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Figure 1. HouseTour. Given a set of images captured in an existing 3D space and their corresponding camera poses, our method tackles
the task of 3D camera trajectory and textual summary generation. We focus on generating human-like trajectories and descriptions that can
be used for real estate remote video tours of properties, thus highlighting spatial characteristics such as layout, functionality, architectural
features, static building elements (e.g., appliances, windows, and doors), materials, and ambiance. To support the task, we present a novel
dataset with real estate video tours, descriptions, and 3D reconstructions.

Abstract

We introduce HouseTour, a method for spatially-aware 3D
camera trajectory and natural language summary genera-
tion from a collection of images depicting an existing 3D
space. Unlike existing vision-language models (VLMs),
which struggle with geometric reasoning, our approach
generates smooth video trajectories via a diffusion process
constrained by known camera poses and integrates this in-
formation into the VLM for 3D-grounded descriptions. We
synthesize the final video using 3D Gaussian splatting to
render novel views along the trajectory. To support this
task, we present the HouseTour dataset, which includes over
1,200 house-tour videos with camera poses, 3D reconstruc-
tions, and real estate descriptions. Experiments demon-
strate that incorporating 3D camera trajectories into the
text generation process improves performance over meth-
ods handling each task independently. We evaluate both
individual and end-to-end performance, introducing a new
joint metric. Our work enables automated, professional-
quality video creation for real estate and touristic applica-
tions without requiring specialized expertise or equipment.

1. Introduction

Recent advances in vision-language models (VLMs) [1, 39,
56] have enabled zero-shot generalization across a wide
range of real-world image, video, and text applications,
bridging the gap between curated research tasks and prac-
tical scenarios. However, generating videos grounded in
an existing 3D space and describing spatial qualities in
unstructured language—beyond merely listing contents—
remains a challenge. This task requires geometric reasoning
capabilities that current models lack.

We present the novel task of spatially-aware 3D camera
trajectory generation and textual summarization from a col-
lection of images depicting an existing 3D space. This task
is closely related to creating house-tour videos, a popular
format on YouTube, where over 624 million videos feature
real estate agents and occupants showcasing their homes.
This practice surged during the COVID-19 pandemic due
to travel and interaction restrictions, providing renters and
prospective buyers with remote access to properties. It re-
mains a critical tool today in the U.S. real estate market, val-
ued at 3.43 trillion dollars. However, providing such videos
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is labor-intensive, requiring expert real estate agents to visit
properties with high-end videography equipment and man-
ually craft detailed descriptions. Unlike scene captioning
methods [12, 14, 47, 60], these descriptions focus on spatial
layout, functionality, architectural features, static building
elements (e.g., appliances, windows, and doors), materials,
and ambiance rather than simply enumerating furniture.

To address these challenges, we introduce HouseTour
(Fig. 1), a method to automatically generate house-tour
videos from a set of captured images with known cam-
era poses. Our approach enables users—without special-
ized expertise or equipment—to create professional-quality
videos for real estate and touristic purposes. We extend an
existing VLM [56] by fine-tuning it for 3D-grounded real
estate descriptions. Our method generates smooth 3D cam-
era trajectories using a diffusion process [31] constrained by
the known camera poses and integrates this information di-
rectly into the VLM to ensure text alignment with the spatial
path. To visualize the results, we synthesize the final video
using 3D Gaussian splatting [35] to render novel views from
the generated camera poses. We design the input to our
method to accommodate practical use cases where typi-
cal end-users may struggle to capture smooth videos with
smartphones. Additionally, using images instead of video
enhances privacy by allowing selective content capture.

To support this task, we introduce the HouseTour dataset,
a curated collection of over 1,200 house tour videos fea-
turing diverse properties ranging from apartments to multi-
storey houses. Each video is accompanied by profession-
ally captured smooth camera trajectories and real-estate-
oriented textual descriptions, and generated 3D reconstruc-
tions. We compute ground-truth 3D camera pose infor-
mation using off-the-shelf methods [38, 49] and manually
verify all dataset information to ensure accuracy, while re-
moving visual and textual content that may infringe on pri-
vacy. Our dataset fills a gap in existing 3D visio-linguistic
datasets [2, 6, 13, 26, 32, 43, 62], where camera trajectories
are tailored to the 3D reconstruction task (close-up poses
to object surfaces and jerky movements) and descriptions
enumerate scene objects and their in-between relationships.

