
Unlocking Constraints: Source-Free Occlusion-Aware Seamless Segmentation

Yihong Cao1,2,∗ Jiaming Zhang3,4,∗ Xu Zheng5,6 Hao Shi7 Kunyu Peng3 Hang Liu1

Kailun Yang1,† Hui Zhang1,†
1Hunan University 2Hunan Normal University 3Karlsruhe Institute of Technology 4ETH Zürich
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(a) Unlocking the constraints of SFOASS with the proposed UNLOCK framework. (b) Performance comparison of SFOASS.

Figure 1. UNLOCK framework (a) solves the Source-Free Occlusion-Aware Seamless Segmentation (SFOASS), enabling segmentation

with 360° viewpoint coverage and occlusion-aware reasoning while adapting without requiring source data and target labels, and (b)
outperforms existing SFDA methods on the Real-to-Real scenario [7] across all five segmentation metrics (i.e., mAPQ for amodal panoptic,

mPQ for panoptic, mIoU for semantic, mAAP for amodal instance, and mAP for instance).

Abstract
Panoramic image processing is essential for omni-

context perception, yet faces constraints like distortions,
perspective occlusions, and limited annotations. Previous
unsupervised domain adaptation methods transfer knowl-
edge from labeled pinhole data to unlabeled panoramic
images, but they require access to source pinhole data.
To address these, we introduce a more practical task,
i.e., Source-Free Occlusion-Aware Seamless Segmentation
(SFOASS), and propose its first solution, called UNcon-
strained Learning Omni-Context Knowledge (UNLOCK).
Specifically, UNLOCK includes two key modules: Omni
Pseudo-Labeling Learning and Amodal-Driven Context
Learning. While adapting without relying on source data
or target labels, this framework enhances models to achieve
segmentation with 360° viewpoint coverage and occlusion-
aware reasoning. Furthermore, we benchmark the pro-
posed SFOASS task through both real-to-real and synthetic-
to-real adaptation settings. Experimental results show that
our source-free method achieves performance compara-
ble to source-dependent methods, yielding state-of-the-art
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scores of 10.9 in mAAP and 11.6 in mAP, along with an ab-
solute improvement of +4.3 in mAPQ over the source-only
method. All data and code will be made publicly available
at https://github.com/yihong-97/UNLOCK.

1. Introduction
Scene understanding is a foundational task in computer

vision, essential for various downstream applications like

autonomous driving [44, 77], virtual reality [11, 58], and

robotics [3, 60]. Despite significant advances in the field,

current methods still face challenges in achieving both com-

prehensive and human-like perceptions of surrounding en-

vironments, limiting their ability to fully understand scenes.

Multiple critical research questions remain unsolved.

1) How to efficiently expand to 360° field of view? Tra-

ditional scene understanding methods [9, 21, 70] tailored

for pinhole imagery, are limited by a narrow Field of View

(FoV). In contrast, panoramic vision offers 360° view in a

single shot, which has the potential to facilitate more com-

prehensive scene understanding [1, 19]. However, directly

applying traditional methods to panoramic data often re-

sults in unreliable performance due to challenges such as
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distortions [92]. For effective panoramic understanding, it

is essential to learn omni-context knowledge when trans-

ferring from the pinhole domain to the panoramic domain.

This knowledge transfer is crucial for accurate feature inter-

pretation and wide-FoV representation, ultimately enabling

seamless 360° scene understanding [84, 85].

2) How can amodal prediction be improved to extend the
depth of view? Amodal perception [34, 53], the ability

to predict an occluded object’s complete shape, is key to

robust scene understanding [83] and mirrors human-like

perception. Extending the depth of view (vertical to field

of view) means that models can achieve seamless percep-

tion, which refers to pixel-level segmentation of the back-

ground and occlusion-aware instance-level segmentation of

the foreground. Beyond the previous amodal segmentation

methods [16, 98], how to improve occlusion-aware reason-

ing like OASS [7] in both directions (depth and field of

view) simultaneously remains challenging.

3) How can models adapt to panoramic domains with-
out source data? Apart from the field and depth of view,

the scarcity of labeled data presents a significant limitation

in panoramic vision. To address the lack of labeled data,

Unsupervised Domain Adaptation (UDA) leverages labeled

data from the source domain while training on unlabeled

data from the target domain [7, 24, 25, 28, 32, 65]. How-

ever, UDA methods still rely on access to source domain,

which can often be challenging or even impossible due

to privacy concerns or commercial restrictions on source

datasets, such as in autonomous driving [40, 95, 96]. This

restriction leads us to source-free learning, i.e. how to adapt

models to panoramic domains without source data. How-

ever, it remains under-explored in amodal panoramic vision.

In this work, to address the aforementioned challenges in

scene understanding, we extend the OASS [7] task and in-

troduce a more practical task, i.e., Source-Free Occlusion-

Aware Seamless Segmentation (SFOASS). To tackle this

task, we propose its first solution, called UNconstrained
Learning Omni-Context Knowledge (UNLOCK). As

shown in Fig. 1a, UNLOCK improves panoramic seam-

less segmentation performance under adaptation constraints

without requiring source data and target labels. Specifi-

cally, to effectively capture the domain-invariant knowledge

from the source domain, a method called Omni Pseudo-

Labeling Learning (OPLL) is proposed. Besides, to learn

intra-domain knowledge and integrate the domain-invariant

knowledge, we put forward the Amodal-Driven Context

Learning (ADCL) strategy. Together, OPLL and ADCL

adapt the source model trained on pinhole data to target

panoramic images while enhancing panoramic perception

and occlusion-aware reasoning. With OPLL as the key and

ADCL performing the unlocking action, they work in syn-

ergy to unlock the constraints in SFOASS, thereby enabling

seamless perception of the model towards panoramic data.

