achieve hierarchical recognition, the proposed taxon-

omy is first translated into a directed graph G “ pV, Eq,

where V is the set of nodes in the taxonomy and E is the set

of edges that represent parent-child relationships. We then

treat recognition as a node classification task. Given a set

of images T , the label for each image x is the hierarchical

path of the material in the taxonomy ℓ Ď V . For exam-

ple, the label of an image of steel would be {solid, abiotic,

metal, ferrous, steel}. The set of all images whose label

set ℓ contains the node vi is then Ti “ txj P T | vi P ℓju. We

initialize a learnable vector for node vi in our graph model

with the average image features over Ti, produced by an en-

coder ϕ such as a convolutional neural network. Explicitly,

the initial feature vector of vi is h0
i “ 1

||Ti||

ř

xjPTi
ϕpxjq. To

classify an image x, a global node hg “ ϕpxq is inserted into

the graph with outgoing edges to every other node.

For our construction, we use a graph attention network

(GAT) [76]. The message passing update for a node vi at

level k of the model is therefore defined by the relation:

hk`1
i “ ψa

`

hk
i ,‘jPNi

`

αk
ij ψb

`

hk
i , h

k
j

˘˘˘

, (1)

where ψa and ψb are multi-layer perceptrons. The local

neighborhood Ni of node vi is fixed by the adjacency matrix

of G, and ‘ is a permutation-invariant aggregation function

(summation in our case). The edge attention mechanism

αk
ij denotes the connective strength between node vi and its

neighbor vj, and this is used to weigh the sharing of visual

traits amongst taxonomy nodes (e.g., from individual child

nodes to their parent). Since Eq. (1) only operates on the lo-

cal neighborhood of each node, we cascade up to D layers

to match the diameter of the taxonomy and propagate up-

dates throughout the model. Residual connections are also

added between layers to mitigate oversmoothing gradients.

We jointly train ϕ and the GAT classifier (α, ψa, ψb) end-

to-end, where ϕ is a ResNet50 [30] initialized by pretrain-

ing on the IG-1B [50] and ImageNet1k [20] datasets. As

our goal is multi-label hierarchical classification, we use bi-

nary cross-entropy (BCE) as our loss on the label set ℓ “
“

ℓ0, ℓ1, . . . , ℓD´1
‰

. We also use cross-entropy (CE) as our

loss for each hierarchy level. The full loss is a greedy com-

bination of both: max
´

BCEpℓ̂, ℓq, 1
D

řD´1

d“0 CE
´

ℓ̂d, ℓd
¯¯

,

where the first term encourages learning complete hierar-

chical paths, and the second term encourages correct pre-

dictions within each level of the hierarchy.

5.1. Flat Classification

To validate our model, we first compare its perfor-

mance with recent methods on standard material recog-

nition datasets. These local appearance datasets include

Table 1. Efficacy of Graph Representation Learning. We

compare our hierarchical model with recent material recognition

methods. In all cases, including ours, a ResNet50 feature extrac-

tor was used. The best overall results are highlighted in bold,

and the second best are underlined. Leveraging the structure of

our taxonomy through graph representation learning yields sig-

nificant improvements in recognition performance.

Top-1 Accuracy Ò

Method KTH-2-b FMD GTOS GTOS-M

DeepTEN [93] 82.0˘3.3 80.2˘0.9 84.5˘2.9 —†

MAPNet [90] 84.5˘1.3 85.7˘0.7 84.7˘2.2 86.6

DSRNet [91] 85.9˘1.3 86.0˘0.8 85.3˘2.0 87.0

FENet [83] 86.6˘0.1 82.3˘0.3 83.1˘0.2 85.1

CLASSNet [11] 87.7˘1.3 86.2˘0.9 85.6˘2.2 85.7

DFAEN [88] 86.3 86.9 —† 86.9

RADAM [63] 88.5˘3.2 85.3˘0.4 81.8˘1.1 81.0

FRP [23] 90.7 88.8 —† —†

Ours 93.5˘4.0 96.1˘0.6 87.9˘2.1 92.2

† Value not reported in the original work.

KTH-TIPS2-b [7], FMD [69], GTOS [84], and GTOS-

Mobile [85]. KTH-TIPS2-b extends CUReT [18] and is

a BTF dataset where materials are imaged in a controlled

setting with different magnifications, orientations, and illu-

minations. FMD includes a similar number of materials,

but the images are instead aggregated from online sources.

GTOS is larger in scope, comprising radiometric images of

ground terrain captured using specialized hardware. GTOS-

Mobile extends GTOS by adding smartphone images for a

subset of the original GTOS materials. Further dataset de-

tails can be found in the supplemental material (Tab. S1).

To evaluate the performance of our model, categories

from the above datasets are mapped into our taxonomy, re-

naming and inserting leaf nodes as necessary. This process

does not alter the high-level structure of the taxonomy. We

measure test accuracy on multi-class flat classification after

training our model with multi-label hierarchical learning.