Our contributions are threefold:

• We present a novel task: spatially-aware 3D camera tra-
jectory and textual summary generation from a collection
of images, with the goal to resemble hour tour videos.

• We propose a new method, HouseTour, that jointly mod-
els camera trajectory and language description genera-
tion, incorporating geometric constraints in the process.

• We release the HouseTour dataset to support this task,
comprising house-tour videos with 3D reconstructions,
and real-estate-style textual descriptions.

The dataset, code, and trained models publicly are avail-
able at https://house-tour.github.io.

2. Related Work
Long-Horizon Understanding and Captioning. The
Video-to-Text task traditionally emphasizes generating de-
scriptive narratives from short video clips, focusing pri-
marily on salient actions or prominent objects [54, 63].
Despite their effectiveness in general-purpose applications,
these approaches typically lack detailed spatial reasoning
and long-term contextual coherence, critical for describing
spatial layouts and architectural details. Recent advances
[12, 47] explicitly model spatial relationships and semantic
context to improve captioning. Nevertheless, these meth-
ods primarily operate on 3D scans or pre-recorded video
sequences without dynamically integrating novel camera
viewpoints or trajectories. This limits their utility for gener-
ating cohesive, spatially-aware narratives, e.g., for naviga-
tional videos, such as real estate tours.

Recent advances in 3D vision-language tasks recognize
that real-world spatial context is crucial. Works like Dense-
Cap [34] and Scan2Cap [16] detect and describe objects
within images or 3D scans, incorporating relational cues
(e.g., “A couch next to a table”). Furthermore, large-scale
3D datasets [11, 50, 57] have spurred research on embod-
ied tasks (e.g., vision-and-language navigation [5]) where
an agent must navigate and describe the environment. For
instance, frameworks like EnvDrop [51] address navigation
instructions grounded in real indoor scans, partially over-
lapping with our objective of context-aware commentary.

Lastly, only few Video-to-Text or Multi-Image-to-Text
models can effectively handle very long sequences. Most
models are designed for short-horizon videos that can be
represented with a limited number of visual tokens [7, 41,
55, 61]. TimeChat [48] notably extends the manageable
video length by using a sliding window approach, but it
lacks the foundational expertise required for architectural
captioning of interior scenes. Only a handful of models
meet both criteria—handling larger sequences of visual data
while also incorporating domain knowledge for our task.
Examples include Qwen2-VL [56] (and its latest iteration,
Qwen2.5-VL [8]) as well as LLaVa-OneVision [39].

Trajectory Generation and Human-like Motion. Tra-
ditional camera trajectory estimation, fundamental to
SLAM and SfM pipelines [22, 44, 49], focuses on accu-
rately reconstructing camera poses from existing image se-
quences. Recent work, however, has explored generative
approaches to trajectory planning, aiming to synthesize re-
alistic camera movements that mimic human behavior or
cinematic styles [18, 36, 65]. These generative approaches
typically utilize learned priors from human-recorded video
datasets to produce plausible trajectories, but they often lack
explicit geometric grounding, resulting in potential inaccu-
racies or physically infeasible paths.

In robotics, existing literature often focuses on egocen-
tric and allocentric motion as well as trajectory predic-
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tion [4, 40, 46], typically aiming to forecast short-term de-
cisions given prior environment data. More recent meth-
ods such as SceneDiffuser [29], MotionDiffuser [33], and
Decision Diffuser [3] utilize diffusion-based models specif-
ically designed for sequential decision-making tasks. In
contrast, our approach, inspired by the Diffuser [31], lever-
ages diffusion-based generative modeling explicitly condi-
tioned on known 3D scene geometry. We formulate tra-
jectory planning holistically rather than sequentially, en-
abling improved long-horizon decision-making. Such a
strategy is particularly advantageous in our setting, where
prior knowledge of the scene geometry is available, unlike
many robotics scenarios that require simultaneous explo-
ration and planning. While our technique draws on Dif-
fuser’s inpainting-like paradigm for conditioning sparse ob-
servations, it mainly departs in two key ways. First, because
our interaction spaces vary with different real estate layouts,
we move away from learning an absolute trajectory in non-
constant environments. Instead, we model human-like mo-
tion as a residual to spline interpolation, which proves more
effective as a learning task. Second, we introduce a custom
loss function tailored to our trajectory generation objectives,
enhancing the quality of the resulting paths.