Aside from Real-to-Real source-free adaptation on the

KITTI360-APS→BlendPASS benchmark [7], we pioneer

Synthetic-to-Real adaptation in OASS and SFOASS and in-

troduce AmodalSynthDrive→BlendPASS to investigate the

potential of adapting synthetic panoramic images to the real

panoramic image domain. Extensive experiments are con-

ducted on both SFOASS benchmarks. Without access to

the original source data (neither images nor labels), our

UNLOCK framework can obtain on-par performance as

compared to UDA-based methods that require all source

data. Surprisingly, as shown in Fig. 1b, results on the

Real-to-Real scenario [7] show an absolute improvement of

+4.3 in mAPQ, reaching 26.4, compared to the source-only

method, and outperforms UDA methods using 12K images

in instance-level segmentation, with state-of-the-art scores

of 10.9 in mAAP and 11.6 in mAP, respectively.

In this work, we propose contributions as follows:

• We introduce the Source-Free Occlusion-Aware Seamless

Segmentation (SFOASS) task and its first solution, UN-

constrained Learning Omni-Context Knowledge (UN-

LOCK). The UNLOCK framework enables models to

achieve segmentation with 360° viewpoint coverage and

occlusion-aware reasoning while adapting without the

need for source data and target labels.

• To fully exploit the knowledge from source and tar-

get domains, Omni Pseudo-Labeling Learning (OPLL)

and Amodal-Driven Context Learning (ADCL) strategies

are introduced in UNLOCK to achieve occlusion-aware

seamless segmentation for panoramic images.

• Extensive experiments conducted on two SFOASS sce-

narios, Real-to-Real and Synthetic-to-Real, demonstrate

the effectiveness of the UNLOCK framework, highlight-

ing its ability to achieve competitive performance.

2. Related Work
Seamless segmentation. Seamless segmentation, as intro-

duced by [7], aims to achieve amodal-level segmentation for

large-FoV images, enabling unified, occlusion-aware scene

understanding. Wide-FoV segmentation on fisheye [12, 56,

59, 78, 80] and panoramic images [22, 35, 75, 76, 97]

facilitates comprehensive 360° scene comprehension [74].

Panoramic panoptic segmentation enhances scene under-

standing by providing instance-level insights [17, 30, 47,

52]. Amodal segmentation extends this concept by pre-

dicting both visible and occluded object regions [4, 10, 15,

23, 38, 41, 61, 63]. Li et al. [34] pioneered amodal in-

stance segmentation, introducing occlusion-aware segmen-

tation through iterative regression. Subsequent datasets

adapted for amodal segmentation [98] and occlusion classi-

fication [53] have driven further advances. Shape and con-

tour priors [8, 18, 36, 37, 69] have further refined segmenta-

tion accuracy. In addition to instance segmentation, amodal

panoptic segmentation has been explored [5, 26, 98]. Mo-
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han et al. [48, 49] combined semantic and amodal segmen-

tation for amodal panoptic segmentation. Recent methods,

including pix2gestalt [51], AISDiff [64], and Xu et al. [72],

leverage diffusion model priors for amodal segmentation.

Although seamless segmentation [7] unifies aforementioned

segmentation paradigms to form occlusion-aware scene un-

derstanding for panoramic vision, our work emphasizes

source-free seamless segmentation, aiming for high accu-

racy even with restricted access to labeled source data.

Source-free domain adaptation. Existing works dealing

with domain gaps on semantic segmentation tasks mostly

focus on UDA where labeled source domain data is re-

quired [20, 62, 68, 71, 84, 84, 85, 91, 93, 94, 99]. Source-

Free Domain Adaptation (SFDA) [6, 14, 33, 40, 43, 54, 67,

79, 81] is a more practical approach compared with UDA,

as it removes the need for access to source data during the

adaptation process. As sub-directions of scene segmenta-

tion, domain adaptation of panoptic segmentation is chal-

lenging as it must distinguish and integrate semantic and

instance information across domains, as highlighted in ex-

isting works [27, 45, 46, 55, 87]. To overcome the limita-

tions of the FoV, domain adaptation in panoramic segmen-

tation facilitates comprehensive scene understanding across

a full 360° perception, while effectively harnessing the rich

knowledge from label-dense pinhole domains. Researchers

have explored both UDA [31, 84, 85, 88–90, 94] and

SFDA [95, 96] settings for panoramic segmentation. Jaus et
al. [29, 30] illustrate the need for panoramic panoptic seg-

mentation in autonomous driving. Zheng et al. [95, 96] for

the first time, explored SFDA in panoramic semantic seg-

mentation. However, the SFDA challenge remains unex-

plored for OASS [7]. In this work, we introduce the novel

SFOASS task and benchmark it across two scenarios. We

also proposed the first solution UNLOCK, a novel method

designed to unlock constraints posed by SFOASS.

3. UNLOCK Framework
3.1. Overview
OASS. In the OASS [7], the objective is to use a labeled

source pinhole domain Dpin={xpin
i , ypini }Npin

i=1 and an un-

labeled target panoramic domain Dpan={xpan
i }Npan

i=1 to ob-

tain an OASS model F that performs well in Dpan. Both

domains share the same C categories, which can be further

divided into Cstu Stuff classes and Cthi Thing classes. Ul-

timately, the F should be able to output five segmentation

results with the input panoramic image at once: semantic,

instance, amodal instance, panoptic, and amodal panoptic

maps. Typically, F is designed to contain a shared en-

coder and three detection branches: semantic, instance, and

amodal instance branches, each outputting corresponding

predictions psemi , pinsi , painsi , denoted as

psemi , pinsi , painsi = F (xi), (1)

where psemi ∈RH×W×C represents the semantic prediction

of the input image xi∈RH×W×3. pinsi and painsi repre-

sent the instance and amodal instance predictions, respec-

tively, with each including class∈RCthi

, score∈ [0, 1], and

mask∈RH×W predictions for jth object. During adapta-

tion, the label yi of xi consists of three components: seman-

tic ysemi , instance yinsi , and amodal instance yainsi labels,

used for supervised learning in their respective branches. In

the inference phase, the predictions from all three branches

are fused to produce five segmentation maps of OASS.

