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Abstract

Human motion generation involves synthesizing coher-
ent human motion sequences conditioned on diverse mul-
timodal inputs and holds significant potential for real-
world applications. Despite recent advancements, exist-
ing vision-language-motion models (VLMMs) remain lim-
ited in achieving this goal. In this paper, we identify the lack
of controllability as a critical bottleneck, where VLMMs
struggle with diverse human commands, pose initialization,
generation of long-term or unseen cases, and fine-grained
control over individual body parts. To address these chal-
lenges, we introduce MotionCtrl, the first real-time, control-
lable VLMM with state-of-the-art performance. MotionCtrl
achieves its controllability through training on HuMo100M,
the largest human motion dataset to date, featuring over
5 million self-collected motions, 100 million multi-task in-
structional instances, and detailed part-level descriptions
that address a long-standing gap in the field. Addition-
ally, we propose a novel part-aware residual quantization
technique for motion tokenization, enabling precise con-
trol over individual body parts during motion generation.
Extensive experiments demonstrate MotionCtrl’s superior
performance across a wide range of motion benchmarks.
Furthermore, we provide strategic design insights and a de-
tailed time efficiency analysis to guide the development of
practical motion generators.

1. Introduction

Motion generation has received increasing attention due to
its potential applications in video games, film production,
and humanoid control. However, current human motion
generators [ 1, 13] face challenges in achieving real-time
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1 Correspondence to <zongqing.lu@pku.edu.cn >

inference speed and controllability, limiting these models
from becoming practical in reality. Controllability here
refers to handling user commands, random initial poses,
long-term or unseen motions, as well as part-aware control.
While methods trained on narrow datasets [ 10, 18] perform
well in fixed scenarios (e.g., text-to-motion), they falter out-
side these bounds. Inspired by large vision-language mod-
els (VLMs) [16, 19], recent efforts have developed vision-
language-motion models (VLMMs) using multi-modality
and multi-task training. These models [12] have enhanced
motion generation capabilities, with some incorporating vi-
sual cues [24] for better motion understanding. Despite
these advances, achieving full controllability remains a
challenge, driving the motivation for this work.

For VLMs, leveraging massive multimodal data is cru-
cial to unlocking their potential. However, motion gen-
eration is hindered by the scarcity of high-quality mo-
tion data. Recent efforts [23, 38] have explored extract-
ing motions from web videos to build larger datasets, but
most fail to utilize the collected data beyond mere scal-
ing. This paper overcomes this problem by introducing
HuMo100M, the largest motion generation dataset to date,
with over 5 million motions and 100 million instructions
for tasks like Instruct-to-Motion. HuMo100M offers three
key advantages over previous datasets: (1) Part-level de-
scriptions: These provide fine-grained supervision for part
control, enabling precise alignment with part-level motions
while masking low-quality, occluded, or blurred segments
to improve data reliability. (2) Long-term motions: We
propose a motion concatenation method that combines indi-
vidual motions into continuous, spatiotemporally consistent
sequences, enabling VLMMs to generate realistic, extended
motions beyond short-term snippets. (3) Text-aligned visual
clips: Unlike prior works [47], we argue that visual cues are
particularly beneficial for Internet-collected motions. Even
with unreliable motion data, VLLMs can learn weak super-
vision through the alignment of visual and textual contexts.

Building on this dataset, we introduce MotionCtrl, the
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Random Instruct Control: As an agent,
please walks backward with your legs
spread apart,squats to sit, stands back up
and walks forward in wide stance.

ChhiniaY))

Random Pose Init: The person is
walking steadily forward, making
progress with each step.

Long-term Control: A person is jumping
jack. A person walks forward.
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Random Part Control: Person is using
their right arm up to point around

Figure 1. Built on our million-scale dataset HuMo100M, we present MotionCtrl, the first real-time, controllable vision-language-motion
model (VLMM), achieving high performance and practical efficiency. MotionCtrl supports controllability via random instructions, initial
poses, long-term generation, unseen motions, and part-aware motion control.

first real-time, controllable VLMM achieving state-of-the-
art performance across diverse motion benchmarks. Lever-
aging HuMo100M’s million-scale instruction data and
multi-modal inputs, MotionCtrl explores key design choices
for practical time-efficient motion generation (e.g., motion
decoding order), a topic rarely addressed before. We em-
phasize the importance of part-level control in human activ-
ities, a challenge for existing methods due to their reliance
on single code embeddings for the entire body and the ab-
sence of part labels. Inspired by residual vector quantization

(RQ) [11, 15], we propose part-aware RQ (PRQ) for motion

tokenization, which splits whole-body motion features into

shared-joint parts and quantizes them as discrete part-level
codes. Unlike Guo et al. [11], MotionCtrl decodes motion
codes frame-by-frame for real-time generation.