Datasets for Spatially-Aware Video Generation. Ex-
isting 3D datasets [11, 19, 59] predominantly feature envi-
ronments captured using tripod systems or videos optimized
for reconstruction purposes (i.e., staying close to object sur-
faces, lacking smooth movements, and failing to capture the
entirety of rooms in single frames). In recent years, several
datasets have extended these to connect 3D spaces with lan-
guage [2, 6, 13, 26, 32, 43, 62], supporting tasks such as
object referral, scene captioning, vision-language naviga-
tion, and reasoning. However, these datasets focus on de-
scribing furniture and object relationships while overlook-
ing broader spatial aspects such as scene layout, architec-
tural features, materials, and ambiance. They also lack real-
world video trajectories designed to observe and highlight
entire spaces and are not paired with professionally crafted
textual narratives. Another related dataset, RealEstate10K
[64], consists of 7000 video snippets from online real es-
tate YouTube videos, but these clips are significantly shorter
than ours (1-10 seconds versus several minutes) and do not
provide textual summaries of the scenes.

3. HouseTour
Given a tuple prior (C, I), where C = [c1, c2, ..., cNc

] de-
notes a sequence of Nc sparse, temporally ordered, and
known camera poses and I the corresponding RGB frames
for the camera poses, our objective is to generate a trajec-
tory τ with N > Nc frames and a scene-level summary Σ
that emulate the motion and language narration of a profes-
sional real estate agent when touring a property. In short,
the method takes posed images as input and returns (i) a

continuous camera trajectory anchored to those observa-
tions and (ii) a descriptive summary of the scene.

The generated trajectory is represented by τ =
[p1,p2, ...pN ] and each camera pose pi = {li, ri} along
the trajectory is represented by a translation and a quater-
nion rotation vector, where li = [xi, yi, zi] and ri =
a + bi + cj + dk. We assume prior spatial knowledge of
the C camera poses. Specifically, each known camera pose
is given by ctτi = {li, ri} and tτ represents the temporal
order of the camera pose within the trajectory. Our gener-
ated summaries Σ are conditioned on both the sparse vi-
sual observations I and the spatial features fθ(C) that are
provided by our trajectory generation framework, Residual
Diffuser. In other words, the generation of Σ utilizes a tri-
modal model – incorporating language, vision and 3D lo-
calization – referred to as Qwen2-VL-3D. An overview of
our method is in Figure 2. For preliminaries see Supp.

3.1. Diffusion-based Camera Trajectory Planning

Our framework extends Diffuser [31] in terms of model
architecture and inpainting-style conditioning approach.
Analogous to image inpainting, where an incomplete im-
age is denoised given a mask indicating known pixels, we
denoise a trajectory conditioned on a set of sparsely known
camera poses. Specifically, we treat c1:Nc

as the “mask” of
known camera poses along the trajectory and denoise the
rest of the trajectory around these poses. The fixed pose
constraints are represented by a Dirac function [21] during
the forward and reverse processes, allowing for determin-
istic sampling of these known camera poses at the prede-
termined timepoints tτ . Notably, our approach tackles tra-
jectory planning purely within the “observation” space, dis-
tinguishing it from Diffuser’s original formulation, which
operates within a joint “observation-action” space.

Additionally, Diffuser typically addresses a static inter-
action space, training the model to understand and plan
within a fixed environment (such as navigating a constant
maze with varying start and end points). In contrast, our
scenario presents dynamically changing floor layouts, effec-
tively creating a distinct maze to traverse in each iteration.
This distinction makes the direct application of the Diffuser
method effectively unsuitable for our case. The variability
between scenes led us to change the formulation from learn-
ing absolute trajectory representations within each scene
to learning residuals that mimic humane distinctions from
spline interpolation. The spline solution is a robust initial
approximation for moderately sparse observations.