SFOASS. Considering privacy and storage limitations, this

work introduces a more practical task, i.e., SFOASS. In

the adaptation phase, the source pinhole domain Dpin is

locked and inaccessible. Given a source model F pin well-

trained from Dpin, and Dpan, the goal of SFOASS is to

adapt the source model F pin with only unlabeled panoramic

data {xpan
i }Npan

i=1 , obtaining a target model F pan that per-

forms well in the target panoramic domain. (For ease of

expression, the superscript “pan” for target panoramic do-

main will be omitted henceforth.)

How can models adapt to panoramic domains with-
out source data, while expanding the field and depth
of view? To answer this, we propose a novel method

called UNconstrained Learning Omni-Context Knowl-
edge (UNLOCK). It can further enhance the perfor-

mance of panoramic seamless prediction while improving

occlusion-aware reasoning. Specifically, as shown in Fig. 2,

in response to the challenge that existing self-training meth-

ods are ineffective for the SFOASS task, we designed an

Omni Pseudo-Labeling Learning (OPLL) approach. This

approach leverages all predictions to generate omni soft la-

bels. These generated labels serve as the “key” to the pro-

posed UNLOCK. Furthermore, we propose a brand-new

Amodal-Driven Contextual Learning (ADCL) strategy,

which effectively resolves the conflict between the real ob-

ject shapes and contextual knowledge for the occluded ob-

ject. Ultimately, the ADCL holds the “key” and performs

the “unlocking” action, completing the source-free adapta-

tion to the panoramic domain.

3.2. Omni Pseudo-Labeling Learning
In the SFOASS, only unlabeled target panoramic images

{xi}Ni=1 are accessible. Common solutions [2, 6, 33] typi-

cally involve generating pseudo-labels of target images for

training. Pseudo-label generation usually entails filtering

model predictions based on pre-defined thresholds. How-

ever, we found that directly using the filtered pseudo-labels

for self-training in the SFOASS led to performance degra-

dation for instance and amodal instance branches compared

to the source model. The OASS task consists of a pixel-

wise semantic branch and two object-wise instance-level

branches (instance and amodal instance) based on region

proposals. For the instance-level branches, each object is
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Figure 2. Illustration of the proposed UNLOCK. To address the challenge of the inaccessible source domain and target labels in SFOASS,

we propose Omni Pseudo-labeling Learning (OPLL) and Amodal-Driven Contextual Learning (ADCL) modules. OPLL serves as the key,

and ADCL, holding the key, unlocks the constraints of SFOASS, enabling effective adaptation of the target model to the panoramic domain.

assigned a binary mask for binary cross-entropy loss. How-

ever, inaccurate pseudo-labels can hinder learning. When

object parts are mistakenly labeled as background, even if

the model correctly detects the objects, the pseudo-labels

may force it to incorrectly classify them as absent.

Image Semantic Predictions Instance Predictions

(a) Incorrect predictions (cyclists in red) of the Stuff class.

All Predictions Uncertainty RegionCertain Pseudo-Labels

(b) Omni pseudo-label generation with CS thresholds.

Figure 3. Solution to the challenge of predictions from the source

model in OPLL, illustrated with the amodal instance branch.

To address this, we developed the OPLL method, which

introduces generating omni pseudo-labels using Class-

wise Self-tuning (CS) thresholds and applying uncertainty-

guided instance loss. Since the two instance-level branches

perform the same operations, we will introduce one branch

as an example below. Specifically, we first utilized the

semantic branch’s predictions to impose additional con-

straints on the predictions of both instance-level branches.

As shown in Fig. 3a, we observed that the instance-level

branch, constrained by local information, may misclassify

the statue in the shop window as a cyclist of Thing class.

In contrast, the semantic branch, aided by global informa-

tion, can usually understand the scenes correctly. For each

panoramic image xi, we obtain the Thing mask mthi by the

semantic prediction, then use it to revise the object mask of

instance-level predictions pili , il ∈ {ins, ains}:

mthi =

{
1,
0,

if argmaxpsem ∈ Cthi

else
, (2)

p̂ili = pili ∩mthi. (3)

Then, considering the inconsistent number of objects and

the significant imbalance in the source model’s capabilities

across different Thing classes (as shown in SourceOnly of

Table 2), we propose a simple and effective CS threshold

method for the predictions of the SFOASS task. For each

branch, the CS thresholds τ = {τc}Cthi

c=1 is determined by:

τc = argmaxτ∈{τfix,τper}N
τ
c , c ∈ Cthi, (4)

where Nτfix

c represents the number of objects of class

c whose the score exceeds τfix across all predictions

{p̂i}Ni=1, and Nτper

c denotes the number of objects of class c
in the top τper percentage when the score of all predictions

{p̂i}Ni=1 are sorted in descending order. For the semantic

branch, the score is replaced with the maximum predicted

probability of psemi . This approach generates high-quality

pseudo-labels while effectively addressing the issue of low

confidence scores for certain classes, caused by the source

model F pin inconsistent performance across classes.