Our key contributions are as follows:

* We present HuMo100M, the largest multimodal motion
dataset to date, including 5 million motions and 100
million multi-task motion instructions with fine-grained,
long-form, and part-level motion labels.

* We propose MotionCtrl, a highly controllable VLMM
that outperforms existing models, with insights into key
design choices and architecture.

* To enable part-level control in MotionCtrl, we develop
part-aware residual quantization, utilizing HuMo100M’s
part labels for fine-grained motion control in our VLMM.

2. Related Work

Human Motion Generation. This task is categorized by
control signals, such as text descriptions [10, 28], action
labels [ 1], keyframe poses [48], and incomplete motion se-
quences [37]. Early deterministic T2M methods often pro-
duced blurry results [8, 9], while later approaches used
stochastic techniques like VAEs [2] or GANs [39] to mit-
igate this. Recently, works like [13, 37] have integrated
large language models (LLMs) to interpret human intent.
MotionChain [14] leverages LLMs for multi-turn conver-
sational motion or text generation. Chen et al. [4] intro-
duced MotionLLM, a unified framework for motion under-
standing, captioning, and reasoning. Similar efforts include
LMM [47] and MotionGPT [48]. Further progress, such

as Luo et al. [24], explore human-centric videos to enhance
motion understanding, with M®GPT employing multimodal
tokenizers for text, motion, and music encoding. However,
prior research often neglects motion generation controlla-
bility and fails to balance model size with time efficiency.
Motion Tokenization.  Existing works often use vec-
tor quantization (VQ) [35] for human motion represen-
tation. Beyond standard VQ, recent advances include
residual quantization (RQ) [! 1], hierarchical quantization
(HQ) [22, 42] lookup-free quantization (LFQ) [38, 43], and
finite scalar quantization (FSQ) [23, 27], all showing sig-
nificant improvements in motion representation. Recent
work also explores part-level motion tokenization. For ex-
ample, Chen et al. [3] split the body into upper and lower
parts, while Lu et al. [22] and Zhang et al. [48] focused on
body and hand components. However, these methods lack
independent limb control and corresponding textual labels
or benchmarks, motivating our development of a real-time,
part-controllable motion tokenizer.

3. The MotionCtrl Model

We present MotionCtrl, a 7B-parameter vision-language-
motion model (VLMM) trained on 5 million human mo-
tions and 100 million motion instructional instances, as il-
lustrated in Figure Despite recent progress in motion
generation, critical questions about real-time, controllable
VLMMs remain unresolved. To address this, we first offer a
concise model overview ( ), followed by detailed

discussions on controllable motion generation ( )
and real-time design choices ( ).
3.1. Overview of VLMM

Our VLMM is built on the LLaVA-video-7B frame-
work [49]. Similar to recent VLMs [0, 20], LLaVA-
video consists of three components: a 400M visual encoder
(SigLIP [44]), a 2-layer MLP for visual projection, and a 7B
LLaMA-2-chat backbone [33]. To efficiently process more
frames, we adopt the slow-fast strategy from Zhang et al.
[49] to reduce visual tokens. Our VLMM treats human mo-
tion as a foreign language. Given a motion sequence m.r,
where m; € RP represents a D-dim motion feature and
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Figure 2. Model Hlustration. MotionCtrl supports multi-modal inputs/outputs, built on a 7B LLM backbone. It employs SigLIP+2MLP
for visual encoding and projection with a slow-fast strategy, alongside part-aware residual quantization for motion tokenization.

T is the frame number, we use a motion tokenizer Q to
quantize the sequence into discrete tokens. We extend the
VLM vocabulary with K additional motion codes and intro-
duce special token <mot> and </mot> to mark motion se-
quence boundaries. Each training sample is an instruction-
following instance { X, X'4 }, representing a User-VLMM
interaction. Paired or interleaved vision, language, and mo-
tion data are curated from web videos for tasks like text-to-
motion or motion prediction. Given X, the VLLM gener-
ates X4 = {y1,¥2, ..., Yn }- The dataset follows this unified
format. During training, we optimizes the next-token pre-
diction objective via negative log-likelihood:

L
L(©) == log Po(y; | Xo,f1-1)-

j=1

(C))

Our VLMM training involves three stages: (1) motion-
text alignment, aligning motion tokens with the LLM; (2)
vision-text-motion alignment, integrating three modalities
into a unified framework; and (3) motion instruction tuning,
enhancing responsiveness to diverse instructions.

