
ScanEdit: Hierarchically-Guided Functional 3D Scan Editing

Mohamed El Amine Boudjoghra1 Ivan Laptev2 Angela Dai1

1Technical University of Munich 2MBZUAI

Figure 1. ScanEdit enables instruction-driven editing of complex, real-world scenes by rearranging their 3D scans. Given an input 3D
scan and its object-level decomposition, we formulate a hierarchically-guided, multi-stage LLM-based approach that transforms high-level
user instructions into concrete, tractable local instructions for objects, which can then be globally optimized to achieve the functional
instruction. In this example, ScanEdit rearranges chairs, tables and a coffee machine to create a coffee drinking area.

Abstract

With the fast pace of 3D capture technology and resulting
abundance of 3D data, effective 3D scene editing becomes
essential for a variety of graphics applications. In this
work we present ScanEdit, an instruction-driven method
for functional editing of complex, real-world 3D scans. To
model large and interdependent sets of objects, we propose
a hierarchically-guided approach. Given a 3D scan de-
composed into its object instances, we first construct a hi-
erarchical scene graph representation to enable effective,
tractable editing. We then leverage reasoning capabili-
ties of Large Language Models (LLMs) and translate high-
level language instructions into actionable commands ap-
plied hierarchically to the scene graph. Finally, ScanEdit
integrates LLM-based guidance with explicit physical con-
straints and generates realistic scenes where object ar-
rangements obey both physics and common sense. In our
extensive experimental evaluation ScanEdit outperforms
state of the art and demonstrates excellent results for a va-
riety of real-world scenes and input instructions. Our code
is available at aminebdj.github.io/scanedit

1. Introduction
The abundance of multi-view RGB and RGB-D sensors,
now available even on commodity phones, enables conve-

nient capture and detailed reconstruction of complex real-
world 3D scenes. This opens up exciting possibilities for
various applications in content creation, virtual and aug-
mented reality, architectural design, robotics, and more. To
fully leverage the captured 3D data, however, it is often es-
sential to perform editing and rearrangement of the captured
scenes – for instance, re-organizing objects for content cre-
ation where iterative editing is a fundamental paradigm, or
enabling a robot to visualize the goal state of the environ-
ment given the target task.

Recent works have established the potential of leverag-
ing powerful, pre-trained vision-language models (VLMs)
for 3D scene synthesis, employing object retrieval from a
synthetic 3D object database [11, 44, 56] to populate con-
structed 3D layouts to produce a 3D scene. Such VLMs
enable interpretation of a natural language prompt to con-
struct a 3D scene layout supporting synthetic 3D object
assets adhering to the prompt. While this showcases the
potential for leveraging high-level VLM-based reasoning,
such generated 3D layouts populated with synthetic assets
are much simpler than complex, cluttered, real-world envi-
ronments (e.g., often hundreds of objects in the real-world
scans we operate on, while synthetic scene synthesis ap-
proaches often generate an average number of 5 objects per
scene) [29, 45]). We thus propose the first approach to ad-
dress text-based editing of complex, real-world 3D scans
by leveraging a localized prompting approach which can

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

27105

provide reliable per-object initializations for our proposed
graph optimization. In order to handle the large number
of objects common in real 3D environments (e.g., we oper-
ate on scenes with 69-306 objects, which can easily over-
whelm the context size of a VLM/LLM), we decompose
the editing task into multiple stages, tackled hierarchically.
We first construct a hierarchical scene graph and identify a
relevant subgraph for the input prompt. For each object in
the subgraph, we then transform the input prompt into low-
level per-object instructions grounded in the object’s refer-
ence frame, which is used to generate concrete object place-
ments, performed by iteratively traversing our hierarchical
scene graph. Finally, we use these object placements as ini-
tialization, and combine LLM-generated scene graph con-
straints with convex differentiable losses based on 3D object
relations to achieve a physically and semantically plausible
edited 3D scene. An example of scene rearrangement gen-
erated by our method is illustrated in Figure 1.

Our contributions are summarized as follows:
• We construct a hierarchical scene graph representation,

leveraging LLM reasoning capabilities to compose graph
relations, in order to enable multi-level scene analysis for
functional scene editing, capable of handling complex,
real-world 3D scans.

• We develop a scene graph optimization suitable for the
highly diverse nature of 3D scans, employing both LLM-
based object constraints in tandem with 3D-based phys-
ical constraints to avoid collisions and boundary vio-
lations, producing meaningful and plausible edited 3D
scenes.

2. Related Works
Classical retrieval-based 3D scene modeling. Creating
realistic 3D scenes requires spatial understanding of object
arrangements, in order to produce a 3D scene layout popu-
lated with objects from a 3D database.

One can capture such knowledge by analyzing object
co-occurrence patterns, such as how often certain objects
appear together in real-world environments [12]. Another
approach involves learning from human interactions, us-
ing affordance maps that show how people move and use
objects within a space [14, 15, 23, 26]. To generate
well-structured layouts, previous works have explored var-
ious optimization techniques, including non-linear meth-
ods that refine object placements based on spatial con-
straints [4, 13, 31, 53, 57, 59]. Although these methods can
generate plausible layouts, they do not support complex rea-
soning required for interpreting high-level natural language
prompts to enable rearrangement of 3D scans.

Learning for retrieval-based 3D scene synthesis. Ad-
vances in deep learning encouraged adoption of various
techniques for 3D scene synthesis, using feed-forward net-

works [51, 61], VAEs [30, 54], GANs [55], and autoregres-
sive models [52]. A popular approach is to employ autore-
gressive models [24, 34, 47–49] to predict object arrange-
ments in a sequential fashion, and explicitly model relations
among objects at the cost of spatial complexity.