Then, we filter out high-quality predictions based on CS

thresholds τ as certain pseudo-labels ŷceri :

ŷceri = {p̂(j)i |p̂(j)i > τ}, (5)

where p̂
(j)
i represent the prediction of jth object in predic-

tions pi for input image xi. To fully utilize the predictions,
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Figure 4. Comparison of object extraction methods: Amodal

instance extraction mixes information from other objects, while

instance-based extraction may yield incomplete shapes. Our

method avoids these issues and preserves spatial awareness.

we treat the remaining masks of the other predictions as un-

certainty region ŷunceri for the current image:

ŷunceri = (1− 1{∑
j ŷ

cer
i >0

}) ∩ (1{∑
j(p̂

(j)
i |p̂(j)

i <τ )>0
}),

(6)

where 1{·} is indicator function. The left-hand side of ∩
in Eq. 6 ensures that the object region of ŷceri is not mis-

assigned as the uncertain region. They forms the omni

pseudo-labels ŷi = {p̂(1)i , p̂
(2)
i , ..., ŷunceri } of the training

panoramic image xi. We believe that all predictions from

both instance-level branches of the source model can pro-

vide effective knowledge. For the semantic branch, the

j is replaced with the pixel spatial location. Finally, for

each training panoramic image xi, we obtain three types

of omni pseudo-labels ŷsemi , ŷinsi , ŷainsi for training. Dur-

ing the adaptation process of the target model F pan, fol-

lowing [7], the cross-entropy loss is used for the seman-

tic branch. For the instance-level branches, we introduce

a novel uncertain-guided Binary Cross Entropy (BCE) loss

Lur, specifically tailored for the SFOASS task.

Lur = (1− ŷunceri )� BCE(F pan(xi), ŷ
cer
i ). (7)

This approach effectively mitigates prediction errors of

the target panoramic data arising from the source pinhole

model, allowing the target model to focus on high-quality

object samples during the adaptation process.

3.3. Amodal-Driven Contextual Learning
Through OPLL, we leverage the source model to gener-

ate omni pseudo-labels of the unlabeled panoramic data,

obtaining the “key” for adapting the model to the target

domain. It primarily extracts domain-invariant knowledge

from the pinhole-tolerant source model. We further intro-

duce the ADCL strategy to learn intra-domain knowledge

while integrating domain-invariant knowledge. It holds the

“key” to complete the “unlocking” action, and achieves the

adaptation to the panoramic images in a source-free manner.

Mixing is an effective strategy often used in UDA meth-

ods [2, 50, 82]. The typical approach involves randomly

extracting objects from other data and pasting them into the

current training image to form new mixed training samples.

However, this approach is not suitable for the OASS model

with an amodal instance branch, and it can confuse seman-

tic context and hinder model learning. Specifically, since

the two instance branches in the OASS model are indepen-

dent, their predictions are not correlated, leaving us with

the option of relying on one of the predictions. As shown

by the car in Fig. 4, the amodal instance prediction captures

the complete shape of the car. However, this prediction only

provides the full mask for the object, meaning that the oc-

cluded areas in the mask may inadvertently include parts of

other objects. If these masks are directly used for mixing,

incorrect contextual information can be introduced. On the

other hand, relying on instance predictions focuses only on

non-occluded regions, making it difficult for the model to

learn the full shape of objects. This dual challenge compli-

cates the learning process in SFOASS tasks.

First, we use OPLL with stricter thresholds τ ′fix and

τ ′per to build a buffer pool B of K high-quality object sam-

ples, relying solely on predictions from the amodal instance

branch to accurately capture object shapes.

B ={o(1), o(2), ..., o(K)},
where o(k) ∈ {ŷains→cer

i |(τ ′fix, τ ′per)}Npan

i=1 .
(8)

The o(k) represents the filtered certain object obtained

through OPLL from the panoramic data. Additionally, for

each o(k) = {o(k)ful, o
(k)
ovp}, we include not only the mask

oful of the predicted full region but also record the overlap-

ping region oovp between the object and other objects in the

same image, regardless of whether they are occluded. This

process results in an amodal-driven object pool B.

Furthermore, we introduce a novel spatial-aware mixing

strategy based on the amodal-driven object pool, enriching

the diversity of unlabeled panoramic images by generating

amodal-driven mixed samples while respecting panoramic

layouts. This spatially consistent mixing ensures seman-

tic coherence, aligning distortions in the panoramic layout

even after object insertion. During the adaptation phase, we

randomly select R object samples O = {o(r)}Rr=1 from B
and integrate them into the current training image xi:

x̃i = (1− o
(r)
ful)�xi + o

(r)
ful�xr, (9)

where xr represents the image corresponding to the paste

object o(r). For ambiguous regions of o(r) (i.e., potentially

occluded areas), we assign zero pixels during the mixing

process while keeping the complete mask as the label ac-

cording to the o
(r)
ovp.

x̃i = (1− o(r)ovp)� x̃i. (10)

For the three pseudo-labels ỹsemi , ỹinsi , ỹainsi of the mixed

image x̃i, we only use {o(r)ful}Rr=1 to modify them accord-

ingly. This strategy preserves the full shape of objects while
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� (ypan)

DATR [93] 20.3 51.8 09.2 59.9 11.9 12.0 02.0 00.0 03.9 64.6 14.1 70.4 11.1 00.0 39.3 00.0 03.2 10.1 01.3

Trans4PASS [85] 22.9 53.9 14.1 69.4 19.2 11.8 03.8 00.0 05.2 67.6 16.0 77.4 15.3 04.2 41.1 06.6 00.0 00.0 07.4

EDAPS [55] 23.1 54.9 17.0 66.9 18.8 14.5 05.8 04.0 04.6 68.2 16.0 72.8 19.0 00.0 36.7 05.8 04.4 00.0 07.2

UnmaskFormer [7] 26.6 61.8 24.7 66.8 20.8 15.8 05.3 04.3 03.3 69.0 18.4 79.4 20.5 03.1 44.6 12.8 11.3 00.0 16.6

� (xpan, ypan) Source-only 22.1 57.1 14.2 73.6 15.5 07.6 00.7 00.0 10.4 58.3 12.4 83.1 15.2 00.0 40.3 03.8 00.0 00.0 06.1

� (xpin, ypin, ypan)
360SFUDA++ [95] 24.5 60.3 16.8 71.7 14.1 07.7 00.0 00.0 08.4 55.6 13.6 81.3 21.5 03.2 46.3 19.4 02.2 00.0 19.4