3.2. Controllable Motion Generation

Prior research has largely overlooked the controllable po-
tential of VLMMs, limiting their practical application. This
paper addresses this gap from two perspectives.

3.2.1. Multi-Task Motion Pretraining

We define “controllability” through five key aspects and de-
velop this capability through careful data curation and the
design of multiple instructional tasks.

Random Instruction Control. Most VLMMs struggle to
handle arbitrary user commands effectively, reducing their

usability. While some studies [47] have explored motion in-
struction tuning, we further enhance command responsive-
ness by creating a comprehensive instruction template set
(e.g., “Show me how to perform <CAPTION>.”, where
<CAPTION>> is the motion caption), and introducing the
Instruct-to-Motion (I2M) task.

Random Pose Initialization Control. A VLMM should
generate motion from any initial pose to mimic human
adaptability, not just fixed ones like the T-pose. However,
current VLMMs struggle with this due to data scarcity. To
address this, we randomly slice prior, in-between, or post
segments of motion sequences and task the VLMM with
predicting the remaining parts, termed the Motion Predic-
tion and In-between (MPI) task. This task requires a mas-
sive dataset, motivating us to scale the dataset to a million-
level, enabling the VLMM to learn from varied initial poses.
Long-Term Motion Control. Humans perform activities
seamlessly in succession, and a practical VLMM should
be able to generate continuous motions rather than isolated
ones. To achieve this, we incorporate the concatenated
long-form motion sequences within HuiMo100M and intro-
duce the Instruct-to-LongMotion (I2LM) task.

Unseen Motion Control. Existing datasets lack the scale
needed to ensure robustness in generating unseen mo-
tions. Considering this, we expand motion data through
web-video collection and multi-task design. Leveraging
HuMo100M’s unprecedented scale, with millions of motion
instances, VLMMs can now generate high-quality motions
even for actions not encountered during training. We in-
troduce the Instruct-to-Unseen (I2U) task to benchmark our
model’s generalization.

Random Part Control. VLMMs should also control spe-
cific body parts (e.g., “kicking with the left leg”). Previ-
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ous efforts often fall short due to insufficient part-level data,
even with part-aware motion encoding [3]. Using our part-
level annotations, we propose the Instruct-to-PartMotion
(I2PM) task, challenging the model to generate motion for
specific body parts rather than the entire body.

3.2.2. Part-aware Residual Quantization (PRQ).

Given a motion sequence my.7 € R7*P, our PRQ first
splits each motion feature m; into part features m; ; € R4,
where j € [1,p], d is the part feature dimension, and p=5
represents the number of body parts — {left arm, right arm,
left leg, right leg, torso}. Note that the elements in differ-
ent m; ; may overlap with shared joints. PRQ then encodes
part features into a latent vector sequence Blm;l:p using the
same encoder with a downsampling ratio of n/T". Each la-
tent vector b; ;, where ¢ € [1,n], is quantized by finding its
nearest code entry in a shared motion codebook C, produc-
ing the code sequence b1.p;1.,. Similar to residual quantiza-
tion, PRQ represents a latent sequence l~)1m as K +1 ordered
code sequences across K +1 quantization layers, which can
be expressed as PRQ(b1:p;1:p) = [bY.,.1.,) 1. Where b* de-
notes the code sequence at layer k. To reconstruct the mo-
tion m, the PRQ’s decoder maps Bl:n;l:p back to part-level
motion space 11.n;1.p, then aggregates each m; 1., to re-
store the motion feature 1, by selecting corresponding ele-
ments from each part feature. During tokenization, starting
from the initial residual r = b, PRQ iteratively computes
b* as the approximation of residual r*, updating the resid-
ual rF1 as b8 = Q(rF),rk*+t = rk — bk This residual
processing is applied independently for each part. The final
latent sequence approximation b; is the sum of all quantized

sequences: Zfio bf. Similar to RQ, PRQ is also trained us-
ing motion reconstruction and latent embedding objectives
at each quantization layer, with sg[-] as the stop-gradient

operation and 3 as the embedding weight:

P P K p
L= llm=mlli+)_ llmj—ri;lli+8Y > llrj—sglbjlf3.
j=0

k=1j=1
(@)
Rather than using a single code to represent the whole
body, PRQ adopts part-specific codes, enabling independent
control of individual body parts. In addition, PRQ expands
the codebook capacity without increasing its size, outper-
forming methods like LFQ or FSQ. Assuming part j refer-
ences u; codes in the codebook, the total number of distinct
motions representable is H?:l u;. Unlike Chen et al. [3],
which focuses only on upper and lower body parts, PRQ
includes three key innovations: (1) finer control over ad-
ditional body parts, (2) rich part-level textual descriptions,
and (3) a shared motion codebook enabling joint represen-
tations across limbs to reducing joint errors. We provide
more details (e.g., part feature definition) in Appendix