Diffusion-based methods [19, 37, 38, 40, 41] overcome
some of these limitations by modeling object distributions
holistically. Recent methods such as LEGO-Net [50], Com-
monScene [60], and DiffuScene [45] further improve scene
plausibility and coherence. These methods excel at uncon-
ditional scene generation, but focus on relatively simple
synthetic scenes with 10-20 objects maximum, while we de-
velop a hierarchical approach to tractably address complex,
real-world scenes with hundreds of objects.

3D shape and scene editing. 3D editing has been ad-
dressed by a number of works. Most methods focus on
3D shape editing [5–9, 18, 32, 36], while more recent ap-
proaches tackle the more complex task of editing larger-
scale 3D scenes [2, 17, 28, 43, 46]. Text2Room[20] gen-
erates 3D scenes from text via mesh optimization, while
RoomDreamer[39] relies on scene graph prediction and lay-
out sampling. Such methods focus on flexibility in local-
ized editing, which in complex scenes can often alter object
instance identities. In contrast, we edit the original scene
mesh representation by re-arranging objects to satisfy high-
level, functional text prompts.

LLMs/VLMs for retrieval-based 3D scene synthesis. An-
other recent direction of work explores 3D scene genera-
tion by synthesizing intermediate representations, such as
scene graphs or layouts, paired with an asset repository
[11, 16, 25, 27, 33, 56, 62]. While older methods [27]
perform scene editing using graph and text via rule-based
scene graph matching and retrieval, the rise of Large Mul-
timodal Models (LMMs) has opened up new possibilities
for open-ended and flexible scene understanding [1, 3]. For
instance, LayoutGPT [11] uses language models to directly
produce 3D layouts for indoor scenes. Similarly, Holodeck
[56] employs large language models (LLMs) to generate
spatial scene graphs, which are then used to optimize object
placements, while [21] uses a loop where an LLM gener-
ates Blender code to render a scene, then refines it based
on the output. Another approach, LayoutVLM [44] and
[10], adopt a differentiable optimization based method for
synthesizing 3D scenes from textual instructions. A re-
cent work, Fireplace [22], addresses object placement in 3D
scenes by leveraging large multimodal models (LMMs) and
solving geometric constraints to achieve a logical placement
of new objects. Unlike retrieval-based methods, Gala3D
[62] uses an LLM to generate object arrangements from
text, then applies Gaussian splatting and optimization for
plausible layouts. In contrast, we aim to perform functional
editing of real-world 3D scans, which are often complex,
with far more objects (our scenes contain 69-306 objects),

27106

Figure 2. Overview of ScanEdit. Given an input instruction I for a scene mesh M that has an instance decomposition and is reconstructed
from RGB-D sequence R, we output an edited scene according to the instruction I. We first construct a hierarchical scene graph G using
3D and VLM reasoning to annotate graph node and edge attributes. Since this graph may be very large in size, we then identify the relevant
subgraph Gs for I. Our planner then breaks down the high-level instruction I into low-level object instructions, validates them, and creates
an instruction queue. We traverse the instruction queue hierarchically in order to place objects as initialization for the new output scene,
followed by a scene optimization over both LLM-generated scene constraints as well as physical 3D collision constraints, to produce the
output edited scene. In this example, the two vases on the top of the bookshelf are moved to the table in the 3D scan. Note that since
real-world 3D scans are partial, some holes can be visible (e.g., in the output wall) after re-arranging objects.

requiring our hierarchical approach to characterize tractable
editing while employing LLMs and VLMs.

3. Method

Given an input natural language text instruction I to edit
a 3D scan M reconstructed from an RGB-D sequence R
and decomposed into N semantic instances {o1, ..., oN},
we aim to predict an edited, rearranged scene M′ as out-
put based on I. The edited output scene M′ is composed
by re-arranging the object instances {oi} with new locations
and orientations defined as transformations Ti ∈ R4×4. The
Ti must lead to a physically plausible (without colliding or
floating objects) scene configuration, while adhering to the
instruction I.

To achieve the above goal, we first construct a scene
graph G = (N,E) representing M, where we deploy
a VLM Γ to annotate attribute features for the graph
nodes N representing each object, as well as annotate the
object-object edge hierarchical relations represented by E
(Sec. 3.1). As the full scene graph G is typically large
and contains hundreds of objects, we then identify the sub-
graph Gs relevant to I using an LLM agent (Sec. 3.2).
For each object in Gs, we then decompose I into local-
ized, object-specific instructions that should be performed
to achieve I (Sec. 3.3). These instructions are then inter-
preted through our hierarchical object placement for an ini-
tial output scene (Sec. 3.4). Finally, we optimize the edited
scene M′ by combining LLM-generated functional scene

constraints with physical 3D scene constraints.
An overview of our method is presented in Figure. 2.