The generated trajectory is calculated as: p̃ = S + ∆p,
where S is the interpolated spline for translations (SLERP
for rotations [37]) between known camera poses and ∆p
denotes the predicted residuals. Under this formulation, for
timesteps with known camera poses, we set the residual vec-
tor to zero. The reverse process for Residual Diffuser is:
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Figure 2. Pipeline Overview. Given an prior tuple (C, I) of camera poses and images, our goal is to generate scene-level real estate
summaries alongside a continuous camera trajectory that emulates human navigation. The sparse camera pose observations C are refined
and completed by the proposed Residual Diffuser to obtain a smooth path. The resulting spatial features, along with the provided RGB
frames I , are then processed by the Qwen2-VL-3D model to generate a coherent real estate summary.

{
0⃗ = δ(pi) if i ∈ tτ

pθ(∆pi
t−1|∆pi

t,S) = N (∆pi
t−1;µθ,Σθ) else

(1)
During the forward process, we again set the residuals

of known camera poses to a zero vector, while the remain-
ing residuals are diffused using the traditional approach out-
lined in Equation 2 in Supp. We train a U-Net architecture
built with 1D convolutions (Figure 2 (1)), as in [31], to pre-
dict the ground-truth residual from the diffused residual sig-
nal across uniformly sampled timesteps ranging from 1 to
Tdiff . Leveraging convolutions accommodates varying tra-
jectory lengths during both training and inference. Further-
more, we significantly vary the sparseness of known camera
poses during training for robust performance. The condi-
tional diffusion process is as follows:{
0⃗ = δ(pi) if i ∈ tτ

q(∆pi
t|∆pi

0,S) = N (∆pi
0;
√
αtx0, (1− ᾱt)I) else

(2)
Trajectory Loss. In conventional denoising diffusion prob-
abilistic model (DDPM) training, the loss is typically de-
fined as the distance between the predicted and the ground-
truth noise, a formulation that acts as a simplified varia-
tional bound [25]. However, for our application, directly
minimizing the distance between the ground-truth and de-

noised camera poses may not be ideal for optimizing tra-
jectories. This is partly because the ground-truth poses in
our dataset were generated with 3D reconstruction and may
contain inherent biases, such as denser sampling in low-
texture areas and sparser sampling in high-texture regions.
This could lead the model to learn undesirable patterns in
order to minimize the objective. Moreover, a trajectory is
a continuous function of camera poses that can be approxi-
mated by densely sampled points. We propose a loss func-
tion that adheres to these criteria and establishes a more ef-
fective distance measure between trajectories.

For a trajectory τ of length N , we define a spline seg-
ment (and SLERP for rotations) between each pair of con-
secutive camera poses, pi and pi+1. We then efficiently
evaluate this spline on n uniformly sampled points along
each interval using Horner’s Method [27], denoting the re-
sulting set of points as:

S(pi:i+1) =
(
si:i+1
1 , si:i+1

2 , . . . , si:i+1
n

)
Next, we compute the total Euclidean length of the tra-

jectory τ by summing the distances between successive
camera poses. We define Neval ≫ N as the total number
of evaluation points along the splines. These points are uni-
formly distributed along the trajectory based on Euclidean
distance, with the precomputed spline values serving as in-
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dices for the evaluation points.
We compute the loss for translations using the L2 norm

on uniformly sampled dense spline points. At the same
time, for rotations, we employ a geodesic loss that provides
a more suitable measure of distance on the SO(3) manifold.
It is important to note that any residual vector added to a
unit quaternion must be renormalized to ensure the quater-
nion remains of unit length. The resulting trajectory loss is
formulated as follows:

Lθ = Et,τ ,ϵ

[
∥ϵpos − ϵθ(post, t)∥2 + dgeo(ϵrot, ϵθ(rott, t)

]
(3)

3.2. Generating Real Estate Summaries
Next, we generate real estate summaries that emulate a pro-
fessional house tours. These summaries emphasize the ar-
chitectural features of the property rather than the objects
visible in individual frames. Addressing this task requires
a visual grasp of the vast architectural vocabulary; for ex-
ample, differentiating among kitchen countertop materials
(quartz, ceramic, metal, wood, etc.) or recognizing vari-
ous ceiling types (vaulted, cathedral, coffered, etc.). More-
over, this task demands the coherent processing of exten-
sive, sparse multi-image data to accurately capture the com-
plete layout of a property. Finally, we recognize that both
visual and spatial information are essential to accurately lo-
cate each frame within the property and incorporate relevant
spatial context into the summaries.