3.3. Design Choices for Real-time Generation

LLM Backbone. To balance performance and efficiency,
we experiment with multiple LLM backbones. We find that
smaller models (e.g., GPT-2) fail to grasp human intent ef-
fectively, while models with the size larger than 13B suf-
fer from slow inference speeds, hindering real-time motion
generation. After evaluation, we choose the 7B-parameter
LLaMA2 as MotionCtrl’s backbone.

Motion Feature. Most works use HM3D263-Format [10]
to represent motions. However, HM3D263-Format loses
original rotation information and requires slow inverse kine-
matics for pose recovery, which increases the generation la-
tency. Instead, we adopt HuM0263 as our motion feature
in this paper (see Appendix 1), which preserves the original
rotation information and directly parameterizes the human
pose. HuMo0263 enables accurate and efficient recovery of
the original information and human motion.

Visual Resolution and Duration. Visual resolution signif-
icantly affects time efficiency. We compare various resolu-
tions and find higher ones offer minimal gains but signif-
icantly increase computation. Experimental results show
that higher resolutions do not yield significant improve-
ments but instead substantially increase computational bur-
den. For real-time performance, MotionCtrl uses 224 x 224
resolution and accepts up to 64 frames as input.
Tokenization Level and Order. The stacked quantization
layers (e.g., RQ) improve motion accuracy but linearly raise
computational costs. Our experiments show 4 layers in
PRQ strike the best balance. Unlike RQ which generates
motion layer-by-layer, delaying completion until the last to-
ken, PRQ uses frame-by-frame decoding, enabling stream-
ing motion output with improved responsiveness.

4. The HuMo0100M Dataset

Scaling up data for training large models is a cornerstone
in computer vision, but this strategy is less viable for mo-
tion generation due to limited high-quality data [23]. To
tackle this, we introduce HuMo100M, the largest multi-
modal human motion dataset to date. Below, we outline its
construction pipeline as illustrated in Figure 3, and high-
light three key insights (%) compared to prior counter-
parts [23, 38, 41]. For full details, see Appendix
Overview of Dataset Pipeline. ~We begin by collecting
hundreds of millions of web videos. To ensure relevance
to human activities, we apply a two-stage filtering pro-
cess. First, keyword-based filtering removes videos lack-
ing human-related text descriptors. Second, we employ
YOLO [30] to verify human presence through video track-
ing. We then use WHAM [3 1] to extract SMPL parameters
from the collected videos, regressing 3D human motion in
world coordinates, and refine motion quality with the RL-
based policy PHC [25], following Wang et al. [38].
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Step 1: Video Processing

Step 2: Motion Estimation

Step 3: Text Annotation
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Figure 3. Illustration of data pipeline. We introduce HuMo100M, the largest multimodal dataset to date, featuring over 5 million
motion sequences, paired visual clips, threefold more hierarchical and part-level textual descriptions, and 100 million multi-task instruction

instances. Full pipeline details are in Appendix 3.

% Part-Level Text Descriptions. Existing datasets lack
fine-grained body part labels, limiting their usage for part-
level control. To address this issue, we enrich each mo-
tion with limb-specific descriptions in addition to whole-
body descriptions [10, 18]. These descriptions are gener-
ated using Gemini-1.5-pro [32] with tailored prompts and
PoseScript [7]. We also include rule-based descriptions us-
ing posecodes to extract semantic pose details (e.g., “the left
hand is below the right hand”), capturing the relative posi-
tions between different joints. This enables part-level con-
trol and allows training the VLMM on high-confidence key-
points while ignoring occluded or low-confidence parts, sig-
nificantly improving motion data quality from web videos.
% Long-term Motion Sequence. Current datasets mainly
contain individual short-term motion sequences. While
LLMs can generate long-range textual tokens, the lack of
continuous motion data poses a challenge. To tackle this,
we propose a motion concatenation method (see Appendix
) that merges individual sequences into longer, temporally
coherent motion sequences.
% Text-Aligned Visual Clips. While some unified motion
models [3, 17, 47] have incorporated visual cues, the full
potential of vision in motion generation remains untapped.
In this work, we argue vision adds limited value to high-
quality motions (e.g., MoCap datasets like HumanML3D)
but is more beneficial for training on low-quality motions
collected from web videos. This is because, even with un-
reliable motion data, VLMMs can learn weak alignments
from text-aligned visual clips, leveraging in-context infor-
mation to enhance motion understanding. Furthermore, as
a unified model, integrating visual clips allows VLMMs to
perform motion estimation tasks, mimicking human actions
and broadening real-world applications.