3.1. Hierarchical Scene Graph Construction
Our hierarchical scene graph G = (N,E) provides a com-
pact and holistic representation for scene M to facilitate
scene editing. Each node in G represents an object in
M, and the scene hierarchy is established based on several
intra-object edge relationships: ‘on top of’, ‘facing’, and
‘against wall’. Initially, nodes are simply given by the ob-
ject instance masks of the geometry, and we further estimate
node attributes and edges from the input scene information.
We leverage LLMs for commonsense reasoning in object
arrangement and enhance their limited spatial understand-
ing by incorporating spatial information from 3D geometry
into the scene graph. Our focus is on three specific edge
type (‘on top of’, ‘facing’, and ‘against wall’) where LLMs
typically struggle, unlike simpler relations such as distance
or regular patterns, which they handle more reliably.
Node-specific attributes: Each object node oi ∈ N is char-
acterized by the following: Class ci; Color χi; Material mi;
Short Description di; Front Normal F⃗i; Point Cloud Pi and
Support Surfaces Si.
Node-to-node relations: We encode these as directed edges
eoi→oj = oi → oj in the scene graph, with possible edge
types as ‘on top of’, ‘facing’, ‘against wall. e

oi→oj
On−top−of

represents the relation where the object oi is on top of one
the surfaces of object oj , eoi→oj

Against−wall represents the rela-
tion where the object oi is against the wall oj , and e

oi→oj
Facing

27107

represents the relation where the object oi is facing oj .

Estimating node-specific attributes. Node attributes are
annotated using a VLM agent Γ. To provide Γ with suf-
ficient information, we use the RGB-D sequence R asso-
ciated with the 3D scan M and rasterize 2D masks of 3D
objects. Resulting image crops are used as input to VLM.
Color ci, Material mi, Short description di: These are all
text attributes estimated by Γ. They describe the most domi-
nant object color and material, as well as a short description
of fine-grained details. Sampled points Pi: We describe
the object geometry with sampled points on its surface at
≈ 1cm resolution.
Support surfaces Si: are the regions of oi that could poten-
tially support another object.

A support surface Si is defined by its set of contour
points S(i,c) that define the boundaries of the support sur-
face and the set of normals per contour point S(i,n⃗) that
point to the outside of the surface.
Estimating surface contour points S(i,c) and normals
S(i,n⃗): For a given surface level, we first identify contour
points as those farthest from the barycenter. To estimate
normals, we fit a spline interpolation to the contour, provid-
ing a smooth function from which we can sample points for
improved normal estimation. These contour points and nor-
mals are then used to compute boundary loss in our method.
Front normal F⃗i: We prompt the LLM to reason over the
class name to identify objects likely to have a front face that
can be extracted using a simple geometric cue: the region
farthest from the centroid within the top-10% of points. For
classes where the cue is less reliable, we fall back on ge-
ometric proxies such as the dominant axis of symmetry or
the average vertex normal direction to estimate F⃗i.

Estimating edges: We introduce an edge into the scene
graph between nodes (oi, oj), based on 3D spatial reasoning
in the scene to estimate the relations ‘on top of’, ‘facing’,
and ‘against wall’. We refer to the supplemental for further
details.

3.2. Relevant Sub-graph Identification
Real 3D scans typically contain hundreds of objects, lead-
ing to thousands of relationships between them. This large
amount of scene context can easily overwhelm the limited
context window of a LLM agent. However, we observe that
much of a scene graph may be irrelevant for a given instruc-
tion I. To simplify planning and reduce hallucinations, we
first employ LLM agent Ω to filter the input graph G, iden-
tifying only the relevant objects and relationships, which
results in a subgraph Gs ⊆ G as the input for the planner.
Relevant nodes include objects that need to be moved (in-
cluding their children in the scene graph) and their potential

target locations, while relevant relationships depend on spa-
tial prompts in the instruction.

3.3. Localized Planning
Given the relevant subgraph Gs for the instruction I, we
employ a planner LLM Ψ to generate a new edited subgraph
G′
s that should represent the edited scene according to I.

This is done by reconnecting edges of Gs to form the edited
scene graph, as well as generating corresponding node-level
instructions in the local reference frame of its parent.

Our LLM planner Ψ is invoked for Gs, and prompted to
generate a set of hypotheses as to how each object should
be transformed to adhere to I, and select the best out of the
generated hypotheses. This multiple hypothesis generation
and selection helps to maintain robustness against halluci-
nations and incorrect hypothesis generation. To promote the
best outcome, we prompt Ψ to generate multiple hypotheses
as object-level text instructions {Ioik } and select the most
suitable one Ioi . The LLM Ψ receives the sub-graph Gs

to be edited, with each node described with its geometric
information: dimensions, maximum height for support sur-
faces and objects on top of each surface. We prompt the
LLM Ψ to take into account these details, generating each
object’s hypotheses and select the best one based on geo-
metric plausibility. Since Ψ is also guided by the state of
the target objects’ support surfaces. It selects the most suit-
able surface based on available space and relevance.

The output of the planner will consist of an edited sub-
graph G′

s, where each node has a corresponding instruction
Ioi in natural language. In case Gs contains identical objects
but has to edit only one, Ψ is prompted to analyze their node
attributes and locations to edit the most logical one.

3.4. Hierarchical object placement
Our hierarchical placement agent, LLM Φ, is called multi-
ple times for each node in the edited sub-graph G′

s. Given
an object oj in G′

s, it determines the placement of its chil-
dren relative to it. For each child, the agent generates an
(x, y, z) position along with an orientation θ, specifying the
desired pose for all children in Children(oj). We denote
the relative position and orientation with the matrix trans-
form T (also shown in Figure 2). Additionally, it considers
possible constraints (denoted {C}), selected from ‘against
wall’, ‘on top of’, and ‘facing’ which are optimized during
the optimization step.