To this end, we integrate 3D spatial information as a third
modality into a vision-language model, namely Qwen2-VL-
3D, leveraging the spatial features provided by the Residual
Diffuser to enhance summary quality (Figure 2 (2)). Our
training builds on the Qwen2-VL [56] model, which serves
as a robust foundation. Unlike many vision-language mod-
els that struggle to process large batches of images, Qwen2-
VL provides a rich visual knowledge base that effectively
connects with language and can attend to details across a
large amount of visual tokens.

In the first step of training, we employ the parameter-
efficient LoRA [28] fine-tuning method to train the Qwen2-
VL model on the task of generating real-estate summaries.
For this, we uniformly sample Nframes frames from each
house tour video to serve as visual cues during multi-image
training. We set Nframes to 96, which is chosen based on the
memory requirements of training while ensuring sufficient
scene coverage. This step ensures that the fine-tuned ver-
sion effectively captures the language style of house tour
summaries and incorporates the appropriate architectural
terminology in its generated output.

In the second stage, we integrate spatial understanding
into the summary generation process. First, we add the
special tokens <|traj start|>, <|traj pad|>, and
<|traj end|> to the VLM’s vocabulary. The start and
end tokens define the boundaries where spatial features are

inserted into the user prompt, and the pad token is replaced
by the corresponding spatial token. Each spatial token is
provided alongside the visual tokens from the correspond-
ing scene location, though the visual tokens are not required
to be paired with spatial tokens in return. This setup offers
the flexibility to include frames with and without spatial fea-
tures during training and inference.

Next, we build the adapter that transforms the raw fea-
tures and absolute positional information coming from the
Residual Diffuser into token representations compatible
with the language processing components of the Qwen2-
VL model. For each frame fed into the VLM, we denoise its
corresponding pose pi

0. We also get the temporally down-
sampled features from the bottleneck layer of the Residual
Diffuser and upsample it with interpolation. We concate-
nate pi

0 with f i
0, where f i

0 corresponds to the bottleneck
feature from the last step of trajectory denoising. Utiliz-
ing the bottleneck layer features along with the denoised
camera pose information ensures a high-level global repre-
sentation of the trajectory. Lastly, the concatenated spatial
features are passed through a linear layer, which maps them
into the embedding space of Qwen2-VL’s language compo-
nent. We use a single token to encode each frame’s spatial
information. Implementation details are in Supp.

3.3. House Tour Videos via 3D Gaussian Splatting

To assess the visual quality of the generated trajectories, we
train a Gaussian Splat [35] using all the ground-truth poses
along with the reconstructed point clouds. We then ren-
der the camera poses, denoised by the Residual Diffuser,
using only the sparse views. These videos are solely for
visualizing the trajectories; during inference, the end user
will have access only to the sparse views. While recent
studies [15, 23, 58] address synthesizing scenes from sparse
views, this problem falls outside the scope of our work.

4. HouseTour Dataset

We introduce the HouseTour dataset, which features scene-
scale human trajectories, dense point clouds, and real estate
descriptions, all derived from in-the-wild RGB real estate
tour videos. The data is procured from professional real-
estate agencies. Our dataset comprises 1639 videos show-
casing properties ranging from condos to multi-storey apart-
ments. Of these, 1298 videos are transcribed—half with
timestamped descriptions—capturing the detailed profes-
sional language used by real estate agents use for both inte-
rior and exterior spaces. Additionally, we provide 3D recon-
structions for 878 scenes, while the remaining scenes expe-
rienced partial or complete reconstruction failures. Further
details on the reconstruction pipeline, the dataset creation
process, and statistics are in Supp.
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5. Experiments

We evaluate HouseTour (Residual Diffuser + Qwen2-VL-
3D) on human-like trajectory generation and multi-image
scene summarization. In Section 5.2, we measure end-to-
end performance with a novel joint metric and compare to
the best performing baselines per task. We also provide per
task analysis in Sections 5.3-5.4. All experiments are eval-
uated on the test set of our HouseTour Dataset.