UNLOCK (Ours) 26.4 (↑4.3) 62.7 14.4 74.8 20.2 11.2 00.8 00.0 08.0 62.9 18.3 84.0 21.9 03.6 45.8 19.4 00.0 03.1 24.4

PS

� (ypan)

DATR [93] 19.6 50.4 09.1 59.9 11.9 12.0 02.0 00.0 03.9 64.6 14.1 70.5 12.2 00.0 38.1 00.0 03.4 00.0 01.3

Trans4PASS [85] 22.7 53.9 14.1 69.4 19.2 11.8 03.8 00.0 05.2 67.6 16.0 77.4 14.6 04.1 38.2 06.9 00.0 00.0 07.2

UniDAPS [86] 22.7 66.0 09.5 66.3 17.4 14.3 04.8 00.0 06.1 67.2 16.1 72.7 08.3 00.0 27.3 14.8 09.2 00.0 08.9

EDAPS [55] 23.1 55.0 17.1 66.8 18.7 14.5 05.8 04.0 04.7 68.2 16.0 72.8 19.6 00.0 37.8 01.8 04.4 00.0 07.9

UnmaskFormer [7] 26.2 61.7 24.7 66.8 20.8 15.8 05.2 04.3 03.3 69.0 18.4 79.4 20.9 03.5 43.0 11.3 07.6 00.0 16.0

� (xpan, ypan) Source-only 22.3 57.8 14.2 73.8 15.5 07.6 00.7 00.0 10.4 58.3 12.4 83.2 14.9 00.0 39.1 06.0 00.0 00.0 07.7

� (xpin, ypin, ypan)
360SFUDA++ [95] 23.7 61.3 16.8 72.2 14.1 07.6 00.0 00.0 08.4 55.9 13.6 81.3 18.4 00.0 40.6 16.4 02.4 00.0 17.6

UNLOCK (Ours) 25.1 (↑2.8) 60.4 14.4 75.7 20.2 11.2 00.7 00.0 08.0 63.6 18.3 84.0 16.9 00.0 40.0 18.5 00.0 00.0 19.4
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DATR [93] 34.9 71.9 27.2 70.6 22.8 36.0 23.9 00.0 04.5 77.1 37.1 80.1 51.2 02.2 70.2 08.9 06.0 11.0 27.8

Trans4PASS [85] 40.7 72.8 33.8 78.4 33.5 37.1 26.6 05.3 05.4 77.4 37.9 84.7 57.5 04.5 76.6 19.0 17.0 12.7 51.7

UniDAPS [86] 38.5 72.3 29.2 75.8 33.9 38.9 25.9 11.4 07.5 77.6 37.4 81.4 47.6 03.0 75.6 21.3 03.4 01.3 48.9

EDAPS [55] 40.2 74.4 35.9 77.0 36.5 40.4 28.0 16.1 05.1 78.1 39.5 82.3 55.5 03.3 74.4 06.7 14.1 05.2 50.9

UnmaskFormer [7] 43.7 76.5 37.8 77.1 34.7 44.1 28.3 17.8 02.8 78.7 41.7 85.0 57.3 06.0 80.6 23.5 21.7 18.8 53.6

� (xpan, ypan) Source-only 38.7 73.0 29.1 82.0 31.2 31.4 18.0 00.0 16.0 74.1 33.7 88.7 50.2 04.0 80.4 18.0 11.0 04.6 50.2

� (xpin, ypin, ypan)
360SFUDA++ [95] 39.4 74.6 32.2 81.2 30.7 31.9 18.1 00.0 15.6 72.6 38.3 89.2 50.6 04.6 80.5 20.4 11.6 05.3 51.0

UNLOCK (Ours) 41.6 (↑2.9) 74.7 32.1 83.7 34.7 40.8 18.5 00.0 18.9 76.1 39.9 89.5 53.7 05.8 82.2 26.1 00.8 14.0 57.8

Table 1. Scene Segmentation results on the K2B benchmark. Metrics are reported as: mAPQ for Amodal Panoptic Segmentation (APS),

mPQ for Panoptic Segmentation (PS), and mIoU for Semantic Segmentation (SS). Per-class results are reported as APQ, PQ, and IoU. ↑
represents the improvement over the baseline of the Source-only method. xpin and xpan represent the images, and ypin and ypan represent

the labels, from the pinhole source and panoramic target domains, respectively.

avoiding confusion about the semantic content of other ob-

jects. The zero-pixel ambiguous regions act as a masked

strategy to enhance the model’s ability to reconstruct oc-

cluded areas and infer the complete shape of occluded ob-

jects. This improves the model’s ability to learn contextual

knowledge from the target panoramic domain, improving

its understanding of both individual objects and their rela-

tionships within the scene.

4. Experiments
4.1. Datasets
In this paper, we extend the Real-to-Real adaptation on

the KITTI360-APS→BlendPASS (K2B for short)) bench-

mark [7] to SFOASS. Moreover, we pioneer Synthetic-

to-Real adaptation in both OASS and SFOASS, introduc-

ing AmodalSynthDrive→BlendPASS benchmark (A2B for

short) to conduct seamless segmentation research from syn-

thetic to real scenarios.

Source pinhole domain: (1) KITTI360-APS [48]: It ex-

tends KITTI360 [39] and includes additional annotations

for inmodal and amodal instances. A total of 12, 320 an-

notated images (1408×376 pixels) are captured using pin-

hole cameras across 9 cities. It covers 11 Stuff classes and

7 Thing classes. (2) AmodalSynthDrive [57]: The first syn-

thetic dataset applicable to the OASS task, generated using

CARLA [13]. It provides images and annotations from four

surround-view cameras with a pinhole perspective, with

10, 500 training images (1920×1080 pixels) for each view-

point. It cover 11 Stuff classes and 7 Thing classes.

Target panoramic domain: The BlendPASS dataset [7]

consists of 2, 000 unlabeled training panoramic images and

100 labeled test panoramic images (2048×400 pixels), cap-

tured in real driving scenes across 40 cities on multiple con-

tinents. It covers 11 Stuff and 8 Thing classes.