3.5. Scene Subgraph Optimization
In this section, we introduce a set of convex differentiable
loss functions designed to resolve graph edge constraints
generated by the Placement LLM Φ. The surface loss en-
sures that an object stays within the boundaries of a desig-
nated support surface, while the against-wall loss ensures
that the object is positioned correctly against a target wall

27108

(if applicable). We also include a geometric collision loss,
which helps resolve any collisions between the object and
nearby objects. In general, we introduce a geometric group
loss that preserves the structure of the groups during opti-
mization. In our method, the ‘facing’ constraint is resolved
in the hierarchical placement step where the child is placed
to face the parent if ‘facing’ is required, while the other two
edges types ‘on top of’ and ‘against wall’ are resolved in
the optimization phase. Unlike LayoutVLM [44] and [1],
our loss functions better capture the complexity of support
surfaces and object geometry by operating directly on point
clouds instead of simple bounding boxes.

“On-top-of” loss. Since LLMs are known to lack spatial
awareness during reasoning, the Object Placement LLM Φ
occasionally places objects in out-of-surface boundary loca-
tions to avoid collision with objects on the support surface.
To ensure that objects are in their designated support sur-
faces, we introduce a loss to encourage an object to stay in
the target support surface defined by constraint ‘on top of’
generated by the LLM.

Given an object oi and a target surface Sj , we define
the surface loss as the signed distance between the sampled
points Pi of object oi to Sj . The signed distance for a point
p to Sj can be computed as d(p) = (p − ps) · n⃗s where
ps and n⃗s are the closest point in the contour points Sj,c

and the normal Sj,n⃗ of that contour point in Sj respectively.
Finally, the loss is the average across all points:

LOn-top-of(Pi, Sj) =
1

N

∑
p∈Pi

max(0, d(p)).

“Against-wall” loss. Since some objects are naturally
placed against walls, if the target location for an object is
specified to be against a wall, we employ a loss to encour-
age the object to remain against its target wall during opti-
mization.

Given a wall defined by its world-to-wall transfor-
mation Twall and oriented bounding box (OBB) extents
Dxwall, Dywall, and an object oi to be placed against the
wall defined by its OBB extents Dxo, Dyo and center coi =
[coi,x, coi,y] where coi,x, coi,y are the x, y coordinates of the
object oi in the world coordinate system respectively. We
initialize the object oi with the same orientation as the wall,
aligning their coordinate frames. The object’s center is then
adjusted to be positioned at a fixed distance from the wall,
ensuring that the gap between their centers along the x-axis
in the wall’s coordinate frame is exactly Dxwall+Dxo

2 . This
guarantees that the object remains in contact with the wall
without penetrating it.

After transforming both the wall and the object into the
wall coordinate frame, they are aligned to face the positive

x-direction. The object’s position is then optimized to re-
main within ±Dywall

2 along the y-axis in this frame. The
object’s center in this coordinate frame is computed as:

cwall
oi = coi · T−T

wall

with OBB extents Dxo, Dyo. The against-wall loss is then
defined as:

LAgainstWall = ||cwall
oi,x − Dxwall +Dxo

2
||+ ||cwall

oi,y|| · OPT

where

OPT = 1

(
|cwall

oi,y| >
Dywall

2

)
.

This formulation allows the object to slide freely along the
y-axis within the boundaries of the wall.

Collision loss. LLM-generated placements often lead to
collisions between objects. To resolve collisions during op-
timization, we propose the loss to discourage collisions.

Given the set of nodes Nt ∈ N to be optimized for,
where N are the nodes of the graph G and Nt are the nodes
of Gs, for all objects oi ∈ Nt, we optimize a collision loss
Lcol,i that pushes the object away from other object geome-
try in the scene. Specifically, the center of oi should move
away from the centers of other objects in Gs, and any points
belonging to other objects in G that lie in the bounding box
of oi should be pushed away from oi’s points Pi. We denote
the set of points belonging to other objects’ surfaces that lie
in the bounding box of oi as Poi .

Lpush
col,i = (

1

n
·

∑
di∈d(Pi,Poi

)

max(0,∆− di)

+
1

nt − 1
·

∑
j∈Nt,j ̸=i

max(0,∆− ||ci − cj ||)),

where ci is the center of the ith object, d :
(Rn1×3,Rn2×3) → Rn1×n2 is a distance function evaluat-
ing all pairwise distances between two sets of point clouds,
n = n1 × n2, and nt is the total number of objects to be
optimized for.

Finally, we multiply the push loss Lpush
col,i by a stop con-

dition STOPcol which sets the loss to 0 if the object is not
colliding with any other objects anymore. We measure col-
lision by the minimum distance between the Pi and the Poi ,
where r is the resolution of the points Pi. which makes the
final collision loss

Lcol,i = Lpush
col,i · STOPcol,

where

STOPcol = 1(min(d(Pi, Poi)) < 4 · r).

The collision loss across all objects Nt is

Lcol =
∑

oi∈Nt

Lcol,i.

27109

Group loss. We define object groups by the sets of objects
that share the common support surface and are assigned to
the same parent in the scene graph. Generally, LLMs are ca-
pable of producing good arrangement of objects (e.g., chairs
in a circle or vases in a line) but some of these objects can
collide with other objects or be placed out of boundary. In
order to preserve the structure of these groups during op-
timization, we introduce a loss that preserves the relative
vectors between object centers similar to the initialization,
and keeps group members in a distance similar to the initial
distance to their group center.