5.1. Evaluation Metrics

Trajectory Generation. We report the recall-based met-
rics, R@50cm, R@75cm, and R@1m, which indicate the
percentage of predictions with a translation error less than
50cm, 7cm, or 1m respectively. We then evaluate the tra-
jectories using several distance- and shape-based metrics:
Euclidean Distance, Dynamic Time Warping (DTW), Haus-
dorff Distance, Fréchet Distance, and the L2 Chamfer Dis-
tance. We examine rotational quality via Quaternion Dis-
tance and Geodesic Distance; and use peak-signal-to-noise
(PSNR) and structural similarity (SSIM) to evaluate the ren-
dering performance on the 3D Gaussian splatting output.
Scene Summarization. We organize our metric selec-
tion around two primary goals: stylistic and factual align-
ment. For stylistic alignment, we use BLEU (B) [45],
ROUGE-L (ROU-L) [42], METEOR (MTR) [9], and
CIDEr (CDr) [53]. These n-gram based metrics are useful
for assessing style, vocabulary, and syntax but cannot ad-
equately capture aspects of factual correctness, coherence,
or hallucinations—considerations that are critical for pro-
ducing coherent summaries. To address these limitations,
we adopt a commonly used preference-based evaluation ap-
proach: Bradley–Terry scores (BT). By comparing pairs of
generated texts, this method captures their overall quality,
including factuality and overall coherence. Building on re-
cent approaches that use Bradley-Terry models to rank per-
formance and employ LLMs as judges based on their own
preferences [17, 24], we leverage GPT-4o [30] to compare
the summaries produced by each method. In each iteration,
the LLM is presented with the ground-truth summary along-
side two generated summaries from different methods and
is tasked with selecting the one that most closely matches
the ground truth. To ensure fairness, the order that the sum-
maries are presented to the LLM is randomized. For more
details, including a user study, see the Supp.
End-To-End Performance. To measure end-to-end per-
formance, we develop a new metric, the Spatio-Linguistic
score (SLS), that measures the joint performance of meth-
ods on the tasks of 3D camera trajectory and textual sum-
mary generation. More specifically, its role is to evalu-
ate spatial geometry (translation and rotation) with respect
to the ground truth trajectory and linguistic overlap with
professionally annotated real estate summaries. It is com-

puted as the harmonic mean of the Translation Recall at
75cm (R@75cm), the Rotation Score (Rot. Score), and
the Bradley–Terry score (BT) , and ranges from 0 to 100.
Here, the Rotation Score is defined as 1 − geo. dist.

π . The
first two metrics evaluate trajectory and the latter sum-
mary generation. Together, they offer a comprehensive
view of performance on the joint task. Why R@75cm?
As shown in Table 2, our approach outperforms the base-
lines at larger recall thresholds but loses its comparative
edge for tighter thresholds. We attribute this pattern to
the increase in uncertainty as the distance to the closest
known pose increases. Interpolation-based methods have
high representation power where the evaluation points are
close to the known poses due to the continuity and smooth-
ness of trajectory curves. As the distance to the closest
known pose grows, the uncertainty around trajectory pre-
diction increases, causing interpolation-based methods to
suffer greater performance degradation compared to our ap-
proach. Therefore, we select a 75cm threshold as a practical
balance between tightness and representational power.

5.2. End-to-End Performance

In Table 1, we compare the end-to-end performance of our
method with a composed baseline. Due to the absence of
a method that can solve this joint task, we devise one by
using the best performing methods per task: Catmull-Rom
Spline [52] for camera trajectory generation and Qwen2-
VL-7B (SFT) for textual summary generation—a finetuned
version of Qwen2-VL [56] for the task of generating real-
estate summaries. HouseTour outperforms the baseline on
all metrics, including the joint one.

Methods R@75cm ↑ Rot. Score ↑ BT ↑ SLS ↑
Baseline 57.1 96.8 71.4 71.7

HouseTour 60.2 97.1 79.5 76.0

Table 1. End-to-End Performance on 3D camera trajectory
and textual summary generation. The baseline method con-
sists of Catmull-Rom Spline [10] and Qwen2-VL-7B (SFT), and
HouseTour (ours) of Residual Diffuser and Qwen2-VL-3D.