5. Experiments

5.1. Experimental Setup

Datasets. For the text-to-motion task, we use three
datasets: HumanML3D [10] which includes 14,616 motion
sequences from AMASS [26] with corresponding 44,970
text descriptions. KIT-ML [29] which offers a smaller
benchmark with 3,911 motion sequences and 6,278 text
descriptions. Both of these datasets are split into training
(80%), validation (5%), and test sets (15%). In addition to
these two datasets, we introduce HuMo-T2M by collecting

200K samples from HuMo100M to formulate a new testbed
with larger scale and visual modality. For the datasets of re-
maining benchmarks, see Appendix

Evaluation Metrics. MotionCtrl is evaluated across mul-
tiple motion-related tasks. For motion generation, we use
the following metrics to assess the quality of generated mo-
tion and its alignment with texts: (1) Frechet Inception Dis-
tance (FID) which evaluates motion quality by comparing
generated and real motion distributions between high-level
features; (2) Motion-retrieval Precision (R-Precision) which
measures text-motion alignment via top-1, top-2, and top-
3 retrieval accuracy; (3) Multimodal Distance (MMDist)
which quantifies the distance between matched text-motion
pairs. For motion reconstruction and prediction, we em-
ploy Mean Per Joint Position Error (MPJPE) and FID, with
MPJPE calculating the average joint position error (in mil-
limeters) between predicted and ground-truth poses.
Implementation Details.  Our part-aware residual VQ-
VAE (PRQ) uses residual blocks for the motion encoder
and decoder, with a temporal downsampling rate of 4. The
codebook of PRQ has 1024 entries and 512-dimensional
embeddings, employing 4 quantization layers. The dis-
crete codes are added as vocabulary to the LLM. For real-
time efficiency, we use LLaMA2-7b [34] as the LLM back-
bone. As a comparison, we also implement a VQ motion
tokenizer with the same codebook size. The tokenizer is
trained with a batch size of 256 and a learning rate of le-4
for 300K iterations. The training of VLLMs involves three
stages: (1) motion-text alignment with full parameter tun-
ing on 16xA800 GPUs with a batch size of 2048 for 50
epochs, using a learning rate of 2e-5; (2) vision-text-motion
alignment with a batch size of 128 for 5 epochs. (3) motion
instruction tuning with a batch size of 128 for one epoch.

5.2. Multi-Task Benchmarking

We compare MotionCtrl against prior works across multiple
benchmarks. For each benchmark, all methods use the same
motion data, except MotionCtrl*, which is trained on the
full HuMo100M dataset.

Text-to-Motion (T2M). This task is a key benchmark for
motion understanding. Table | shows results with all mod-
els trained on HumanML3D. Using the same vector quan-
tization (VQ) approach, MotionCtrl outperforms existing
works [47, 48] in terms of both accuracy and fidelity. By
replacing standard VQ with our proposed PRQ, MotionCtrl
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| LLM |FID| R@It R@3+ MMDist |
Real \ - [0.002 0511 0797 2974
MLD [5] - 0473 0481 0772  3.196
MotionDiffuse [46] - 0.630 0491 0782  3.113
T2M-GPT [45] GPT-2  [0.141 0492 0775  3.121
MotionGPT! [13] T5 0.162 0.409 0.667  3.992

MotionGPT? [48] |LLaMA-13B|0.542 0.411 0.696 3.584
MotionLLM [40] Gemma-2b [0.491 0.482 0.770 3.138
AvatarGPT [50] LLaMA-13B | 0.567 0.389 0.623 -

MotionGPT-v2 [37] |LLaMA3-8B | 0.191 0.496 0.782 3.080
LMM [47] LLaMA3-8B|0.191 0.496 0.782 3.080

MotionCtrl-VvQ, |LLaMA2-7B|0.141 0.528 0.815 2.953

Action2Motion
: (UESTC, FID) ) _o— previous SoTA
Inst2PartMotion —8— MotionCtrl
(HuMo-I2PM, FID) 7.82
25

n MotionCtri
Inst2LongMotion
(HuMo-I2LM, FID) | 371

Motion In-between |0.18

(AMASS, FID) 38.71

ScaMo-FSQ [23] 3B 0.101 0.512  0.796 2.990
MoMask-RQg [11] 760M 0.045 0.521 0.807 2.958
MotionCtrl-PRQ, |LLaMA2-7B|0.056 0.535 0.821 2.865