The top-1 accuracy is reported in Tab. 1, where all models

use the same ResNet50 backbone. We can see our hierar-

chical, graph-based classifier results in a significant perfor-

mance increase with respect to existing methods.

Next, we evaluate the performance of our model on our

Matador dataset. For this evaluation, we emphasize perfor-

mance on the materials in Matador that we deem to have

sufficient texture to be identifiable using local appearance

alone. We create a subset of Matador where materials such

as glass, plastics, and paint are omitted as they are flat in

appearance. In addition, some material classes are consoli-

dated into a single class. For instance, all metals have sim-

ilar appearances (finishes) except for changes in hue, and

hence are combined into a single category. With these omis-

sions and consolidations, we arrived at a dataset containing

37 material classes with „6,600 samples. We refer to this

slice of Matador as Matador-C1, and details of its construc-

tion are given in the supplemental material (Sec. S2).
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(a) Top-1 accuracy, ablating novel views during training of our models.

Top-1 Accuracy Ò

Method Params Matador Matador-C1 Out-of-Dist.†

Vision Foundation Models (Zero-Shot)

CLIP [58] 151 M 24.8 40.0 32.3

GPT-4.1 [1] 1.76 T‡ 51.4 65.9 53.4

Material Recognition Models (ResNet50 Backbone, Finetuned)

DeepTEN [93] 24 M 79.2 88.8 61.5

DEPNet [85] 25 M 82.7 87.6 76.1

FRP [23] 28 M 74.8 89.4 71.0

MSLac [55] 24 M 82.6 88.5 75.4

Modern Image Recognition Models (Finetuned)

ConvNext-V2 [80] 28 M 83.1 89.7 81.9

EVA-02 [21] 22 M 85.8 90.1 82.7

Hierarchical Material Recognition Models (Various Backbones)

Ours (ResNet50) 28 M 85.8 94.1 82.9 (+2.8)
,

.

-

Gain

from

Novel

Views

Ours (ConvNext-V2) 31 M 85.9 94.2 86.8 (+2.4)

Ours (EVA-02) 24 M 88.3 94.7 87.0 (+4.9)

† Train on appearance images, evaluate on patches of context images.
‡ Unreported for GPT-4.1, value reported is for its predecessor GPT-4.
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(b) “Ours (ResNet50)” top-1 accuracy on Matador-C1 by taxonomy level.

Figure 5. Performance on Matador. (a) Comparison with exist-

ing methods. The best overall results are highlighted in bold, and

the second best are underlined. Our model demonstrates state-

of-the-art recognition, and supplementing training with rendered

novel views enhances performance on out-of-distribution (OOD)

data (see Sec. 4). (b) Hierarchical classification accuracy. Note

that accuracy increases with the taxonomy level, suggesting that

exploited visual similarities at lower levels improve recognition at

higher levels, and that an image may be correctly classified at a

higher level (e.g., form) even when its material class is uncertain.

The performance of our method and existing methods

on the full Matador dataset and the consolidated Matador-

C1 dataset is summarized in Fig. 5a. All finetuned mod-

els are trained with the same optimizers (Muon [33] and

AdamW [49]). Compared to previous methods, we again

achieve state-of-the-art performance. We additionally show

how supplementing the training data with rendered novel

views considerably improves generalization to OOD imag-

ing conditions (up to 4.9%). We refer the reader to Sec. S3

of the supplemental material for class-specific accuracies of

our model, its performance on grayscale images, and com-

peting material recognition model performance when only

finetuning the classifier head instead of the entire model.

5.2. Hierarchical Classification

Though we use hierarchical inference during training of our

model, to this point, we have only reported performance for

flat classification of the taxonomy leaves. We now examine

the capability of our model for multi-label hierarchical clas-

sification. Standard methods for hierarchical classification

use a deterministic [70] or probabilistic [26] walk down the

levels of the tree. Using these techniques, there is a risk of

outputting invalid label combinations unless care is taken to

enforce the hierarchy structure (e.g., through a specialized

loss function or inference routine). In our case, we encode

the hierarchy structure in the GNN and also use a hierar-

chical loss function. For this evaluation, however, we do

not enforce hierarchical consistency in the inference routine

(which we do later in Sec. 6). In Fig. 5b, we present classi-

fication accuracy on Matador-C1 for each level of the tax-

onomy. As expected, we see higher performance at higher

levels of the taxonomy where the number of classes is fewer.

This result suggests that using a GNN to encode the taxon-

omy structure effectively guides hierarchical learning by ex-

ploiting any shared visual traits amongst taxonomy nodes.

It also implies that when we are unable to correctly recog-

nize an image at the finest level (material), we may still be

able to recognize it at a coarser one (e.g., form).