5.3. Trajectory Generation

Table 2 presents a comparison of our Residual Diffuser
against two interpolation-based baselines, Linear Inter-
polation and Catmull-Rom Splines, for trajectory genera-
tion. For rotational data, we adjust the Linear Interpolation
baseline to linearly interpolate quaternions, while the Cat-
mull–Rom one uses spherical linear interpolation (SLERP).
We construct our spline-based baseline using the Catmull-
Rom spline because, unlike other spline variations such as
the B-Spline[20], it passes through all the control points.
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Methods Translation Rotation Rendering
R@50cm ↑ R@1m ↑ Euclidean Dist. ↓ DTW ↓ Hausdorff Dist. ↓ Frechet Dist. ↓ Chamfer Dist. ↓ Quaternion Dist. ↓ Geodesic Dist. ↓ PSNR ↑ SSIM ↑

Lin. Interp. 41.2% 59.8% 145.8 192.1 118.7 126.7 109.5 0.0432 0.20 14.20 0.557
Catmull-Rom 45.9% 64.7% 106.2 146.3 89.3 95.8 83.4 0.0079 0.10 14.22 0.557

Residual Diffuser (Ours) 46.2% 69.4% 73.9 128.8 76.3 81.2 75.5 0.0073 0.09 14.24 0.556

Table 2. Spatial Trajectory Generation Performance. We compare our generated trajectories to interpolation-based baselines that do not
account for “human-like” motion. Translation performance is reported in cm, Quaternion Distance is measured as the Euclidean distance
between unit quaternions, and Geodesic Distance is reported in radians.

In order to evaluate methods on cases with varying num-
ber of frames that range from sparser to denser coverage
of the property, we vary the frequency of the known cam-
era poses between every 5th and 15th frame of the ground-
truth video. Our method outperforms baselines across all
translation and rotation metrics. In particular, the highest
recall for R@1m indicates that our method incurs fewer
“large–errors”—errors substantial enough to be considered
major misalignments—than the interpolation methods. In
addition, significantly reduced distance metrics in transla-
tion, along with lower quaternion and geodesic distances
in rotation ,imply more accurate pose generation. For
rendering-based metrics, PSNR and SSIM remain compa-
rable to baseline values; these metrics are less sensitive to
slight pose differences—especially when the rendered im-
age content (e.g., lighting, texture, and overall scene struc-
ture) is preserved and, thus, are less informative on the qual-
ity of the final video.

These results confirm that incorporating data-driven dif-
fusion into trajectory prediction better captures human-like
motion tendencies and yields more robust and precise re-
sults than purely geometric interpolation. Figure 3 fur-
ther supports this, showcasing more human-like and smooth
camera trajectories. For more results see Supp.

Figure 3. Trajectory Visualization Within the 3D Reconstruc-
tions (top view). Our method, Residual Diffuser, achieves a more
human-like and smooth trajectory than the baseline Catmull-Rom
Spline. Black: Ground-Truth, Green: Residual Diffuser and Red:
Catmull-Rom Spline.

5.4. Scene Summarization
In Table 3, we compare our Qwen2-VL-3D method with
zero-shot and supervised fine-tuned variants of founda-
tion VLMs. Since many state-of-the-art VLMs struggle
when faced with a large set of input images, thus limiting
their scene-level understanding, we use LLaVa-OneVision-
7b [39] and Qwen2-VL-7b [56] as zero-shot baselines,
which have a demonstrated robustness to larger multi-image
inputs. We also finetune Qwen2-VL-7b on our dataset with-
out any interactions with the trajectory generation to learn
the real-estate language style (Qwen2-VL-7b (SFT)).

Methods
Multi-image Scene Summarization

B1 ↑ B2 ↑ B3 ↑ B4 ↑ ROU-L ↑ MTR ↑ CDr ↑ BT ↑
LLaVa-OneVision-7b 0.259 0.128 0.055 0.024 0.189 0.109 0.001 0.04

Qwen2-VL-7B 0.272 0.137 0.064 0.029 0.195 0.13 0.005 0.04
Qwen2-VL-7B (SFT) 0.363 0.220 0.126 0.070 0.231 0.175 0.026 0.71

Qwen2-VL-3D (Ours) 0.433 0.264 0.154 0.090 0.24 0.193 0.021 0.79

Table 3. Linguistic Summary Evaluation. We compare Qwen2-
VL-3D against other foundation VLM models. (SFT) denotes that
the model has been fine-tuned on our dataset without any input
from the trajectory generation.

By incorporating 3D-aware information, the resulting
multi-image scene summaries are noticeably more coherent
and descriptive, as evidenced by improvements across most
n-gram metrics and preference-based evaluations. Fine-
tuning also has a pronounced effect on preference scores,
as the fine-tuned model decisively outperforms its zero-shot
counterpart. While a performance gain is unsurprising, the
substantial gap underscores the limitations of off-the-shelf
VLMs for generating more applied language styles.