Table 1. Comparison with previous motion methods on Hu-
manML3D, where the superscript * and ? denote different works
with the same model name, and the subscript n of Q,, denotes the
number of quantization layers for the quantizer O.

|LLM backbone|FID | R@1 1 R@3 + MMDist |

T2M-GPT [45] GPT-2 0.682 0.154 0275 4251
MotionGPT! [13] TS 0.382 0.268 0.352  3.621
MotionGPT? [48] | LLaMA-13B |0.314 0.336 0.438  3.437
MoMask-RQg [11] 760M 0.324 0.325 0382  3.441

MotionCtrl-PRQ,| LLaMA2-7B |0.148 0.428 0.625  3.259

Table 2. Comparison with previous motion generation methods on
the I2M task using the HuMo-12M testbed. Note that this compar-
ison is limited to works with publicly available training code.

achieves further improvement, with the FID score reduced
from 0.141 to 0.056. We also compare MotionCtrl with two
recently proposed models based on advanced VQ variants:
SCaMo with FSQ [23] and MoMask with RQ [11]. As can
be seen, our model consistently outperforms these methods,
despite their reliance on larger codebooks (64K entries) or
deeper quantization layers, which increase computational
costs. Results on KIT-ML are shown in Figure
Instruct-to-Motion (I2M). Unlike T2M, the I2M task re-
quires generating motion from arbitrary human commands,
testing the model’s responsiveness to handle real-world in-
structions. As shown in Table 2, MoMask performs signif-
icantly worse on I2M than T2M, underscoring the need for
an LLM to interpret human intent accurately. Compared to
other LLM-based methods like MotionGPT [37], our model
achieves better results. We attribute the improvement to
two important factors: the more effective motion instruc-
tion tuning and the proposal of PRQ.

Instruct-to-Unseen (I2U). To build this benchmark, we
collect 200K novel motions, termed HuMo-unseen, not in-
cluded in any training data. As shown in Table 3, perfor-
mance on HuMo-unseen improves with data scaling from
HumanML3D to HuMo100M, highlighting the importance

Motion Prediction
% (HuMo-MP, MPJPE)
33.97 36.58
(AMASS, MPJPE) Motion Prediction

Figure 4. Comparison with previous SoTA across nine different
benchmarks. Here, MotionCtrl* denotes the model trained on the
full HuMo100M dataset. For newly proposed benchmarks, such
as I2PM, we use MotionGPT [37] as the baseline for comparison.

Training Data | FID| | R@11T R@31 MMDist |
HumanML3D [10] | 65.04 | 0.068 0.148 9.72
MotionX [18] 4328 | 0.092 0.162 8.65
HuMo100M 8.65 0.136 0.245 7.31

Table 3. Comparison of the Instruct-to-Unseen (I12U) task on the
HuMo-unseen testbed across different training datasets.

of data scaling for robust unseen motion generation.

Instruct-to-PartMotion (I2PM). Part-level control, a key
aspect of controllability, has been largely ignored in prior
work. While some studies have explored part-aware motion
quantization, they lack fine-grained labels and benchmarks
to validate effectiveness. To address this, we use Gemini-
1.5 Pro to collect motion sequences with specific part-level
commands (e.g., “raise your left arm”) and build the HuMo-
I2PM benchmark. Results on this dataset are presented in
Figure 4. MotionCtrl outperforms MotionGPT by a signifi-
cant margin, primarily due to our part-aware motion encod-
ing. Further analysis is provided in Section

Instruct-to-LongMotion (I2LM). This task evaluates the
model’s ability to generate long-term, continuous motions.
We create this benchmark by concatenating individual mo-
tions (e.g., “Salute with your left hand and perform ballet”).
Similarly, MotionCtrl shows significant improvement.