Given a set of objects {o0, o1, o2} which belong to the
same group where gc is the parent node in the graph G′

s

defined by LLM Φ, and their updated center at step t is
Gt = [co0,t, co1,t, co2,t]. The group loss is defined as:

LGt =
∑

(oi,t,oi,0)∈(Gt,G0)

∑
(oj,t,oj,0)∈(Gt,G0)

||vi→j,0 − vi→j,t||,

where vi→j,t is the directional vector from object oi,t to oj,t,
and is defined as vi→j,t = coj ,t − coi,t.

Final optimization objective. For a set of constraints
{C} generated by the Placement LLM, the final objective
is a weighted sum of the losses of all constraints {C} that
is described by the graph loss LG , the group loss LGt

, and
the collision loss Lcol.

L = LGs
+ αLcol + γLGt

.

Gradient Update. For a given object oi placed on a sup-
port surface, we initialize its height to match that of the sur-
face. This reduces the optimization to only the x, y trans-
lation and rotation around the z-axis. We optimize the ob-
jective function L using stochastic gradient descent (SGD)
with a cosine annealing learning rate scheduler. For an ob-
ject oi with dimensions Dxi and Dyi along the x- and y-
axes, respectively, we optimize a transformation Ti with
three degrees of freedom: translation along x and y, and
a rotation by angle θ.

Each object oi is assigned a scheduler with a maximum
step size in the x, y plane given by (lri,x,max, lri,y,max) =
0.25 · (Dxi, Dyi). This scheduler ensures that the step size
is adapted to each object’s dimensions, allowing for a more
flexible and controlled optimization process.

4. Experimental setup
Our experimental setup includes 15 scenes, with 8 from
ScanNet++ [58] (validation set) and 7 from Replica [42].
We use on average 8 instructions per scene, totaling 126
evaluation samples.

Evaluation Metrics. We assess performance using both
perceptual and geometric metrics. The perceptual evalua-
tion is based on the judgment of 36 human subjects, where
each scores 20 random samples. It comprises a binary com-
ponent, where users choose the best result of two given
methods, and a unary component, where results of each
method are rated on a five-point scale. For the geometric
evaluation, we adopt PIoU from DiffuScene [45] to mea-
sure collisions. Since bounding box IoU only provides a
coarse collision estimate, we also introduce the ColVol mea-
sure that approximates the cumulative volume of colliding
object parts in a scene.

We also evaluate the percentage of objects that are not
floating (NoFloat), as well as the percentage of objects
within the bounds of the scene (InBound). For further de-
tails on the evaluation metrics we refer to the supplemental.

Baselines. We compare our method with state-of-the-art
methods LayoutGPT [11] and LayoutVLM [44]. Layout-
GPT relies on in-context samples retrieved to be similar to
the input instruction, to generate a layout for retieved 3D as-
sests. LayoutVLM uses a VLM for understanding the cur-
rent state of the layout of 3D objects along with rendered
images of the 3D scene to generate an arrangement of ob-
jects. This arrangement is obtained through VLM 3D intial-
ization followed by differentiable optimization for a set of
constraints also generated by the VLM.

5. Results
Comparison to state of the art. Table 1 shows a compar-
ison to state-of-the-art methods LayoutGPT [11] and Lay-
outVLM [44], evaluating geometric plausibility of edited
scenes from ScanNet++ [58] and Replica [42]. Our
hierarchically-guided approach outperforms both baselines
across all metrics. Both LayoutGPT and LayoutVLM strug-
gle with complex, cluttered scenes, the former further strug-
gling with spatial reasoning due to lack of optimization.

Figure 3 shows a qualitative comparison. Both Layout-
GPT and LayoutVLM have difficulty handling the com-
plex nature of real scan 3D scene environments, resulting
in more collisions and misplaced objects. In contrast, our
hierarchical decomposition enables more semantically and
geometrically plausible edited scene outputs. This is fur-
ther confirmed by our perceptual study, shown in Figure 5,

Table 1. Our method outperforms both LayoutGPT [11] and Lay-
outVLM [44] in all geometric and semantic metrics, due to our
hierarchical approach and joint scene optimization.

Method NoFloat (%) ↑ InBound (%) ↑ ColVol (m3) ↓ PIoU ↓ CLIP score ↑
LayoutGPT [11] 51.34 62.12 1.3802 0.499 21.9
LayoutVLM [44] 66.47 85.01 1.4813 0.507 21.6
ScanEdit (Ours) 88.87 99.22 1.3774 0.498 22.2

27110

Input LayoutVLM LayoutGPT Ours

Figure 3. Qualitative comparison with baselines LayoutGPT [11] and LayoutVLM [44]. Red circles denote strong geometric errors (large
collisions, out-of-boundary). Our method shows strong performance in adhering to the instruction while achieving physical plausibility.

27111

Figure 4. Ablation visualization over loss components. Our final loss with all components produces physically plausible results.

where our method is strongly preferred by participants, who
also rate our edited scene results as having notably better
layout quality and adherence to text inputs.
Editing with machine-generated masks. Figure 2 (sup-
plementary) shows edits using class-agnostic masks from
Mask3D [35], demonstrating strong adherence to instruc-
tion and physically plausible results.
Filling post-editing holes. Section 1 (supplementary)
details our plane extrapolation method, with completed
meshes shown in Figures 1 and 5.