Figure 4 shows an example of the summaries generated
by our method. As shown, HouseTour can accurately iden-
tify the layout, materials, architectural elements, and am-
biance. For more results see Supp.

5.5. Ablation Studies
Table 4 examines how the frequency of observations im-
pacts trajectory generation. In this experiment, observations
are uniformly sampled every 5th, 10th, and 15th frame, and
the corresponding performance metrics are reported. As an-
ticipated, sparser sampling provides less information, which
results in higher errors for all methods. Our findings indi-
cate that our method performs reliably in both dense and
sparse scenarios, establishing it as an overall better choice.
Notably, the table reveals that at a moderate sampling fre-
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Figure 4. Qualitative Results for Scene-Level Summary Generation. Our method creates accurate real-estate descriptions that capture
the architectural style and elements of the space. We showcase an example of our summary generation, including sampled images of the
space and a mapping between generated text and spatial elements to facilitate the reader.

Pose Frequency Methods Translation (cm) Rotation
(every N frame) Euclidean Dist. ↓ DTW ↓ Hausdorff Dist. ↓ Frechet Dist. ↓ Chamfer Dist. ↓ Quaternion Dist. ↓ Geodesic Err. ↓

5th
Lin. Interp. 87.5 151.6 95.4 99.9 89.6 0.0368 0.19

Catmull-Rom 56.0 103.5 64.2 67.4 61.5 0.0053 0.07
Residual Diffuser (Ours) 41.5 96.3 57.8 60.3 58.4 0.0052 0.07

10th
Lin. Interp. 268.3 278.1 166.3 182.2 149.5 0.0714 0.33

Catmull-Rom 219.0 238.4 140.6 154.9 128.6 0.0133 0.14
Residual Diffuser (Ours) 151.1 197.3 114.8 125.2 110.7 0.0131 0.13

15th
Lin. Interp. 559.9 414.9 235.9 272.9 202.4 0.1059 0.46

Catmull-Rom 510.9 388.5 217.3 254.7 189.6 0.0477 0.28
Residual Diffuser (Ours) 371.2 321.1 177.1 206.6 163.9 0.0471 0.27

Table 4. Ablation Study on the impact on trajectory generation performance when varying the frequency of the known camera poses.

quency (every 10th frame) our method works the best. The
Euclidean distance error is reduced by 32% compared to the
closest baseline with moderate sampling frequency, while
reductions of approximately 28% are observed when sam-
pling every 5th and 15th frames.

Methods w/o 3D Pos. w/ 3D Pos.

Qwen2-VL-7B (SFT) 44% 32.5%
Qwen2-VL-3D (Ours) 56% 67.5%

Table 5. Ablation Study on the impact of 3D positional infor-
mation on the summarization performance, using Bradley–Terry
probabilities. The values denote the Win Percentages.

In Table 5, we investigate the effectiveness of the pres-
ence of 3D information for the summary generation task.
For this purpose, we partition our test set into scenes that
include 3D information and those that do not. The results
indicate that when 3D information is available, Qwen2-VL-
3D is significantly favored over the finetuned Qwen2-VL-
7B model, highlighting the value of spatial priors in sum-
mary generation. Additionally, the performance boost that
our method achieves in the absence of 3D data suggests that
the model may, to some extent, be learning to “localize”
the images within the scene during training. As a reminder,

during training, Qwen2-VL-3D receives as input data with
and without 3D positioning.

Results on out-of-distribution scenes are in the Supp.

6. Conclusion

We introduced HouseTour, a method for spatially-aware 3D
camera trajectory and textual summary generation from a
collection of images. Our approach addresses the limita-
tions of existing VLMs by incorporating geometric reason-
ing through a diffusion process, enabling the creation of
realistic house-tour videos without specialized equipment
or expertise. We also presented the HouseTour dataset,
which uniquely combines real-world house-tour videos, ac-
curate 3D reconstructions, and professionally crafted tex-
tual descriptions, facilitating comprehensive evaluation of
spatially-aware video methods. Future works can explore
incorporating information from VLMs to jointly guide the
trajectory diffusion process and the development of Gaus-
sian splatting methods that can fill the gaps between images
without generating non-existing content.
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