Following Zhang et al. [47], we also carry out compar-
isons on additional benchmarks, including motion predic-
tion on AMASS [26], 3DPW [36] and HuMo-MP, motion
in-between on AMASS, action-to-motion on UESTC [12]
and motion-to-text on HumanML3D (HM3D) [10]. The
comparison results are illustrated in Figure
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5.3. Analysis of Motion Quantization

In Table 4, we compare our part-aware residual quantiza-
tion (PRQ) with existing motion tokenizers. First, PRQ
outperforms lookup-free methods like 2D-LFQ and FSQ us-
ing a codebook only 1.5% their size. The advantage grows
on the large-scale HuMo100M testbed, highlighting PRQ’s
generalization. We attribute this to the part decomposition
strategy, which boosts codebook capacity without increas-
ing size. PRQ also surpasses RQ-VAE, even with fewer
quantization layers, due to part-level encoding. As we have
introduced, partial joints are shared across different body
parts, designed to increase part-to-part connection so as to
reduce the joint error. To validate the effectiveness of such
strategy, we conduct an ablation experiment by comparing
PRQ and its variant without shared joints (PRQ w/o SHA).
PRQ consistently outperforms this variant.

| HumanML3D |  Motion-X | HuMol0OM
Tokenizer | Code | FID MPIPE | FID MPJPE | FID MPIPE
VQ-VAE, 1024 | 0.183 4754 | 0.077 3832 | 5324 123.61
H?VQ[42] 512 - - - 62.34 - B
RQ-VAE; [15] 1024 | 0.032 23.58 | 0.035 21.64 | 3.928  68.17
RQ-VAEg 1024 | 0.009 2042 | 0.012 18.11 | 3.526  64.56
2D-LFQ; [38] 16384 | 0.092 4560 | 0295  54.10 - -
FSQ: 65536 | 0.051 3504 | 0.108 29.82 | 4326 77.15
PRQs w/o SHA | 1024 | 0.042 19.87 | 0.058 2378 | 3.129  48.96
PRQ, 1024 | 0.007 1406 | 0.013 1725 | 2317  38.06
PRQs 1024 | 0.004 13.56 | 0.007 1718 | 2.195  36.47

Table 4. Comparison with previous motion tokenizers. The sub-
script of tokenizer name denotes quantization layer number. Here
“w/o SHA” denotes different part features contain no shared joints.

5.4. Analysis of Time Efficiency

MotionCtrl, a 7B-parameter model, requires more memory
at inference than smaller models [47] (under 1B parame-
ters). We thus evaluate its inference speed on various GPUs,
as shown in Figure MotionCtrl achieves the highest
throughput with 4bit quantization, reaching at least 20FPS
on all GPUs and up to 28.9FPS on the H100. Specifically,
with PRQ’s temporal downsampling rate of 4, 5 body parts,
and 4 quantization layers, MotionCtrl is required to gener-
ate at least 100 tokens per second to maintain 20FPS. Speed
can be further improved by reducing quantization layers or
limiting part-level control. Notably, frame-by-frame decod-
ing is essential, as traditional layer-by-layer strategy used in
RQ can delay motion generation by dozens of seconds.

5.5. Further Discussion

How does the VLMM benefit from part-level motion?
We evaluate the impact of part-level motions on the HuMo-
I2PM benchmark, with results illustrated in Table 5. First,
removing shared joints raises the FID score from 1.831 to
2.471, as predicting isolated 3D parts without joint depen-
dencies is challenging. In fact, the joints of our humans

float16 m8bits = 4bits

10
5 I I
0

RTX3090 RTXA6000 A800 RTX4090 A100 H100

Figure 5. MotionCtrl inference speed for various GPUs. We speed
up the generation by using the modern LLM inference framework
llama.cpp [21]. Our model achieves real-time inference speed
based on the 7B-parameter LLaMA backbone.

are highly structured, with each joint’s position often de-
pendent on others. Thus, sharing joints for different parts
can strengthen their connections and therefore improve the
performance. Second, comparing PRQ and RQ with part-
level descriptions, MotionCtrl-RQg underperforms despite
deeper quantization layers and part labels. Further RQ ex-
periments show minimal gains from part labels, underscor-
ing PRQ’s effectiveness to learn from such fine-grained de-
scriptions. In addition, MotionCtrl-PRQ4 without part la-
bels performs worse than RQ, indicating that the PRQ’s
structure and part labels are complementary. At last, we
increase the quantization layer of PRQ to validate the im-
pact of layer numbers. While it brings improvement on the
reconstruction task, the deeper quantization layers damage
the generation performance. We attribute this to the added
decoding complexity, especially with MotionCtrl’s frame-
by-frame decoding strategy, which contrasts with generat-
ing the base code layer first like Guoetal. [11].

| PT? | FID | R@1 R@3 MMDist

MotionCtrl-RQg No | 4.025 | 0.208 0.395 7.01
MotionCtrl-PRQ4 No | 4.281 | 0.182 0.367 7.88
MotionCtrl-RQg Yes | 3.752 | 0.215 0.408 7.21
MotionCtrl-PRQ4 w/o SHA | Yes | 2.471 | 0.325 0.561 5.32

MotionCtrl-PRQ4 Yes | 1.831 | 0.384 0.685 4.12
MotionCtrl-PRQg Yes | 2.357 | 0.351 0.662 4.37

Table 5. Impact of part-level motions under different setups on the
HuMo-I2PM testbed. Here, PT? denotes whether to use the part-
level descriptions during training.