5.1. Ablation studies
What is the impact of the joint scene optimization? In
Table 4 we evaluate our approach without the final scene
optimization (w/o Opt., using the object placement step as
final object transforms). Our optimization shows a notable
improvement, as it helps to resolve physical inconsistencies
such as floating, colliding, or out-of-boundary objects.
What is the impact of our hierarchical planning, place-
ment, and optimization? We also consider a simplified
variant of our approach that relies on an LLM to directly
generate object transforms for the relevant objects to be
moved (w/o Plan. & Place w/o Opt. in Table 1). This
yields low geometric performance, due to the LLM’s lim-
ited 3D spatial understanding. This leads to more objects

Figure 5. Our perceptual study shows that users strongly pre-
fer our method compared to baselines LayoutGPT [11] and Lay-
outVLM [44], in both of adherence to text instruction (AT) and
layout quality of the edited scene (QL).

being placed outside the room boundaries, as reflected in
the low InBound score, as well as increased collision cases,
indicated by higher ColVol and PIoU values. Additionally,
many objects are left floating, as seen in the low NoFloat
score. In contrast, our proposed hierarchical planning and
placement, followed by scene optimization significantly im-
proves output scene plausibility, see also Figure 4.

Table 2. Ablation over eight scenes. Contribution of our Planner
(Plan) together with Placer (Place), and optimization (opt).

Method NoFloat (%)↑ InBound (%)↑ ColVol (m3)↓ PIoU ↓ CLIP score ↑
w/o Plan. & Place w/o Opt. 51.47 61.78 1.3473 0.475 22.1
w/o Opt. 77.08 90.08 1.3693 0.482 22.2
ScanEdit (Ours) 88.41 99.77 1.3381 0.472 22.4

Limitations. While our approach shows effective editing
results for various complex real-world 3D scans, multiple
limitations remain. One challenge is accurately identify-
ing small or long-tail objects when relying on machine-
generated masks. Moreover, while LLMs are quite pow-
erful in determining which objects should be transformed,
and potential coarse locations, they nonetheless still lack
knowledge in more perceptual reasoning, which our 3D op-
timization constraints also do not consider. For instance,
we can find possible locations for a vase on a table to move
onto a shelf based on what would spatially fit, but we cannot
account for which possibilities would be the most common
sense ones or the most aesthetically pleasing.

6. Conclusion
We have introduced ScanEdit, a hierarchically-guided ap-
proach to decompose high-level, natural language edits for
3D scenes into structured, holistic scene edits. This en-
ables editing of complex, real-world 3D scans composed
of hundreds of objects. Our use of LLM-generated high-
level scene constraints together with 3D spatial constraints
enables produced re-arrangements of 3D scans that achieve
physically and semantically plausible edited 3D scans. We
believe this represents an important step towards natural
editing of complex 3D scans for various content creation
scenarios.

27112

Acknowledgements
This work was supported by the ERC Starting Grant Spa-
tialSem (101076253).

References
[1] Rio Aguina-Kang, Maxim Gumin, Do Heon Han, Stew-

art Morris, Seung Jean Yoo, Aditya Ganeshan, R Kenny
Jones, Qiuhong Anna Wei, Kailiang Fu, and Daniel Ritchie.
Open-universe indoor scene generation using llm program
synthesis and uncurated object databases. arXiv preprint
arXiv:2403.09675, 2024. 2, 5

[2] Alexey Bokhovkin, Quan Meng, Shubham Tulsiani, and
Angela Dai. Scenefactor: Factored latent 3d diffusion
for controllable 3d scene generation. arXiv preprint
arXiv:2412.01801, 2024. 2

[3] Ata Çelen, Guo Han, Konrad Schindler, Luc Van Gool, Iro
Armeni, Anton Obukhov, and Xi Wang. I-design: Personal-
ized llm interior designer. arXiv preprint arXiv:2404.02838,
2024. 2

[4] Angel Chang, Manolis Savva, and Christopher D Manning.
Learning spatial knowledge for text to 3d scene generation.
In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 2028–2038,
2014. 2

[5] Hansheng Chen, Ruoxi Shi, Yulin Liu, Bokui Shen, Ji-
ayuan Gu, Gordon Wetzstein, Hao Su, and Leonidas Guibas.
Generic 3d diffusion adapter using controlled multi-view
editing. arXiv preprint arXiv:2403.12032, 2024. 2

[6] Minghao Chen, Junyu Xie, Iro Laina, and Andrea Vedaldi.
Shap-editor: Instruction-guided latent 3d editing in seconds.
In CVPR, 2024.

[7] Dale Decatur, Itai Lang, Kfir Aberman, and Rana Hanocka.
3d paintbrush: Local stylization of 3d shapes with cascaded
score distillation. In CVPR, 2024.

[8] Shaocong Dong, Lihe Ding, Zhanpeng Huang, Zibin Wang,
Tianfan Xue, and Dan Xu. Interactive3d: Create what you
want by interactive 3d generation. In CVPR, 2024.