6. Implications and Extensions

We now show how our proposed model may be used in prac-

tice and discuss potential extensions of our work.

Probing Materials in a Scene. In many vision tasks,

such as navigation, it is desirable to know the material at an

arbitrary point in a scene. That is, we would like to query

a pixel in an image to determine its material. As noted

in Sec. 4, materials may appear very different at different

scales. Therefore, what is a good strategy for selecting an

appropriate region around a probed image point to use for

classification? If depth is available, one could fix the win-

dow size using metric units. Here, as in Sec. 5, we focus

on the more common case where depth is not available dur-

ing inference. Given a probed image pixel, we use win-

dows of increasing size from 64ˆ64 px2 to 1024ˆ1024 px2.

These windows are passed through our model using Monte

Carlo dropout [25, 38] to build a distribution of the predic-

tions. This distribution and its entropy then guide a best-

first search of the taxonomy tree to obtain a hierarchically

consistent classification for the chosen image point.

Fig. 6 shows the above probing approach applied to sev-

eral points in an imaged scene. In each case, the window

that produced the highest confidence classification is dis-

played. Note that all probed points in this scene are at sig-

nificantly greater distances (lower magnifications) than the

training samples in Matador. Yet, we are able to correctly

classify most of the points due to the rendered novel views

used during training. In cases where we are unable to cor-

rectly identify the low-level material, we can still recognize

it at a higher level of the taxonomy. Two examples of this

are the wool blanket on the couch that was classified as car-
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Figure 6. Probing Materials in a Scene. Given an image, we can probe the material at a point to determine its taxonomic classification.

For each probed point, we automatically find the window size that maximizes classification confidence. Each classification is hierarchical,

and the finest level that exceeds a confidence threshold is shown in bold. We can associate the predicted material with its known mechanical

properties to provide information that could be useful, e.g., for robot manipulation. These properties (e.g., “Strong, Rigid, Light”) are listed

below the finest classification achieved by our model. Strong v. Fragile is determined by a tensile strength threshold, Rigid v. Deformable

by a Young’s modulus threshold, and Heavy v. Light using a density threshold.4 Note that when we are unable to identify the exact material

(e.g., the wool blanket misclassified as carpet), we still achieve correct classification (“textile”) at a coarser level in the taxonomy.

pet and the soil in the planter that was classified as moss. A

natural extension of this method is to apply probing to all

pixels in the image and then use neighboring pixels to in-

hibit or reinforce the classification of each pixel. The result

would be a material-based segmentation of the entire scene.

What about Unseen Materials? We now discuss an

important extension to material recognition: few-shot learn-

ing [22, 27, 47, 61] of novel categories. Such a capability

is desirable for an intelligent system to infer the mechanical

properties of previously unseen materials. We evaluate our

hierarchical model in this setting by training copies on mod-

ified versions of the Matador-C1 dataset, each having a sin-

gle material category held out. In Fig. 7, the blue plot shows

the average accuracy of our model on the held-out class as

a function of the number of held-out samples reintroduced

into training. Note that novel material classes are learned

rapidly. The red plot shows the average path distance, i.e.,

the number of edges (hops) between the predicted node and

the correct node in the taxonomy. We observe that, with as

few as 16 samples of a novel class, we achieve an average

accuracy of „90% and an average path distance of less than

2 hops. The latter suggests that our model, using a small

number of samples, is able to learn the hierarchical label of

a material in our taxonomy that has not been seen before.

Even when the model is unable to correctly recognize the

material, it is able to identify it correctly at one level higher

in the taxonomy. This potential for rapid adaptation could

enable intelligent systems to learn novel materials added to

our taxonomy (e.g., liquids and gases) with little expense.

7. Summary

In this work, we have introduced a taxonomy of materials

suited for visual perception, a diverse dataset (Matador) of
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Figure 7. Few-Shot Learning of New Materials. (Blue Plot) Av-

erage performance for classes not seen during pretraining, as a

function of the number of training samples reintroduced during

finetuning. The plot shows that novel classes can be learned with

a small number of samples, achieving „90% accuracy with just 16

samples. (Red Plot) With the same number of samples, misclas-

sifications are, on average, localized to siblings at the lowest level

of the taxonomy (i.e., “Materials” with the same “Form”).

material images, a rendering-based training augmentation

that improves OOD model generalization, and a graph rep-

resentation method that leverages the taxonomy for visual

recognition. On existing datasets and Matador, we have

shown the efficacy of hierarchical learning using graph at-

tention. We demonstrated the ability of this model to es-

timate the taxonomic class of a material, and to quickly

adapt to unseen materials through few-shot learning. We

believe that hierarchical material recognition can help in-

telligent systems perform more sophisticated tasks and, in

addition, achieve higher levels of safety and reliability.

4Thresholds used are 1 MPa, 12 GPa and 1,600 kg m−3, respectively.
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