Does the visual modality benefit motion pre-training?
Yes, the results in Table 6 show that MotionCtrl with vision-
text-motion alignment consistently outperforms models
without it. Visual cues provide weak alignment between vi-
sual and textual contexts, offering valuable supervision for
motion understanding, especially when motion data is unre-
liable. As a unified model, VLMM can also perform motion
estimation to mimic human actions using visual inputs, ex-
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A man lifts his left arm, wiggles it, and lowers it back down.

The person is using right arm to wash the window.

A person throws an object with his left hand

A Kicks ething with his left foot.
g "and catches an object with both hands,

(a) Visualization results of Instruct-to-PartMotion.

A persan leaps sideways to th

e left. ‘A man lifts an object from his front left
A person performs  series of jumping jacks.

and places it on & platform to his front right.
A man walks forward then turn to his left.
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¢

the man puts binoculars to his eyes and looks at things.

a persan does a couple of jumping jacks.
& man walks forward, takes a big stride with his left foot
forward.

a person walks forward avoiding a gap.
. and then continues to walk

PN
&

:g fr?

(b) Visualization results of Instruct-to-LongMotion.

Figure 6. Qualitative examples generated by MotionCtrl for Instruct-to-PartMotion (I2PM) and Instruct-to-LongMotion (I2LM). The
results demonstrate MotionCtrl’s ability to generate motion sequences that accurately align with both part-level and long-term instructions.

panding its applications. We leave further exploration of
this capability for future work.

| FID| | R@1+ R@31 MMDist]

7.053 | 0.198 0.418 10.13
5.791 0.206 0.445 8.85

MotionCtrl w/o 2rd vis
MotionCtrl

Table 6. Effectiveness of text-aligned visual clips on HuMo-
t2m testbed, where “2rd vis” denotes the second stage training of
vision-text-motion alignment.

Does the multi-task training increase the controllability
of motion generation? Yes. Table 7 shows results for dif-
ferent motion task configurations during training, evaluated
on the HuMo-T2M testing set. The initial data ratio for
T2M : I2M : MPI : I2PM : I2LM is 5:5:3:2:1. Rows 1-3
indicate that removing I2PM or I2LM slightly reduces T2M
performance, though the improvements on their respective
benchmarks are more significant. Rows 4-5 highlight the
importance of the MPI task, reducing the FID score from
6.582 to 6.052 and enabling the VLMM to generate motions
from random pose initialization. Rows 5-7 confirm the ne-
cessity of I2M, with Row 5 vs. Row 6 showing that the im-
provements stem from the diversity from different motion
tasks, rather than simply scaling data.

5.6. Visualization

We present visualization examples of part-level and long-
term motion control generated by our MotionCtrl to demon-
strate its controllability. Unlike previous models, MotionC-
trl achieves real-time responsiveness, enabling seamless in-
tegration into animation workflows with minimal delay, as
illustrated in the figures.

| multi-task configuration | FID |[R@1 R@3 MMDist

1 | T2M+I2M+MPI+I2PM+I2LM | 5.791 | 0.206 0.445  8.85
2 | T2M+12M+MPI+12PM 5.76510.195 0453 9.01
3 | T2M+12M+MPI+I2L.M 5.95210.192 0453 891
4 | T2M+12M+MPI 6.052 | 0.184 0425 9.01
5 | T2M+1I2M 6.58210.154 0.386  9.77
6 | 2xT2M 7.058 | 0.128 0.342 11.26
7| T2M 7.152|0.135 0.338 10.95

Table 7. Effectiveness of multi-task motion training on HuMo-t2m
testbed using different configuration.

6. Conclusion

This paper introduces a practical VLMM for real-time, con-
trollable motion generation, achieving state-of-the-art per-
formance across motion benchmarks. We design a data cu-
ration pipeline to create the HuMo100M dataset, the largest
of its kind with 100 million instructional instances, fea-
turing part-level descriptions, long-term motion sequences,
and aligned visual clips. Using this dataset, we train Mo-
tionCtrl, enabling controllable human motion generation.
To enhance part-level control, we propose a novel part-
aware residual quantization method (PRQ) to serve as our
motion tokenizer. Experiments validate MotionCtrl’s con-
trollability across benchmarks, and we provide key design
insights for developing such a practical VLMM.
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