Domain gap analysis: Fig. 5 shows the feature distribu-

tions of car and pedestrians between the target domain and

two source domains, where there is a large domain gap be-

tween different datasets, especially for the A2B.

car pedestrians

Pi
n2

Pa
n

Pin2Pan
Syn2Real

Sy
n2

Re
al

BlendPASS
(Real, Panoramic)

KITTI360-APS
(Real, Pinhole)

AmodalSynthDrive
(Synthetic, Pinhole)

Figure 5. Example images from the datasets [7, 48, 57] and the

class distribution visualized via t-SNE [66].

4.2. Experiment Setups
Following [7], we use the proposed architecture as

the backbone of our UNLOCK and the reproduced

360SFUDA++ [95]. In the A2B benchmark, we reproduce

existing methods [55, 85, 86, 93, 95] and train the pinhole

source model following the framework in [7]. In the K2B
benchmark, we directly use the Source-only model from [7]

as the pinhole source model. The AdamW optimizer [42] is

employed, with a learning rate set to 1×10−7, and a weight

decay of 0.01, followed by polynomial decay. The batch

size is set to 4, with crop sizes of 376×376 for K2B and

400×400 for A2B, and both are trained for 10k iterations.

In UNLOCK, τfix and τper for amodal instance predictions

are set to 0.3 and 0.5; for instance predictions to 0.5 and 0.3;

and for semantic predictions, to 0.5 and 0.8. For ADCL,

they are set to 0.95 and 0.1, with the sample object count R
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DATR [93] 08.7 13.1 00.0 30.6 06.9 04.7 01.7 03.8

Trans4PASS [85] 09.9 16.0 00.2 31.7 08.3 06.0 00.4 06.4

EDAPS [55] 10.7 15.8 00.1 30.0 09.0 12.2 00.4 07.4

UnmaskFormer [7] 10.5 16.1 00.1 34.1 12.3 02.2 00.6 08.2
� Source-only 10.2 15.2 00.0 33.4 12.6 03.3 00.4 06.8

�
360SFUDA++ [95] 10.3 15.2 00.0 33.4 13.1 03.3 00.4 06.8

UNLOCK (Ours) 10.9 (↑0.7) 17.1 00.0 34.9 14.6 01.7 00.2 07.9

IS

�

DATR [93] 08.7 14.2 00.0 31.2 07.6 03.7 00.4 03.6

Trans4PASS [85] 10.0 16.5 00.0 32.2 10.2 05.3 00.2 05.6

UniDAPS [86] 03.4 02.3 00.0 11.3 06.2 02.8 00.0 01.5

EDAPS [55] 10.3 16.6 00.0 30.8 06.5 11.4 00.4 06.2

UnmaskFormer [7] 11.1 17.6 00.0 35.2 14.2 02.9 00.8 07.1

� Source-only 10.5 15.8 00.0 33.9 13.5 03.6 00.2 06.8

�
360SFUDA++ [95] 10.5 15.7 00.0 33.9 13.3 03.6 00.2 06.8

UNLOCK (Ours) 11.6 (↑1.1) 17.7 00.0 36.1 16.3 03.4 00.1 07.4

Task Method Metric pe
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r
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k
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s

m
ot

or
.

bi
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cl
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AIS

�

DATR [93] 08.1 14.1 00.4 23.5 09.6 04.3 04.7 00.0

Trans4PASS [85] 09.2 13.0 00.2 24.7 13.0 07.6 05.7 00.0

EDAPS [55] 09.5 16.7 00.2 25.2 11.6 06.6 06.1 00.0

UnmaskFormer [7] 10.2 16.6 00.1 26.5 12.8 08.6 06.4 00.0

� Source-only 09.7 16.0 00.0 24.9 11.9 09.1 05.6 00.0

�
360SFUDA++ [95] 09.6 16.2 00.0 25.3 11.7 08.9 05.2 00.0

UNLOCK (Ours) 10.0 (↑0.3) 17.3 00.0 28.9 09.2 08.3 06.4 00.0

IS

�

DATR [93] 08.0 14.9 00.4 25.3 09.2 01.0 04.9 00.0

Trans4PASS [85] 09.0 15.0 00.1 27.2 11.8 04.1 05.0 00.0

UniDAPS [86] 00.3 00.8 00.0 00.8 00.1 00.0 00.5 00.0

EDAPS [55] 09.5 16.4 00.1 28.2 10.7 05.3 05.8 00.0

UnmaskFormer [7] 09.6 17.0 00.1 28.4 11.9 03.8 05.9 00.0

� Source-only 09.3 17.4 00.0 26.9 11.6 04.4 04.9 00.0

�
360SFUDA++ [95] 09.4 17.5 00.0 27.1 11.1 05.4 04.8 00.0

UNLOCK (Ours) 09.7 (↑0.4) 17.7 00.0 29.3 09.0 05.9 06.1 00.0

Table 2. Instance-level Segmentation results on the K2B (left) and A2B (right) benchmark. Metrics are reported as: mAAP for Amodal

Instance Segmentation (AIS) and mAAP for Instance Segmentation (IS). Per-class results are reported as AAP and AP.

(c)

(b)

(e)

(d)

(a)

Figure 6. Visualization results. From top to bottom are (a) Image, (b) GT, (c) Source-only, and (d) 360SFUDA++ [95], and (e) UNLOCK.

set to 10. The analysis of these thresholds is provided in the

supplementary material. Our experiments are conducted on

a single NVIDIA GTX 3090 GPU using PyTorch.