[9] Ziya Erkoç, Can Gümeli, Chaoyang Wang, Matthias
Nießner, Angela Dai, Peter Wonka, Hsin-Ying Lee, and
Peiye Zhuang. Preditor3d: Fast and precise 3d shape edit-
ing. arXiv preprint arXiv:2412.06592, 2024. 2

[10] Aguina-Kang et al. Open-universe indoor scene generation
using llm program synthesis and uncurated object databases.
2024. 2

[11] Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Ar-
jun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and
William Yang Wang. Layoutgpt: Compositional visual plan-
ning and generation with large language models. Advances
in Neural Information Processing Systems, 36, 2024. 1, 2, 6,
7, 8

[12] Matthew Fisher and Pat Hanrahan. Context-based search for
3d models. In ACM SIGGRAPH Asia 2010 papers, pages
1–10. 2010. 2

[13] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas
Funkhouser, and Pat Hanrahan. Example-based synthesis

of 3d object arrangements. ACM Transactions on Graphics
(TOG), 31(6):1–11, 2012. 2

[14] Matthew Fisher, Manolis Savva, Yangyan Li, Pat Hanrahan,
and Matthias Nießner. Activity-centric scene synthesis for
functional 3d scene modeling. ACM Transactions on Graph-
ics (TOG), 34(6):1–13, 2015. 2

[15] Qiang Fu, Xiaowu Chen, Xiaotian Wang, Sijia Wen, Bin
Zhou, and Hongbo Fu. Adaptive synthesis of indoor scenes
via activity-associated object relation graphs. ACM Transac-
tions on Graphics (TOG), 36(6):1–13, 2017. 2

[16] Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. Any-
home: Open-vocabulary generation of structured and tex-
tured 3d homes. In European Conference on Computer Vi-
sion, pages 52–70. Springer, 2025. 2

[17] Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 19740–19750, 2023. 2

[18] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. In ICCV, 2023. 2

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2

[20] Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson,
and Matthias Nießner. Text2room: Extracting textured 3d
meshes from 2d text-to-image models. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 7909–7920, 2023. 2

[21] Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong
Yue, David A Ross, Cordelia Schmid, and Alireza Fathi.
Scenecraft: An llm agent for synthesizing 3d scenes as
blender code. In Forty-first International Conference on Ma-
chine Learning, 2024. 2

[22] Ian Huang, Yanan Bao, Karen Truong, Howard Zhou,
Cordelia Schmid, Leonidas Guibas, and Alireza Fathi.
Fireplace: Geometric refinements of llm common sense
reasoning for 3d object placement. arXiv preprint
arXiv:2503.04919, 2025. 2

[23] Yun Jiang, Marcus Lim, and Ashutosh Saxena. Learning
object arrangements in 3d scenes using human context. arXiv
preprint arXiv:1206.6462, 2012. 2

[24] Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri,
Owais Khan, Ariel Shamir, Changhe Tu, Baoquan Chen,
Daniel Cohen-Or, and Hao Zhang. Grains: Generative re-
cursive autoencoders for indoor scenes. ACM Transactions
on Graphics (TOG), 38(2):1–16, 2019. 2

[25] Chenguo Lin and Yadong Mu. Instructscene: Instruction-
driven 3d indoor scene synthesis with semantic graph prior.
arXiv preprint arXiv:2402.04717, 2024. 2

[26] Rui Ma, Honghua Li, Changqing Zou, Zicheng Liao, Xin
Tong, and Hao Zhang. Action-driven 3d indoor scene evolu-
tion. ACM Trans. Graph., 35(6):173–1, 2016. 2

[27] Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li,
Sören Pirk, Binh-Son Hua, Sai-Kit Yeung, Xin Tong,

27113

Leonidas Guibas, and Hao Zhang. Language-driven synthe-
sis of 3d scenes from scene databases. ACM Transactions on
Graphics (TOG), 37(6):1–16, 2018. 2

[28] Başak Melis Öcal, Maxim Tatarchenko, Sezer Karaoğlu, and
Theo Gevers. Sceneteller: Language-to-3d scene generation.
In European Conference on Computer Vision, pages 362–
378. Springer, 2024. 2

[29] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten
Kreis, Andreas Geiger, and Sanja Fidler. Atiss: Autoregres-
sive transformers for indoor scene synthesis. Advances in
Neural Information Processing Systems, 34:12013–12026,
2021. 1

[30] Pulak Purkait, Christopher Zach, and Ian Reid. Sg-vae:
Scene grammar variational autoencoder to generate new in-
door scenes. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XXIV 16, pages 155–171. Springer, 2020. 2

[31] Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and
Song-Chun Zhu. Human-centric indoor scene synthesis us-
ing stochastic grammar. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
5899–5908, 2018. 2

[32] Zhangyang Qi, Yunhan Yang, Mengchen Zhang, Long Xing,
Xiaoyang Wu, Tong Wu, Dahua Lin, Xihui Liu, Jiaqi Wang,
and Hengshuang Zhao. Tailor3d: Customized 3d assets edit-
ing and generation with dual-side images. arXiv preprint
arXiv:2407.06191, 2024. 2

[33] Ohad Rahamim, Hilit Segev, Idan Achituve, Yuval Atzmon,
Yoni Kasten, and Gal Chechik. Lay-a-scene: Personalized
3d object arrangement using text-to-image priors. arXiv
preprint arXiv:2406.00687, 2024. 2

[34] Daniel Ritchie, Kai Wang, and Yu-an Lin. Fast and flex-
ible indoor scene synthesis via deep convolutional genera-
tive models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6182–
6190, 2019. 2

[35] Jonas Schult, Francis Engelmann, Alexander Hermans, Or
Litany, Siyu Tang, and Bastian Leibe. Mask3d: Mask trans-
former for 3d semantic instance segmentation. In 2023
IEEE International Conference on Robotics and Automation
(ICRA), pages 8216–8223. IEEE, 2023. 8

[36] Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar
Averbuch-Elor. Vox-e: Text-guided voxel editing of 3d ob-
jects. In ICCV, 2023. 2

[37] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
2

[38] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2

[39] Liangchen Song, Liangliang Cao, Hongyu Xu, Kai Kang,
Feng Tang, Junsong Yuan, and Yang Zhao. Roomdreamer:
Text-driven 3d indoor scene synthesis with coherent geome-
try and texture. arXiv preprint arXiv:2305.11337, 2023. 2