4.3. Results of SFOASS
K2B. As shown by the Real-to-Real adaptation results in

Table 1 and the left side of Table 2, UNLOCK sets a

new benchmark for SFOASS, delivering outstanding per-

formance and effectively addressing the unique challenges

of limited FoV, occlusion, and constrained data. Com-

pared to the baseline Source-only, UNLOCK outperforms

in key metrics for scene understanding including mAPQ,

mPQ, and mIoU, with improvements of +4.3, +2.8, and

+2.9, respectively. Even compared to UnmaskFormer [7],

which has access to both source domain and target images,

UNLOCK achieves comparable results in mAPQ. Notably,

in instance-level segmentation, UNLOCK surpasses all ex-

isting UDA methods[7, 55, 85, 93]—even without access

to source domain data containing 12K images-label pairs,

reaching the highest mAAP of 10.9 and mAP of 11.6, show-

casing its robustness and adaptability. As shown in Fig. 6,

UNLOCK successfully and precisely segments numerous

Thing objects with better shape coherence.

A2B. The results from another Synthetic-to-Real adaptation

scenario, shown in Table 3 and the right side of Table 2,

further demonstrate UNLOCK’s exceptional performance.

Compared to 360SFUDA++ [95], which is specifically de-

signed for panoramic data, our method significantly outper-

forms across all SFOASS metrics. This success is driven

by the OPLL pseudo-label generation strategy, which is tai-

lored specifically for SFOASS. The instance-level segmen-

tation results highlight a clear advantage for our method,

reflecting its enhanced accuracy in segmenting individual

object instances within complex scenes.

4.4. Ablation Study
We conduct a series of ablation studies on the K2B scenario

to evaluate the effectiveness of our method.

Effectiveness of OPLL. An ablation study was conducted

to validate the effectiveness of the OPLL. Table 4 presents

the comparison of three different approaches for self-

training. Using the final predicted labels from the source

model as pseudo-labels or directly using all predictions

from the three branches fails to adapt the instance-level

branches to the panoramic domain, as evidenced by both

mAAP and mAP scores, which are even worse than the no-

adaptation Source-only model. With the OPLL designed by

us, the knowledge of the source model can be effectively

adapted to the target domain by using omni pseudo-labels.

Compared with Source-only, OPLL achieves a significant
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� (ypan)

DATR [93] 19.4 36.1 00.0 72.4 00.0 01.3 02.4 00.0 07.1 64.8 00.0 88.9 08.3 02.7 31.6 18.4 00.0 14.8 00.0

Trans4PASS [85] 21.5 38.7 00.0 71.9 00.0 10.0 03.8 00.0 07.4 65.3 00.0 89.2 11.1 03.7 35.3 25.4 07.6 15.9 00.9
EDAPS [55] 21.7 45.5 00.0 74.9 00.0 08.5 04.1 00.0 06.0 63.7 00.0 89.5 12.1 02.8 35.9 20.7 09.7 17.0 00.0

UnmaskFormer [7] 22.9 44.1 00.6 67.5 00.0 09.6 04.3 00.0 05.0 67.0 00.0 90.2 16.6 00.0 38.7 29.2 17.1 22.2 00.0

� (xpan, ypan) Source-only 18.9 47.1 01.9 68.5 00.0 00.9 00.5 00.0 01.6 43.0 00.0 84.7 09.5 00.0 36.3 21.5 07.5 16.7 00.0

� (xpin, ypin, ypan)
360SFUDA++ [95] 19.4 46.6 01.9 68.1 00.0 01.0 00.5 00.0 01.7 48.2 00.0 86.1 18.8 00.0 38.5 18.1 06.4 14.1 00.0

UNLOCK (Ours) 21.4 (↑2.5) 50.8 04.7 73.5 00.0 04.8 00.6 00.0 03.9 49.8 00.0 86.2 17.5 01.2 41.4 20.2 09.3 20.9 00.0

PS

� (ypan)

DATR [93] 19.5 35.7 00.0 71.5 00.0 01.3 01.8 00.0 07.1 64.8 00.0 88.9 08.3 05.0 32.2 15.8 02.4 15.5 00.0

Trans4PASS [85] 20.9 38.1 00.0 71.9 00.0 10.0 03.8 00.0 07.4 65.3 00.0 89.2 09.6 00.0 36.5 25.0 03.3 15.9 00.0

UniDAPS [86] 18.2 53.1 00.0 72.4 01.8 07.8 05.5 00.0 07.7 67.8 00.0 88.7 07.0 00.0 07.7 01.6 00.0 07.0 00.0

EDAPS [55] 21.9 46.7 00.0 75.1 00.0 08.5 04.1 00.0 06.1 63.6 00.0 89.5 11.8 02.5 36.9 23.4 08.9 16.5 00.0

UnmaskFormer [7] 20.7 42.9 00.6 67.0 00.0 09.6 03.6 00.0 05.0 66.9 00.0 90.2 16.6 00.0 37.3 25.9 07.5 00.0 00.0

� (xpan, ypan) Source-only 19.0 48.8 01.9 68.6 00.0 00.9 00.5 00.0 01.6 42.8 00.0 84.7 12.7 00.0 36.2 20.3 06.4 16.8 00.0

� (xpin, ypin, ypan)
360SFUDA++ [95] 19.3 46.5 01.9 69.9 00.0 01.0 00.5 00.0 01.7 47.9 00.0 86.0 15.6 00.0 36.5 18.9 06.5 15.2 00.0

UNLOCK (Ours) 20.4 (↑1.4) 50.5 04.2 74.0 00.0 04.8 00.6 00.0 03.9 49.2 00.0 86.3 14.3 00.0 38.1 18.8 05.7 16.8 00.0

SS

� (ypan)

DATR [93] 31.5 59.5 06.3 77.7 00.2 09.2 22.9 02.4 10.3 76.6 00.0 93.4 37.7 01.9 68.8 20.8 01.5 54.1 24.2

Trans4PASS [85] 34.3 58.9 07.6 77.3 00.2 28.7 26.7 05.2 11.1 76.1 00.0 93.6 35.8 01.8 73.6 28.3 06.8 55.2 30.1