[40] Yang Song and Stefano Ermon. Generative modeling by esti-
mating gradients of the data distribution. Advances in Neural
Information Processing Systems, 32, 2019. 2

[41] Yang Song and Stefano Ermon. Improved techniques for
training score-based generative models. Advances in neural
information processing systems, 33:12438–12448, 2020. 2

[42] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797,
2019. 6

[43] Chunyi Sun, Yanbin Liu, Junlin Han, and Stephen Gould.
Nerfeditor: Differentiable style decomposition for 3d scene
editing. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages 7306–
7315, 2024. 2

[44] Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam
Bhat, Federico Tombari, Manling Li, Nick Haber, and Jiajun
Wu. Layoutvlm: Differentiable optimization of 3d layout via
vision-language models. arXiv preprint arXiv:2412.02193,
2024. 1, 2, 5, 6, 7, 8

[45] Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus
Thies, and Matthias Nießner. Diffuscene: Denoising diffu-
sion models for generative indoor scene synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 20507–20518, 2024. 1, 2, 6

[46] Junjie Wang, Jiemin Fang, Xiaopeng Zhang, Lingxi Xie, and
Qi Tian. Gaussianeditor: Editing 3d gaussians delicately
with text instructions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 20902–20911, 2024. 2

[47] Kai Wang, Manolis Savva, Angel X Chang, and Daniel
Ritchie. Deep convolutional priors for indoor scene syn-
thesis. ACM Transactions on Graphics (TOG), 37(4):1–14,
2018. 2

[48] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, An-
gel X Chang, and Daniel Ritchie. Planit: Planning and in-
stantiating indoor scenes with relation graph and spatial prior
networks. ACM Transactions on Graphics (TOG), 38(4):1–
15, 2019.

[49] Xinpeng Wang, Chandan Yeshwanth, and Matthias Nießner.
Sceneformer: Indoor scene generation with transformers. In
2021 International Conference on 3D Vision (3DV), pages
106–115. IEEE, 2021. 2

[50] Qiuhong Anna Wei, Sijie Ding, Jeong Joon Park, Rahul
Sajnani, Adrien Poulenard, Srinath Sridhar, and Leonidas
Guibas. Lego-net: Learning regular rearrangements of ob-
jects in rooms. arXiv preprint arXiv:2301.09629, 2023. 2

[51] Mingdong Wu, Fangwei Zhong, Yulong Xia, and Hao Dong.
Targf: Learning target gradient field for object rearrange-
ment. arXiv preprint arXiv:2209.00853, 2022. 2

[52] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tack-
ling the generative learning trilemma with denoising diffu-
sion gans. arXiv preprint arXiv:2112.07804, 2021. 2

[53] Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-
Min Hu. Sketch2scene: Sketch-based co-retrieval and co-
placement of 3d models. ACM Transactions on Graphics
(TOG), 32(4):1–15, 2013. 2

27114

[54] Haitao Yang, Zaiwei Zhang, Siming Yan, Haibin Huang,
Chongyang Ma, Yi Zheng, Chandrajit Bajaj, and Qixing
Huang. Scene synthesis via uncertainty-driven attribute syn-
chronization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5630–5640, 2021. 2

[55] Ming-Jia Yang, Yu-Xiao Guo, Bin Zhou, and Xin Tong.
Indoor scene generation from a collection of semantic-
segmented depth images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15203–
15212, 2021. 2

[56] Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Al-
varo Herrasti, Winson Han, Jiajun Wu, Nick Haber, Ranjay
Krishna, Lingjie Liu, et al. Holodeck: Language guided gen-
eration of 3d embodied ai environments. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16227–16237, 2024. 1, 2

[57] Yi-Ting Yeh, Lingfeng Yang, Matthew Watson, Noah D
Goodman, and Pat Hanrahan. Synthesizing open worlds with
constraints using locally annealed reversible jump mcmc.
ACM Transactions on Graphics (TOG), 31(4):1–11, 2012.
2

[58] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. Scannet++: A high-fidelity dataset of 3d
indoor scenes. In Proceedings of the International Confer-
ence on Computer Vision (ICCV), 2023. 6

[59] Lap Fai Yu, Sai Kit Yeung, Chi Keung Tang, Demetri
Terzopoulos, Tony F Chan, and Stanley J Osher. Make
it home: automatic optimization of furniture arrangement.
ACM Transactions on Graphics (TOG)-Proceedings of ACM
SIGGRAPH 2011, v. 30,(4), July 2011, article no. 86, 30(4),
2011. 2

[60] Guangyao Zhai, Evin Pınar Örnek, Shun-Cheng Wu, Yan
Di, Federico Tombari, Nassir Navab, and Benjamin Busam.
Commonscenes: Generating commonsense 3d indoor scenes
with scene graphs. Advances in Neural Information Process-
ing Systems, 36, 2024. 2

[61] Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo,
Alexander Huth, Etienne Vouga, and Qixing Huang. Deep
generative modeling for scene synthesis via hybrid represen-
tations. ACM Transactions on Graphics (TOG), 39(2):1–21,
2020. 2

[62] Xiaoyu Zhou, Xingjian Ran, Yajiao Xiong, Jinlin He, Zhi-
wei Lin, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang.
Gala3d: Towards text-to-3d complex scene generation via
layout-guided generative gaussian splatting. arXiv preprint
arXiv:2402.07207, 2024. 2

27115