UniDAPS [86] 36.0 61.5 07.5 76.6 00.8 30.4 27.7 10.2 11.1 77.4 00.0 93.6 47.3 02.1 49.4 25.9 33.0 62.3 30.6
EDAPS [55] 36.2 62.2 10.8 81.1 00.5 28.7 22.9 10.6 10.5 75.5 00.1 93.3 42.7 02.3 72.1 33.6 18.8 58.6 26.7

UnmaskFormer [7] 36.1 60.6 13.3 74.2 00.9 32.7 21.6 14.2 06.9 76.7 00.0 93.9 45.2 01.2 73.3 34.1 22.0 56.9 22.7

� (xpan, ypan) Source-only 31.0 67.1 21.5 76.9 03.2 17.0 17.7 02.7 06.3 64.7 00.0 90.7 40.0 01.8 69.2 19.5 04.6 47.4 08.5

� (xpin, ypin, ypan)
360SFUDA++ [95] 31.2 64.8 21.3 77.7 03.4 16.2 18.9 02.7 06.0 66.6 00.0 91.7 41.9 02.0 67.9 19.1 04.6 49.1 07.9

UNLOCK (Ours) 34.3 (↑3.3) 69.1 25.2 81.5 00.1 25.1 20.0 03.7 10.5 68.0 00.0 91.6 45.9 01.6 71.4 24.0 07.2 50.8 21.4

Table 3. Scene Segmentation results on the A2B benchmark. Metrics are reported as: mAPQ for Amodal Panoptic Segmentation (APS),

mPQ for Panoptic Segmentation (PS), and mIoU for Semantic Segmentation (SS). Per-class results are reported as APQ, PQ, and IoU.

mAPQ mPQ mIoU mAAP mAP

Source-only 22.13 22.30 38.65 10.22 10.54
Pseudo-Labels 21.90 22.07 39.12 10.09 10.37

All Predictions 22.38 22.31 38.90 10.15 10.50

OPLL (Ours) 24.71 24.00 39.03 10.52 10.52

Table 4. Ablation analysis for OPLL.

Backbone mAPQ mPQ mIoU mAAP mAP

Source-only 22.1 22.3 38.7 10.2 10.5

Trans4PASS [85] 26.1 25.3 40.0 10.9 11.3

EDAPS [55] 26.3 25.1 40.5 10.7 11.4

UnmaskFormer [7] 26.4 25.1 41.6 10.9 11.6

Table 5. Ablation analysis for backbones.

OPLL ADCL mAPQ mPQ mIoU mAAP mAP

22.13 22.30 38.65 10.22 10.54

� 24.71 24.00 39.03 10.52 10.52

� 25.84 24.55 40.31 10.93 11.47

� � 26.41 25.07 41.64 10.91 11.58

Table 6. Ablation analysis for components.

mAPQ mPQ mIoU mAAP mAP
Source-only 22.13 22.30 38.65 10.22 10.54

Instance 25.03 24.23 38.93 10.33 10.55
Amodal Instance 25.71 24.50 39.06 10.77 11.22

AoMix [7] 25.32 24.67 38.04 10.62 11.26
ADCL-Random 24.81 23.90 38.92 10.69 11.19

ADCL-Zero (Ours) 25.84 24.55 40.31 10.93 11.47

Table 7. Ablation analysis for ADCL.

Method mIoU
SFDA [40] 42.70
DATC [73] 43.06
360SFUDA [96] 50.12
360SFUDA++ [95] 52.99
UNLOCK (Ours) 54.55

Table 8. SS results on

the C2D benchmark.

improvement of 2.58 in mAPQ.

Effectiveness of ADCL. Another ablation study was con-

ducted to validate the effectiveness of the ADCL. Table 7

presents a comparison of different object mixing strategies.

Due to incomplete object shapes, instance-based mixing

yields limited improvement in mAPQ and mAAP. Directly

using amodal instances causes confusion in contextual in-

formation. Unlike AoMix [7], which zeros out full amodal

object regions of the input image, our method in UNLOCK

sets only the overlapping regions to zero (ADCL-Zero), ef-

fectively preserving contextual cues. Replacing overlaps

with random values (ADCL-Random) yields inferior re-

sults, while ADCL-Zero achieves the best mAPQ of 25.84.

Component Ablation. As shown in Table 6, by combining

OPLL and ADCL, our UNLOCK method achieves the best

overall performance, outperforming the Source-only trained

on the source pinhole domain with +4.28 gains in mAPQ. It

shows that our methods can successfully adapt to the target

panoramic domain under source-free constraints.

Backbone Ablation. As shown in Table 5, we evaluated

the performance of UNLOCK across different backbones to

verify the effectiveness of the UNLOCK strategy itself. The

results indicate that UNLOCK maintains consistent perfor-

mance across diverse backbone architectures, confirming its

backbone-agnostic nature as an SFDA framework.

4.5. Results of Panoramic Semantic Segmentation

To investigate the generalization capability of UNLOCK,

we extend UNLOCK to the Semantic Segmentation (SS)

task and evaluate it on the Cityscapes-to-DensePASS

(C2D) benchmark. As shown in Table 8, UNLOCK

achieves a significant improvement of +1.56 in mIoU over

360SFUDA++ [95]. Under the pinhole-to-panoramic C2D
adaptation scenario, our UNLOCK achieves the new state-

of-the-art result of 54.55 in mIoU.

5. Conclusion

In this paper, we address key constraints in comprehen-

sive scene understanding, to achieve seamless segmentation

with 360° viewpoint coverage and occlusion-aware reason-

ing, while adapting without relying on source data and tar-

get labels. To this end, we introduce a new task, Source-

Free Occlusion-Aware Seamless Segmentation (SFOASS),

and propose its first solution UNLOCK. We further applied

two SFOASS benchmarks for evaluation: Real-to-Real and

Synthetic-to-Real. Extensive experimental results demon-

strate the effectiveness of the proposed method.
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